
Branchy-TEE: Deep Learning Security Inference
Acceleration Using Trusted Execution Environment

Yulong Wang, Kai Deng, Fanzhi Meng, Zhi Chen, Mingyong Yin⋆
Institute of Computer Application

China Academy of Engineering Physics
Mianyang, China

{wangyulong, dengkai, mengfz, chenzhi, yinmy}@caep.cn

Run Yang
School of Cyberspace Science
Harbin Institute of Technology

Harbin, China
runyoung@hit.edu.cn

Abstract—Deep Learning as a Service (DLaaS) has become
a remarkable trend in modern data-driven online services. Both
data holders and service providers need to build on trust in third-
party cloud infrastructure platforms. However, once the trust
is broken, data holders’ sensitive data and service providers’
intellectual property rights will face significant security and
privacy risks. In this paper, we propose a secure and efficient
inference framework for deep learning in untrustworthy cloud
platforms, termed Branchy-TEE, which aims to protect the
confidentiality and integrity of data and models of multiple
participating actors throughout the inference process using the
Trusted Execution Environment (TEE). Branchy-TEE dynam-
ically loads the inference network into the TEE on-demand
based on early-exit mechanism, expecting to break the hardware
performance bottleneck of the TEE. Moreover, a joint training
method based on knowledge distillation for multi-exit networks
is proposed, by flowing ”knowledge” from the final exit with high
accuracy to the early branch exit with lower accuracy. Finally, the
effectiveness and efficiency of Branchy-TEE are verified through
extensive experiments in real environments, while achieving an
optimal balance between performance and hardware resources.

Index Terms—trusted execution environment, early-exit mech-
anism, security and privacy, knowledge distillation

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have revo-
lutionized the fields of computer vision, autonomous driving,
and natural language [1]. This trend has driven the develop-
ment of DLaaS as a novel computing paradigm, prompting
many service providers in specialized fields to deploy their
models on top of third-party cloud infrastructure platforms,
aiming to provide more convenient and cost-effective services
to users worldwide [2].

To address the issue of data security and privacy protection
when deploying models in third-party cloud infrastructure plat-
forms, existing cryptography-based approaches can provide
sufficient confidentiality and integrity protection for data in
transit, computation, and at rest [3, 4]. However, complex
and frequent cryptographic computations introduce significant
computational and communication overheads, which remain
impractical for scenarios with high real-time requirements and
limited communication bandwidth.

⋆ Corresponding author: Mingyong Yin (yinmy@caep.cn)
DOI reference number: 10.18293/SEKE2023-131

Meanwhile, security protections in any layer of the comput-
ing stack can be bypassed by vulnerabilities in the underlying
layers, which has driven the need for lowest-layer (hardware-
layer) security solutions. The TEE technologies [5], repre-
sented by Intel Software Guard Extensions (SGX)[6], have re-
ceived increasing attention to ensuring the confidentiality and
integrity of data and code by providing a hardware-protected
secure area (termed Enclave) [7]. Although SGX provides
strong security in an untrusted computing environment, it also
suffers from performance degradation under certain conditions.
The inference latency has undoubtedly become the most severe
obstacle for SGX to develop deep learning systems in the
cloud [8, 9]. Taegyeong Lee [10] found that deep learning
inference inside an Enclave is up to 6.4 times slower than
running outside the Enclave. The main reason for the perfor-
mance degradation is the hardware design limitation. SGX has
limited EPC (Enclave Page Cache) memory capacity, which
leads to expensive secure page-swapping operations when the
memory required by the model exceeds the EPC size [11].

Previous studies have been proposed to address performance
degradation. The SLALOM framework proposed by Tramèr
[12] delegates all linear layer computations of deep neural net-
works from TEE to untrustworthy but faster GPUs, resulting in
a 6 to 20-fold increase in inference throughput. Similarly, Gu
proposed DeepEnclave [13], which attempts to reduce memory
usage peaks by dividing the original DNN model into Front-
Net (in EPC) and BackNet (in regular memory). However,
the above methods cannot guarantee the confidentiality and
integrity of the intermediate outputs of the model, resulting in
ineffective defense against DNN reconstruction attacks [14].
In conclusion, it remains challenging to achieve secure DNN
inference acceleration while efficiently utilizing valuable EPC
memory resources [15].

