
Applying Symbolic Execution to Semantic Code Clone Detection

Kazusa Takemoto
Dept. of Info. and Comp. Sci., Keio University

kazusa@doi.ics.keio.ac.jp

Shingo Takada
Dept. of Info. and Comp. Sci., Keio University

michigan@ics.keio.ac.jp

Abstract

Many approaches have been proposed to detect code
clones, which are basically similar code fragments. Most
approaches are based on textual similarity. These ap-
proaches cannot detect semantic code clones, which are
clones that have the same functionality but implemented
with different syntax. Two functions can be considered to
have the same functionality, when the output is the same
given the same input. In order to appropriately generate in-
puts, we propose applying symbolic execution to semantic
code clone detection. These functions are executed to ob-
tain outputs, which are compared to determine if function
pairs are clones. Our approach also does not limit output
to return values; we also handle arrays and pointers as out-
put, as the execution of the function may cause changes in
their values. Furthermore, we classify types to enable cases
where the types of inputs and/or outputs are not exactly the
same. We evaluate our approach on SemanticCloneBench.

1. INTRODUCTION

Software developers will make what are called code
clones, which are basically similar code fragments. There
are four types of code clones, where the first three are fo-
cused on syntax [3], and the last one is focused on seman-
tics [8]. Type 1 clone is an exact copy without modifications
(except for white space and comments). Type 2 clone is a
syntactically identical copy, where only variable, type, or
function identifiers are changed. Type 3 clone is copy with
further modifications, such as changing, adding, or remov-
ing statements. Type 4 clone is two or more code fragments
that perform the same computation but are implemented by
different syntactic variants. Type 4 code clone is also called
semantic code clone, and is the focus of this paper.

The presence of code clones incurs unnecessary costs
in maintenance. Manually detecting code clones is time-
consuming, so much work has been done on automatically
detecting them [1][9]．Many of these approaches compare

DOI reference number: 10.18293/SEKE23-070

lexical units or graphically represent the structure of the
code and compare the graphs. Such approaches often fail
to find semantic code clones. Semantic code clones have
also been confirmed in actual software development[5], and
need to be addressed.

We focus on the fact that the same input returns the same
output when the functions are the same. We detect semantic
code clones by comparing the inputs and outputs. In order
to generate an appropriate set of inputs, we consider input
generation as test case generation and use symbolic execu-
tion to generate them. It is also necessary to deal with code
clones with different types and to deal with functions other
than return values in the comparison. We thus propose an
approach for detecting semantic code clones by comparing
input/output for each execution path using symbolic execu-
tion, taking into account differences in types and outputs
having effects other than return values.

Section 2 describes related work and issues. Section 3
describes our proposed approach. Section 4 evaluates our
approach, and section 5 makes concluding remarks.

2. RELATED WORK

Several approaches have been proposed for detecting se-
mantic code clones by representing the structure of codes
using graphs, e.g., PDG or CFG, and determining whether
the code is a semantic code clone or not based on their sim-
ilarity [1][11][10]. These approaches assume that PDG (or
CFG) show the semantics of the code, and do not consider
input/output. However, if two functions use a completely
different algorithm, their respective PDGs will be different,
and thus these approaches cannot find them.

On the other hand, Li et al [6] uses a test-based approach
to detect clones in Java. They first filter out APIs that have
differing input (parameter) and output (return) types. They
further limit their search to methods with similar method
names. In addition, the test execution uses branch coverage-
based testing to obtain input-output pairs for a single target
code, executes each method using its inputs, and compares
the outputs of the approaches. The comparison is termi-
nated when test cases with different outputs are found, in
which case that method would not be a clone. The issue



with this approach is that (1) the branch coverage based
approach may not obtain all possible execution paths, (2)
for each pair of methods under consideration, the approach
only executes the test cases derived from the given target
method, (3) it does not consider outputs other than the re-
turn value, and (4) it cannot detect cases where the param-
eter and return value types between methods are different.
These issues can be summarized as follows:

Issue A: All execution paths are not considered.

Issue B: Test cases are generated only for the given target
method and not for the candidate method.

Issue C: Side effects other than explicit outputs (returns)
are not considered.

Issue D: Methods with differing parameter types and re-
turn types are not considered.

3. PROPOSED APPROACH

3.1. Overview of the proposed approach

We propose an approach where we apply symbolic exe-
cution to semantic code clone detection. Our proposed ap-
proach targets the C language. Given a set of functions, our
approach outputs pairs of semantic code clones.