In this paper, we propose Branchy-TEE, a secure and
efficient deep learning inference framework for untrusted
cloud platforms, to achieve confidentiality and integrity of
data and models throughout the inference process. Specifi-
cally, Branchy-TEE achieves a balance between security and
efficiency under limited EPC resources by building an early-
exit network with multiple exits to load different branch
networks into the Enclave on demand. Extensive experiments
on DNN models of various scales show that Branchy-TEE

reduces secure inference latency by up to 84.37% compared
to native SGX, while introducing a minimum accuracy loss of
only 8.39%. In addition, a joint training method of multi-exit
networks based on knowledge distillation is proposed, which
can compensate the loss of inference accuracy caused by the
early exit mechanism to some extent.

II. PROBLEM STATEMENT

A. System Model

The system model of Branchy-TEE is shown in Figure 1
and involves three different entities: a third-party cloud service
provider, a model provider, and a data holder.

(1) Third-party cloud service provider (CSP): CSP
provide powerful computational and storage resources for
DNN model inference computation. In addition, CSP supports
hardware-protected trusted execution environment (SGX En-
clave) for deep learning inference computation on the cloud.

(2) Model provider:(MP): The MP offloads its model and
parameters to the Enclave through a secure communication
channel and instantiates its model inside the Enclave and hosts
the inference service.

(3) Data holder:(DH): The DH verifies the inference
service is running in the Enclave through remote attestation,
and then offloads its private input over a secure communication
channel. After the inference service is executed, the output will
be returned to the corresponding DP through the established
secure channel.

B. Threat Model

With the same trust assumption as the existing research
work [16], the only trusted entity in Branchy-TEE is the
Intel SGX-enabled CPU on the cloud server, which must
support Local/Remote Authentication mechanisms (LA/RA) in
addition to providing a trusted execution environment. Apart
from that, everything in the infrastructure is untrustworthy,
and the potential threats considered in Branchy-TEE are
mainly from: Honest-But-Curious cloud providers, malicious
co-located cloud tenants, and privileged attackers. Branchy-
TEE can preserve confidentiality and integrity for both parties
against above potential threats: (1)DH’s private input is not
leaked to CSP; (2) The MP’s DNN model (e.g., model
architecture and parameters) is not revealed to the CSP and
DH in the computation.

III. THE BRANCHY-TEE SYSTEM DESIGN

A. Overall Architecture of Branchy-TEE System

Fig. 1 illustrates an overview of the secure deep learning
inference system based on TEE provided by the Branchy-TEE
framework.

Phase 1. Initially, the MP instantiates the model inside a
real Enclave in a third-party cloud infrastructure via the remote
attestation mechanism RA (step ❶). Besides, the model and
parameters are offloaded to the Enclave via a secure channel
(step ❷).

Phase 2. During the instantiation of the received model,
Branchy-TEE loads the first branch network into Enclave 1

Layer 1 Layer 2

Early Exit
Branch

Early

Result

Early

Result

... ...

Early Exit
Branch

Layer b Layer L

Final

Result

Enclave 1 Enclave m Enclave n

1 RA & SC

2 Sending model

TLS Channel

Third-party cloud service provider (CSP)

LA&SC

Sending IRs

TLS Channel

Sending IRs

TLS Channel

LA&SCData
Holder

4 RA & SC

5 Sending Input

TLS Channel

6 Receiving Results
7 7

8 8

Model
Provider
Model
Provider

Encryption

Model

Management Enclave

3 Model Integrity
Check

On-Demand
Loading

integrity
measurement

Enclave
Management

9

SGXSGX SGXSGX SGXSGX

SGXSGX

Fig. 1: Overall architecture of proposed system
Branchy-TEE.

via the Layer On-Demand Loading module (LOL). When this
early branch fails to make a valid decision, the LOL module
loads the second branch network into Enclave 2. It takes the
Intermediate Representations (IRs) output from the previous
branch network as input to continue the inference computation
until the network gives the final inference result. In order to
ensure the confidentiality and integrity of IRs transmission,
Branchy-TEE implements the authentication among Enclave
in the same platform through the Local Attestation Mechanism
(LA) provided by SGX (step ❼). After the authentication is
passed, a secure TLS communication channel is established to
transmit the network intermediate representation IRs(step ❽).

Phase 3. Similar to step ❶ of MP, DH verifies that the
inference service is running in the hardware-protected Enclave
through the RA mechanism, and establishes a secure commu-
nication channel after the verification is passed (step ❹). The
DH’s private input is then submitted over this secure channel
to the Enclave (step ❺), and once the inference is completed
the DH accepts the inference result over the secure channel
(step ❻).

B. Layer On-Demand Loading based on Early-exit Mecha-
nism

State-of-the-art SGX-based systems still suffer from sig-
nificant performance overhead caused by limited EPC mem-
ory. Therefore, Branchy-TEE proposes the Layer On-Demand
Loading module (LOL) based on early-exit Mechanism to load
different branching networks layer by layer in a sequential
manner, aiming to expect the model to make inference deci-
sions at an early stage and minimize the EPC memory usage.

1) Relevant Definitions: The network structure of DNN
inference tasks is hierarchically structured. We can define
DNN inference formally as a function: y = f∗ (x) =
fθnfθn−1 · · · fθ1 (x). The input x is mapped to the output y
by a layer-by-layer nonlinear transformation, where fθi and
θi denote the ith layer subfunction and its corresponding
parameters, respectively, and n is the number of the DNN
layers. The intermediate representation of the ith hidden layer
can be denoted as IRi = fθifθi−1

· · · fθ1 (x). Thus, we can
give a formal definition of early-exit network with multiple
exits and other related definitions as follows:

Definition 1. (Early-Exit Network) Given a DNN model with
|M| branch exits y = fM (x, θ) : X → P|M|, where M =(
e1, e2, · · · , e|M|

)
denotes the layer of the backbone network

where the branch exit is located. For any branch exit Mi,
its classification probability distribution is calculated PMi

:
IR→△K as follows.

PMi
= cMi

(
IRei , θ̃Mi

)
(1)

where ei denotes the layer of the backbone network where the
branch exit Mi is located, cMi

and θ̃Mi
denote the branch

classifier and the corresponding parameters, respectively, and
△K denotes the probability distribution of the model output
y corresponding to K classes.

Definition 2. (Branch decision confidence) For any current
branch exit Mi, the output probability distribution of that
branch classifier cMi

is PMi
, and the confidence degree

H (·) ∈ (0, 1] of that branch decision can be measured by
calculating the normalized entropy of PMi

, as follows:

H (PMi
) = − 1

logK

K∑
i=1

pMi log pMi (2)

When H (PMi
) < βi, it means that the branch is confident

enough to perform an early exit on the network, otherwise
the inference continues to the next branch execution, where
pMi

∈ PMi
and βi is the pre-set decision threshold of the

current branch.

Branchy-TEE is mainly oriented towards feed-forward DNN
for classification tasks, where the inference process is per-
formed by extracting feature representations (i.e., IR) layer by
layer. Therefore, the computation of each layer is semantically
independent, and the IR is dynamically generated by each
layer and is only accessed by the layer that generated it and
the connected next layer in a short time. It leads to very low
reusability of EPC memory and triggers a high frequency
of secure paging in EPC. This feature motivates Branchy-
TEE to cut the original network into M independent mutually
exclusive branch networks loaded into the secure Enclave on
demand.

2) Secure Inference Acceleration Algorithm in Enclave: In
this subsection, we first detail the security inference acceler-
ation algorithm, termed FINE (Fast Inference IN Eclaves) in
Branchy-TEE, as shown in Algorithm 1 below. In summary,
based on the early-exit mechanism, the FINE algorithm is
built on the BranchyNet[17]. After decrypting the user’s
sensitive input data within the first Enclave (line 4 of the
algorithm), any EnclaveMi

, provides a secure computation
for its associated branch network branchMi

. The branchMi

is consisted of the backbone network fM
θei
· · · fM

θei−1+1
(line

7 of the algorithm) and the branch classifier cMi (line 8 of
the algorithm) in series. When H [cMi

(IRei , θMi
)] < βi,

Branch-TEE supports network early exit and the final inference
result is given by this branch, and the output of Mi will
be sent to the DH via a secure channel (lines 12 to 14 of
the algorithm). The confidence degree of the current branch

network decision can be measured by calculating the entropy
of the inference result (soft-label) (as shown in definition 2);
If H [cMi (IRei , θMi)] > βi, the intermediate representation
of the backbone network IRei will be sent as input to
EnclaveMi+1

via a secure channel (line 16 of the algorithm),
where the following branch network is located, to continue the
inference task layer by layer.