Our approach first uses symbolic execution to generate
test cases (input-output pairs) for each execution path. It
then executes each pair of functions against each other with
the generated test cases. The output results for each func-
tion pair given the same input is checked. The percentage
of matching results is given, where 100% indicates that the
pair is a semantic code clone. Note that each function pair
executes each other’s test cases. In some cases, our ap-
proach also compares functions having differing input (pa-
rameter) and output (return) types. All test cases are exe-
cuted and results are compared without terminating, even
when test cases executions have different outputs. Because
of this, our approach is expected to have a longer execution
time compared to Li’s approach [6].

3.2. Features of the proposed approach

Our proposed approach has the following three features
to overcome the four issues given in the previous section1.

Feature α To address Issues A and B, our approach com-
pares the execution paths of function pairs to cover the
full range of execution paths, thus detecting whether the
input/output corresponding to execution path is an exact
match or not, as well as similar but not exact match.

1Note that the previous section discussed Java methods, but we con-
sider C functions.

Figure 1. Process flow of our approach

Our proposed approach uses symbolic execution to gen-
erate test cases for each function, taking into account the ex-
ecution path. We use symbolic execution rather than other
test generation approaches, as it can theoretically cover all
possible execution paths. In addition, when comparing the
test cases, the function pair exchanges test cases and per-
form test execution with each other’s test cases to compare
the outputs. The outputs are compared to ensure an exhaus-
tive comparison of input/output.

Feature β To address Issue C, if the parameter is an array
or pointer, its value is also considered as output.

Although the return value is the primary output for a C
function, the execution of a function may result in side ef-
fects. For example, if a parameter is an array or a pointer,
its value may change as a result of operations performed on
it within the function. So, if this array or pointer is accessed
after this function call, its contents may have been modi-
fied, causing a side effect on the program. Thus, we also
consider these as output.

Feature γ To address Issue D, we incorporate type classi-
fication to enable the detection of semantic code clones with
different input/output types.

Two functions may be the same except for the parameter
types and return types. We also consider these as semantic
code clones. In order to handle the difference in types, we
classify types.

3.3. Process Flow

The process flow of our approach is divided into the fol-
lowing five main parts (Figure 1):

1. Information extraction

2. Function grouping



3. Executable file generation for symbolic and test execu-
tion

4. Test case generation through symbolic execution and
test execution

5. Test execution of each pair and output of match rates

Information extraction This part extracts and saves the
basic information used in subsequent parts. Specifically,
signature information of functions (function name, parame-
ter types, and return type), structs (struct name, and each
member’s name and type), and typedefs (type name and
type) are extracted using the ctags command 2.

Function grouping The second part groups the functions
using the extracted parameter types and return type. The
order of the parameters are not considered in our current
implementation. This results in the following two groups:

• Exact match group: Each exact match group contains
functions whose return value types, number of param-
eters, and parameter types exactly matches.

• Type-class match group: Types are classified and
grouped to detect semantic code clones with different
parameter and return types. We shall call such classi-
fied types as type-class. Even if two types are techni-
cally different, if they belong to the same type-class,
then they will be treated as if they were the same type.
Currently, we employ three type-classes as follows:

– Numeric type-class: int, long, float, etc.

– Character type-class: char, signed char, unsigned
char

– Set type-class: array, pointer

Note that functions that belong to the same exact match
group will also belong to the same type-class match group.

Executable file generation for symbolic and test execu-
tion The information that were extracted in the first part
is used to generate executable files for symbolic execution
and test execution of each function. The former is used to
generate inputs, that will be used by the latter to obtain the
outputs. The corresponding input-output pair will be used
as test cases. In our current implementation, the length of
the area pointed to by arrays and pointers is set to 100.

For symbolic execution, a C function is generated and
compiled that uses the library of the symbolic execution
tool. In our implementation, we use KLEE-Float [7], which
is a symbolic execution tool based on KLEE [4]. The key
points of the generated C file is to set variables that are pa-
rameters of functions to be analyzed during symbolic exe-
cution, and then to call those functions.

2http://ctags.sourceforge.net

For test execution, a C function is generated and com-
piled that takes inputs from standard input, calls the func-
tion to be checked, and outputs the execution result to stan-
dard output. Note that the inputs are the values that are
generated through symbolic execution.

Test case generation through symbolic execution and
test execution The generated executables in the previous
part is used to conduct symbolic execution and test execu-
tion.

First, symbolic execution is done with the executable
generated in the previous part. This results in execution
paths which are further analyzed by KLEE resulting in input
values corresponding to the execution paths. The number of
generated input values is limited to a maximum of 100 for
each function to prevent the overall execution time from be-
coming too long.

Next, test execution is done using the input values that
were generated with symbolic execution. For each function,
a test run is performed with the generated input values as
inputs, and the input-output pairs are saved as test cases.
Our current implementation limits the test execution time
to two seconds.