Algorithm 1 FINE: Fast Inference IN Eclaves
Input: x̄, encrypted user input; fM

θ , a DNN model with
|M| branch exits; M, branch exit points; θ, parameters of
each layer; θ̃, corresponding parameters of branch classifier
cM; B =

{
β1, β2, · · · , β|M|

}
, set of branch exit decision

thresholds; K, number of categories in the model output.
Output: ȳ, encrypted inference result
1: for i = 1 to |M| do
2: Initialize decision confidence confidence = 0
3: if i == 1 then
4: x← Decryption (x̄)
5: IRe1 = fM

θe1
· · · fM

θ1
(x)

6: else
7: IRei = fM

θei
· · · fM

θei−1+1

(
IRei−1

)
8: PMi = cMi

(
IRei , θ̃Mi

)
9: for pMi in PMi do

10: confidence = confidence+ pMi
log pMi

11: confidence = − 1
logK ∗ confidence

12: if confidence < βi or i == |M| then
13: ȳ ← Encryption (argmaxPMi

)
14: return ȳ
15: else
16: EnclaveMi+1 ← Sending (EnclaveMi , IRei)
17: continue

C. Joint Training based on Knowledge Distillation for Multi-
exit Networks

In order to compensate for the loss of inference accuracy
introduced by the early exit mechanism, a joint training
method based on knowledge distillation is proposed to transfer
”knowledge” from the last exit (teacher network) with high
classification accuracy to the early branch exit (student net-
work) with lower accuracy.

As shown in Fig. 2, the loss function of the knowledge
distillation network (illustrated in Eq. 3) consists of the distilla-
tion loss extracted from the Soft-target by the teacher network
and the original classification loss of the student network
(Hard-target), both jointly weighted. The ”distillation” method
incorporates a ”temperature” parameter T into the softmax
function, causing the output of the softmax layer to become
smoother as T increases. As a result, the information carried
by negative labels is amplified relative to positive labels,
and the model training focuses more on negative labels [18].
Specifically, given a training set {(xn, yn)}Nn=1, the overall
loss of the joint training is calculated as follows:

Ltotal =
1

N

N∑
n=1

[
Lclass (xn, yn) + λLdist (xn)

]
(3)

where Lclass is the classification loss of the multi-exit network
(dashed arrow in Figure 2), Ldist is the distillation loss (solid
arrow in Figure 2), and λ is the superparameter that balances
between the two classes of losses.

The distillation loss Ldist is utilized to transfer knowledge
to each of the early exits sei , improving the prediction
accuracy of the early branches. Specifically, the last exit is
used as the teacher network t, and the cross-entropy between
the softmax distribution of the branch network and the
softmax distribution of the teacher network is calculated
as the branch distillation loss Lτ

t→sei
under the temperature

T = τ condition. The losses of each branch are then weighted
and summed to obtain the overall distillation loss Ldist.

Ldist=

|M−1|∑
i=1

Lτ
t→sei

=

|M−1|∑
i=1

[
−

K∑
k=1

pτk log (q
ei,τ
k)

]

where pτk=
exp (vi/τ)∑K
j=1 exp (vj/τ)

, qei,τk =
exp (zeik /τ)∑K
j=1 exp

(
zeij /τ

)
(4)

where pτk denotes the probability of the softmax output of
the teacher network t at temperature τ on the ith class, vi
denotes the logits of the teacher network output, qei,τk denotes
the probability of the softmax output of the branch network
ei at temperature τ on the ith class, and zeik denotes the logits
of the branch network output.

As the teacher network may also have a certain error rate,
equation 3 introduces a classification loss Lclass to mitigate
the propagation of errors from the teacher model to the student
model by using the ground truth label. The classification loss
is defined as follows:

Lclass =

|M|∑
i=1

[
− 1

τ2

K∑
k=1

ck log q
ei,T=1
k

]
,

where qei,T=1
k =

exp (zeik)∑K
j=1 exp

(
zeij

) (5)

where ck ∈ {0, 1} denotes the ground-truth value on the kth
class and qei,τ=1

k denotes the softmax calculation for each
branch without distillation (T = 1). Since the introduction
of temperature τ into the softmax function in the Ldist to
soften the probability distribution, the size of the gradient
generated by the distillation loss is reduced by τ2 compared
to the categorical loss, we multiply the coefficients of 1

τ2 in
Eq. 5 to ensure that the distillation loss and the classification
loss contribute essentially the same amount of gradient.

…

E
x

it
 B

ra
n

ch
 n

E
x

it
 B

ra
n

ch
 n

Flatten

Convolutional

Fully

Connection

Confident?

E
x

it
 B

ra
n

ch
 n

Flatten

Convolutional

Fully

Connection

Confident?

Softmax

T=t

Soft target

Dark

Knowledge

Softmax

T=t

Distillation Loss

DistillationDistillation

Soft target

Softmax

T=1

Ground-Truth target

Student Loss

T
o

ta
l L

o
ss

Teacher Network (pre-trained)Teacher Network (pre-trained)

Student Network (to be trained)Student Network (to be trained)

InputInput

E
x

it
 B

ra
n

ch
 1

E
x

it
 B

ra
n

ch
 1

Flatten

Convolutional

Fully

Connection

Confident?

E
x

it
 B

ra
n

ch
 1

Flatten

Convolutional

Fully

Connection

Confident?

E
a

rl
y

E
x

it
 N

et
w

o
rk

E
a

rl
y

E
x

it
 N

et
w

o
rk

Logits

L
o

g
its

L
o

g
its

Fig. 2: A multi-exit joint training method based on
knowledge distillation.

IV. EXPERIMENTS
A. Experimental Setup

Environment. Branchy-TEE is implemented based on the
SGX Library Operating System Graphene-sgx[19], with a
higher degree of compatibility. The processor supports SGX
feature and has 128MB of EPC memory.
Models and datasets. We employ DNN models of different
scales to evaluate Branchy-TEE: including AlexNet, VGG19,
MobileNet v1, ResNet50, ResNet101, and ResNet152. Re-
garding the dataset, we used the CIFAR-10 [20] to compare
and validate the performance of our proposed secure inference
algorithm.
Baseline. Comparison with Branchy-TEE by the following
baseline methods: (1) Native-DNN, DNN inference tasks
are running in unprotected memory outside of Enclaves;
(2)Native-SGX, DNN inference tasks are forced to be ex-
ecuted in the native SGX Enclave without providing any
optimization mechanism.

B. Result Analysis

First, the performance overhead of inference in and outside
the Enclave for DNN models of different scales is illustrated
in Table I. It is evident from the table that the inference latency
of Native-SGX is an order of magnitude higher than that of
Native-DNN, with an average latency of 33x. As mentioned
earlier, the reason for such severe performance degradation
is that all models run with a peak memory much larger than
the upper limit of EPC memory, triggering a large number of
EPC Secure Paging operations, which significantly reduces the
inference speed of the models within the Enclave.

The conclusions drawn in Fig. 3 reveal that the more
backward branching network has a higher demand for EPC
memory, and the cost of an EPC page swap is quite expensive
(up to 40K cycles) [21]. It motivates us to assign a more loose
branch decision threshold B in Algorithm 1 to encourage the
network to give a final decision at an early stage.

Furthermore, Table II compares the secure inference per-
formance between Branchy-TEE and Native-SGX in terms of

TABLE I: Performance overhead introduced by executing
deep inference tasks in Native-SGX.

models model
sizes

Peak
memory

Inference Latency

Native-DNN Native-SGX Overhead

AlexNet 492KB 161MB 0.022s 1.617s 73.17x
VGG19 77MB 335MB 0.146s 4.244s 29.06x

MobileNet v1 13MB 190MB 0.069s 2.470s 35.71x
ResNet50 91MB 339MB 0.287s 5.871s 20.43x

ResNet101 163MB 484MB 0.472s 10.144s 21.51x
ResNet152 223MB 618MB 0.694s 18.639s 26.87x

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

��

��

��� B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

���

���

 La
ten

cy
(s)

(a) AlexNet

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

��

��

���

���

 B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

��	

 La
ten

cy
(s)

(b) VGG19

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

��

��

��

��� B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

���

���

 La
ten

cy
(s)

(c) MobileNet v1

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

��

���

���
 B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

���

 La
ten

cy
(s)

(d) ResNet-50

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

��

���

���

���

 B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

���

 La
ten

cy
(s)

(e) ResNet-101

E n c l a v e 1 E n c l a v e 2 E n c l a v e 3 E n c l a v e 4�

���

���

���
 B r a n c h p e a k m e m o r y
 B r a n c h i n f e r e n c e t i m e

Me
mo

ry
usa

ge
(M

B)

���

���

���

 La
ten

cy
(s)