Test execution of each pair and output of match rates
Tests are now conducted on functions that are to be checked
for the possibility of being semantic code clones. Specifi-
cally, all pairs within groups (exact match group and type-
class match group) are checked. Note that the check is
done two-ways. For example, if a developer wants to
check if functionA and functionB are clones, the
previous part is conducted to obtain testCasesA and
testCasesB, respectively. The inputs in testCasesA
are given to functionB, and the inputs in testCasesB
are given to functionA. The outputs are checked against
the corresponding test cases, and the following formula is
used to calculate the match rate (MR):

MR[%] =

Number of test cases with matching output

Number of test cases used for comparison
× 100

(1)

A semantic code clone should have a 100% match rate.

4. EVALUATION

4.1. Research Questions

We pose the following three research questions:

• RQ1: How well can semantic code clones be detected?

• RQ2: Can outputs other than return values be consid-
ered?



• RQ3: Can our approach support semantic code clones
of different input/output types?

4.2. Evaluation Dataset

The evaluation uses SemanticCloneBench [2]. This is a
benchmark consisting of semantic code clones from code
that exists on Stack Overflow, and was collected based on
human judgment. For C language, it contains 1000 pairs of
semantic code clones. Since it includes pairs that are out of
scope of our tool, we extracted 91 pairs for our evaluation
based on a set of conditions. Table 1 shows the conditions,
as well as the number of pairs removed due to not satisfying
our conditions.

The vast majority of the functions in Semantic-
CloneBench were main functions, which our approach
does not handle. This is because code clone search is nor-
mally done within a project, which will likely not have mul-
tiple cloned main functions.

Table 1. Conditions of target pairs
Conditions of target pairs Number of deleted pairs

Not main function 720 pairs
Input/output is parameter/return value 47 pairs

Struct does not have a circular structure 34 pairs
Function is executable 76 pairs

Parameter type is supported by our tool 32 pairs

4.3. Result

Of the 91 pairs, 72 pairs were type matched by function
grouping. Of the 72 pairs, one pair could not be checked
as execution of test cases ended with errors or the execution
time exceeded the limit of two seconds for each test case.
Table 2 shows the evaluation results for the remaining 71
pairs, where MR denotes the match rate. The total execution
time of the tool was 1353 seconds.

Table 2. Results
Match rate RQ1 RQ2 RQ3

MR = 100% 33 25 15
80% ≤ MR < 100% 5 3 1
50% ≤ MR < 80% 12 8 1
30% ≤ MR < 50% 5 5 1

MR < 30% 16 12 6

4.4. RQ1: How well can semantic code clones be
detected?

Column ”RQ1” in Table 2 shows the distribution of the
71 pairs in terms of match rate. 33 pairs out of 71 pairs had a

match rate of 100%, and can be considered as semantic code
clones. As described in section 4.2, SemanticCloneBench
[2] is a benchmark containing pairs of functions that were
considered to be clones based on human judgment. We ex-
pected that the number of pairs with a 100% match rate
would be the majority. However, this was not the case. We
further manually analyzed the results to understand what
caused the differences.

We first manually checked the results when the match
rate was 100%. We found that 6 of the 33 pairs were ac-
tually not completely the same, i.e., the match rate should
not have been 100%. One example is a pair of functions
that perform Caesar cipher encryption. One function per-
forms Caesar cipher encryption for the letters A to Z, while
the other function performs Caesar cipher encryption for
the numbers 0 to 9 in addition to the letters A to Z. There-
fore, this pair can be considered to be similar but is partially
different, and the match rate should not have been 100%.
The reason this occurred was because one of the parameters
did not affect the execution path, and thus only one value
was generated for that parameter. Multiple values needed
to have been generated for that parameter for the difference
between the two functions to appear. This can be considered
as an issue with using symbolic execution. We are currently
considering this as part of future work.

For pairs having a match rate between 80% and 100%,
a common issue were cases that had “special” input val-
ues. One example was a pair of functions that returned a Fi-
bonacci number. Both functions have the same output value
for inputs greater than or equal to 2. But the output was
different when the input was less than or equal to 1.

For pairs having a match rate between 50% and 80%, we
found cases where the function itself is the same, but the
range of input values it can handle differs. One example
was where one function supports up to 32-bit input values
while the other supports only 16-bit values.

For pairs having a match rate between 30% and 50%,
we found cases where one function would execute correctly
under specific conditions. In one pair, one of the function
would execute correctly even if a string had two or more
spaces, but the other would not.