(f) ResNet-152

Fig. 3: The performance of each early-exit branch of
different model running separately in Enclave.

average peak memory usage and average inference latency,
respectively. Overall, Branchy-TEE significantly outperforms
Native-SGX for all target models. For the AlexNet model
with the slightest performance improvement, the average peak
memory requirement of Branchy-TEE decreases by 16.28%
compared to Native-SGX. In contrast, for ResNet152, with the
highest EPC memory requirement, this decrease is as high as
83.06%. Correspondingly, the average inference latency gen-
erated by the AlexNet is reduced by up to 33.10% compared
to Native-SGX, and up to 84.15% in ResNet152. However, the
model accuracy loss introduced by the early-exit mechanism
is not negligible, ranging from 8.39% for VGG19 to 12.46%

for ResNet-101, respectively.

TABLE II: Security performance comparison between
Branchy-TEE (ours), Native-SGX, and Native-DNN.

Models Accuracy
loss

(Native-DNN)

Average
peak memory

Average
inference latency

Ours Native-SGX Ours Native-SGX

AlexNet ↓9.15% 129.95MB ↓16.28% 1.08s ↓33.10%
VGG19 ↓8.39% 128.72MB ↓61.57% 0.66s ↓84.37%

MobileNet v1 ↓10.87% 102.64MB ↓45.98% 0.63s ↓82.80%
ResNet50 ↓11.13% 139.75MB ↓58.78% 1.04s ↓82.23%
ResNet101 ↓12.46% 144.41MB ↓70.16% 1.18s ↓79.88%
ResNet152 ↓11.07% 160.34MB ↓83.06% 2.95s ↓84.15%

E x i t 1 E x i t 2 E x i t 3 E x i t 46 6

6 7

6 8

6 9

7 0

7 1

Ac
cur

acy
 (%

)
B r a n c h y n e t w o r k

 W i t h o u t D i s t i l l a t i o n
 T = 2 T = 4 T = 8

(a) AlexNet

E x i t 1 E x i t 2 E x i t 3 E x i t 48 0

8 2

8 4

8 6

8 8

Ac
cur

acy
 (%

)

B r a n c h y n e t w o r k

 W i t h o u t D i s t i l l a t i o n
 T = 2 T = 4 T = 8

(b) VGG19

E x i t 1 E x i t 2 E x i t 3 E x i t 4

7 0

7 5

8 0

8 5

Ac
cur

acy
 (%

)

B r a n c h y n e t w o r k

 W i t h o u t D i s t i l l a t i o n
 T = 2 T = 4 T = 8

(c) MobileNet v1

E x i t 1 E x i t 2 E x i t 3 E x i t 47 5

7 8

8 1

8 4

8 7

9 0

Ac
cur

acy
 (%

)

B r a n c h y n e t w o r k

 W i t h o u t D i s t i l l a t i o n
 T = 2 T = 4 T = 8

(d) ResNet-50

Fig. 4: Performance impact of knowledge distillation on the
accuracy of each branchy with different temperature.

Fortunately, the joint training method based on knowl-
edge distillation mentioned above is able to compensate to
some extent for the accuracy loss introduced by the multiple
exit early retirement network. As shown in Fig. 4, different
branching networks show a certain degree of upward trend
in Top-1 accuracy after knowledge distillation. In addition,
different distillation temperatures have different effects on
different models and branches. For some simple models, such
as AlexNet and Vgg19, the accuracy improvement effect of
distillation temperature T = 4 is not better than that at T = 2.
Even at the distillation temperature T = 8, the accuracy
of AlexNet and VGG19 is slightly lower than that of the
architecture without knowledge distillation.

Conversely, for the ResNet50 network, the accuracy im-
provement for the network showed an increasing trend with
increasing distillation temperature. In general, the choice of
distillation temperature T has a certain relationship with the
size of the model. The model with a relatively small number
of parameters cannot learn all the knowledge of the teacher

network, and a relatively low temperature cannot amplify the
information of the soft-target, but can effectively ignore the
noise generated by some negative labels.

V. CONCLUSIONS

In this paper, we propose a secure and efficient inference
framework for deep learning in untrustworthy cloud platforms,
termed Branchy-TEE, which aims to protect the confidentiality
and integrity of data and models throughout the inference
process using SGX. Moreover, Branchy-TEE dynamically
loads the inference network into the TEE on-demand based
on early-exit mechanism, breaking the hardware performance
bottleneck of SGX. Moreover, a joint training method based
on knowledge distillation for multi-exit networks is proposed
to compensate for the loss of inference accuracy introduced
by the early exit mechanism.

REFERENCES

[1] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton,
“Deep learning for ai,” Communications of the ACM,
vol. 64, no. 7, pp. 58–65, 2021.

[2] Google, “Cloud automl.,” https://cloud.google.com/
automl, Accessed:2022-10-22.

[3] Brian Knott and Shobha et al Venkataraman, “Crypten:
Secure multi-party computation meets machine learning,”
Advances in Neural Information Processing Systems, vol.
34, pp. 4961–4973, 2021.

[4] Payman Mohassel and Yupeng Zhang, “Secureml: A sys-
tem for scalable privacy-preserving machine learning,”
in 2017 IEEE symposium on security and privacy (SP).
IEEE, 2017, pp. 19–38.

[5] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid
Bouabdallah, “Trusted execution environment: what
it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA. IEEE, 2015, vol. 1, pp. 57–64.

[6] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar, “Innovative instructions and
software model for isolated execution.,” Hasp@ isca,
vol. 10, no. 1, 2013.

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al., “{SCONE}: Secure linux containers with intel
{SGX},” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016,
pp. 689–703.

[8] Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo,
Albert Zomaya, and Minyi Guo, “Lasagna: Accelerat-
ing secure deep learning inference in sgx-enabled edge
cloud,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 533–545.

[9] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana,
Valerio Schiavoni, Pascal Felber, and Daniel Hagimont,
“Everything you should know about intel sgx perfor-
mance on virtualized systems,” Proceedings of the ACM

on Measurement and Analysis of Computing Systems,
vol. 3, no. 1, pp. 1–21, 2019.

[10] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua
Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren
Xu, Lintao Zhang, and Junehwa Song, “Occlumency:
Privacy-preserving remote deep-learning inference using
sgx,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–17.

[11] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramo-
nian, “Vault: Reducing paging overheads in sgx with
efficient integrity verification structures,” in Proceed-
ings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2018, pp. 665–678.

[12] Florian Tramer and Dan Boneh, “Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware,” arXiv preprint arXiv:1806.03287, 2018.

[13] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su,
Ankita Lamba, Dimitrios Pendarakis, and Ian Molloy,
“Securing input data of deep learning inference sys-
tems via partitioned enclave execution,” arXiv preprint
arXiv:1807.00969, 2018.

[14] Zecheng He, Tianwei Zhang, and Ruby B Lee, “Attack-
ing and protecting data privacy in edge–cloud collabora-
tive inference systems,” IEEE Internet of Things Journal,
vol. 8, no. 12, pp. 9706–9716, 2020.

[15] Kyungtae Kim, Chung Hwan Kim, Junghwan” John”
Rhee, Xiao Yu, Haifeng Chen, Dave Tian, and Byoungy-
oung Lee, “Vessels: Efficient and scalable deep learning
prediction on trusted processors,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp.
462–476.

[16] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel, “Ryoan: A distributed sandbox for
untrusted computation on secret data,” ACM Transactions
on Computer Systems (TOCS), vol. 35, no. 4, pp. 1–32,
2018.

[17] Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung, “Branchynet: Fast inference via early
exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR).
IEEE, 2016, pp. 2464–2469.

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[19] Chia-Che Tsai, Donald E Porter, and Mona Vij,
“{Graphene-SGX}: A practical library {OS} for unmod-
ified applications on {SGX},” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 645–
658.

[20] A Krizhevsky, “Learning multiple layers of features from
tiny images,” Master’s thesis, University of Tront, 2009.

[21] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark
Silberstein, “Eleos: Exitless os services for sgx enclaves,”
in Proceedings of the Twelfth European Conference on
Computer Systems, 2017, pp. 238–253.

https://cloud.google.com/automl
https://cloud.google.com/automl

	Introduction
	Problem Statement
	System Model
	Threat Model

	The Branchy-TEE System Design
	Overall Architecture of Branchy-TEE System
	Layer On-Demand Loading based on Early-exit Mechanism
	Relevant Definitions
	Secure Inference Acceleration Algorithm in Enclave

	Joint Training based on Knowledge Distillation for Multi-exit Networks

	EXPERIMENTS
	Experimental Setup
	Result Analysis

	CONCLUSIONS