Note that all of these pairs were considered to be seman-
tic code clones as they came from SemanticCloneBench.
Furthermore, there are several definitions of semantic code
clones, where the core is that (1) the clones have the same
functionality, and (2) are implemented with different syntax
[2]. All of these pairs had the same basic function, but many
had differences, which could be due to exceptional values,
input range, or conditions. 100% match rate is a very strict
application of ”same functionality”, and our results strongly
suggests that the definition of semantic code clone may need
to be refined depending on the scenario. At the same time,
as our approach outputs match rate, the broadening of the
semantic scope may be easily attained.



4.5. RQ2: Can outputs other than return values be
considered?

Our approach considers outputs that do not take the form
of return values. Specifically, our approach can also handle
arrays and pointers as outputs if they appear as a parameter.
Column ”RQ2” in Table 2 shows the number of cases where
the output included a parameter.

In some cases, although the array or pointer was han-
dled correctly, the function pairs had differing return values
causing the match rate to be low. One such example was
a pair of functions that convert numeric values to strings.
The two functions were implemented recursively, returning
the result of the execution as a return value. The functions
assumed that the parameter values (strings) were to be used
as the “actual” output, and not necessarily the return value
itself. Even if the resulting parameter values were the same,
the return values were not always the same. This resulted in
the match rate to be low. In order to deal with such cases,
we need to take into consideration such factors as the partial
match of outputs.

4.6. RQ3: Can our approach support semantic code
clones of different input/output types?

Our approach classified types into type-class to enable
finding semantic code clones even if the types do not ex-
actly match. Column ”RQ3” in Table 2 shows the number
of cases where the input and/or the output types differed be-
tween the two functions, showing the importance of being
able to handle such cases.

4.7. Threats to validity

First, the number of target pairs used in the evaluation
is a threat. SemanticCloneBench has 1000 pairs of func-
tions. However, most of them were main functions or used
standard input/output, which our approach does not handle.
In order to strengthen the generality of our evaluation, it is
necessary to conduct evaluation on a larger data set.

Second, the execution time of symbolic execution, the
execution time of tests, the length of the area pointed to by
arrays and pointers, and the number of test cases generated
for each function were all fixed. The experimental results
may differ if these parameter values are changed.

Third, there is the possibility of human error when man-
ual analysis was done in RQ1. We took great care to limit
this possibility.

5. CONCLUSION AND FUTURE WORK

We proposed an approach that used symbolic execution
to detect semantic code clones. The novel part of our ap-
proach is (1) the comparison of the execution paths of func-

tion pairs to cover the full range of execution paths, (2) the
ability to handle outputs other than return values, specif-
ically pointers and arrays, and (3) type classification to
enable cases where input/output types are not exactly the
same. Evaluation using SemanticCloneBench showed the
viability of our approach.

Future work includes the following. First, we need to
consider the definition of semantic code clone. Our defini-
tion is currently strict, i.e., the input/output needs to match
100% between functions. Second, we need to consider
cases where the number of parameters differs. Third, we
need to consider cases where a parameter does not affect the
execution path, but will affect the variety of inputs needed
to more correctly obtain the match rate. Finally, we need
to consider other types of outputs, e.g., global variables and
print functions such as printf().

References

[1] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maq-
bool. A Systematic Review on Code Clone Detection. IEEE
Access, 7:86121–86144, 2019.

[2] F. Al-Omari, C. K. Roy, and T. Chen. SemanticCloneBench:
A Semantic Code Clone Benchmark using Crowd-Source
Knowledge. In IWSC 2020, pages 57–63, 2020.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 33(9):577–591, 2007.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In OSDI 2008, pages 209–224, 2008.

[5] V. Käfer, S. Wagner, and R. Koschke. Are there functionally
similar code clones in practice? In IWSC 2018, pages 2–8,
2018.

[6] G. Li, H. Liu, Y. Jiang, and J. Jin. Test-Based Clone De-
tection: an Initial Try on Semantically Equivalent Methods.
IEEE Access, 6:77643–77655, 2018.

[7] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl,
and K. Wehrle. Floating-Point Symbolic Execution: A Case
Study in n-Version Programming. In ASE 2017, pages 601–
612, 2017.

[8] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

[9] A. Walker, T. Cerny, and E. Song. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and
Future Trends. SIGAPP Appl. Comput. Rev., 19(4):28–39,
2020.

[10] Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng,
H. Liang, and H. Jin. SCDetector: Software Functional Clone
Detection Based on Semantic Tokens Analysis. In ASE 2020,
pages 821–833, 2020.

[11] Y. Zou, B. Ban, Y. Xue, and Y. Xu. CCGraph: a PDG-based
code clone detector with approximate graph matching. In ASE
2020, pages 931–942, 2020.


