Visualization of automated program repair focusing on suspiciousness values

Naoki Tane, Yusaku Ito, Hironori Washizaki, Yoshiaki Fukazawa
Department of Fundamental Science and Engineering
Waseda University
Tokyo, Japan
n.tane0228 @fuji.waseda.jp

Abstract-Automated program repair (APR) can real-
ize efficient debugging in software development. Auto-
mated program corrections using genetic algorithms (GA)
can repair programs, including those with multiple bugs,
but the repair process of GA-based APR is difficult to
understand using logs because many modification pro-
gram codes are generated. Consequently, Matsumoto et
al. implemented a methodology for visualizing the pro-
cess. Their proposed methodology provides an intuitive
understanding of the conformance values (test case pass
rates), generations, states, and operations performed to
generate each variant; however, it lacks sufficient infor-
mation to analyze whether defect localization is appropri-
ate in APR. Herein we propose a new methodology to visu-
alize the impact of fault localization on program evolution
in GA-based APR and create a new tool. Additionally, a
case study demonstrates the effectiveness of the proposed
methodology and future works are considered.

Keywords—Visualization; Genetic Algorithm; Auto-
mated Program Repair; Fault Localization; Bug Local-
ization

1 Introduction

Automated program repair (APR) is a technique that re-
moves bugs without human intervention. APR outputs a
bug-free program when given a buggy program and test
suites.

kGenProg, which is a Java programmatic implementa-
tion of genProg, is a tool that uses genetic algorithms (GAs)
for APR (GA-based APR)[1]. A key feature of kGenProg
is its high portability. Users can easily change its param-
eters because kGenProg has an adaptable fault localization
framework. However, it is difficult to analyze the repair
process using the logs alone because kGenProg generates

DOI reference number: 10.18293/SEKE2022-159

multiple programs during the modification process.

Macaw is an open-source software to visualize the evo-
lutionary process of programs by kGenProg[2]. Macaw
shows the code genealogy as a bird’s eye view tree struc-
ture and detailed variant information, where a variant is a
program generated in the evolutionary process. Its visual-
ization provides an intuitive understanding of each variant.
This information can be used to adjust the kGenProg pa-
rameters. One shortcoming is that Macaw does not provide
enough information to analyze whether the fault localiza-
tion is appropriate.

To address this issue, we propose a new methodology to
visualize the impact of fault localization on the evolution of
programs in kGenProg. Specifically, we create a new tool
called Grackle based on this methodology and evaluate the
visualization efficiency via a case study.

2 Background and problem
2.1 Fault Localization

Fault localization methods identify faulty program lines
based on information obtained from the success or fail-
ure of test cases. A common category is spectral-based
methods[3]. Spectral-based methods assign suspicious-
ness values according to a program statement’s likelihood
of a flaw. Tarantula[4], Ample[6], Jaccard[5], Ochiai[5],
and Zoltar[7] represent Spectrum-Based Fault Localiza-
tion(SBFL) to calculate the suspiciousness values (Table 1).
The effectiveness depends on the given test case and pro-
gram.

Table 1. Formulas to calculate the suspicious-
ness values for select SBFL methods

2.4 Problem in use and existing visualization

Macaw visualizes the evolutionary process of programs
with kGenProg. It was developed by Matsumoto et al..

SBFL formula for calculating the suspiciousness value
» | _Ger __ Gep
Ample Suspiciousness = oty atan
.. _ (J.ef
Jaccard Suspiciousness = GerFansTas
Ochiai Suspiciousness = cf
\/(aef""“nf) X(acs+taep)
aef
.. eft
Tarantula Suspiciousness = —g—t—"
o aeptanp aef‘glanf
Zoltar Suspiciousness = el s

Aef+an f+acp+10000Xaq, f X

acr

Macaw’s visualization provides an intuitive understanding
of each variant’s fitness value (test case pass rate), genera-
tion, state, and operation (insertion, deletion, replacement,
crossover, or copy). Macaw helps adjust the parameters of
the APR. However, it does not provide sufficient informa-
tion to comprehend the impact of failure localization on the
APR in the program’s evolution. To address this shortcom-
ing, we propose a new methodology to visualize the impact

aep: Number of successful tests that executed the line

aer: Number of failed tests that executed the line

anp: Number of successful tests that did not execute the line
an s Number of failed tests that did not execute the line

2.2 APR

Many researchers have actively investigated technolo-
gies to increase the efficiency of debugging because debug-
ging accounts for half of system implementation and testing
costs[8]. These studies often focus on APR. APR removes
bugs from buggy programs without human intervention[9].
It works by taking a buggy program and test cases as input
and outputs a bug-free program.

2.3 kGenProg

GenProg is an APR methodology based on source code
reuse[10]. kGenProg is an APR tool written in Java. It is a
reimplementation of GenProg, which automatically repairs
bugs using GAs. kGenProg works as follows. First, it infers
the bug’s line using a fault identification technique. Second,
it generates multiple variants by modifying the lines that
contain bugs. This step has two primary operations. One is
mutation. Mutation means making minor changes to a se-
lected variant to create a new variant such as insert, delete,
or replace. The other is crossover. Crossover mixes two se-
lected variants to generate a new variant. Third, unit tests
are run on the generated variants. A repaired program is
outputted if a variant passes all the tests. If not, kGenProg
selects some of the generated variants and generates new
variants based on them. Selection means that kGenProg
takes some variants from the latest generation. kGenProg
decides which variants to select by the pass rate of the unit
test. Additionally, it selects some variants from the previous
generation to account for the possibility of a poor pass rate
for all generated variants.

of fault localization on program evolution in kGenProg and
evaluate the effectiveness of our methodology. This study
aims to answer the following two research questions (RQs):

RQ1: Does the proposed methodology facilitate the under-
standing of fault localization?

RQ2: Is the effect of fault localization in GA-based APR
easily understood?

3 Visualization of code genealogy with fault-
localization results

Similar to the Macaw project, our visualization displays
the evolutionary process of kGenProg with the code geneal-
ogy shown as a bird’s eye view tree structure and detailed
variant information. These two factors can explain the rep-
resentation of the alleged values. The color intensity repre-
sents suspicious values set for the row that operated to gen-
erate each variant. The color intensity also represents each
row that is subject to the suspicious values of each variant.
Figure 1 depicts the visualization of the suspiciousness val-
ues in the detailed information of the variant. Our visual-
ization method provides an intuitive recognition of the sus-
piciousness value for the lines in the bug framework. The
source code of each variant is displayed at the top of the
detailed information, and the suspiciousness is indicated in
red. The darker the red color, the higher the suspiciousness
value in the line.

Figure 2, which shows the flow to generate child vari-
ants, overviews the proposed visualization of the suspi-
ciousness values for the code genealogy. First, fault local-
ization calculates the suspiciousness values of each line of
the parent variant. This is similar to how kGenProg gen-
erates variants. Second, the suspiciousness value set at the
line where kGenProg is performed is identified by the color
intensity of the edge of the tree structure in the bird’s eye
view.

Figure 3 shows the visualization of the suspiciousness
value for the code genealogy. Similar to the visualization
proposed by Macaw, each node represents a single variant,

suspiciousness v

10 * @param n

11 * @return

12 */

13. public int close_to_zero(int n) {
14 if (n =) {

15 // do nothing
16
17 n-

18 } else {

20 return n;

8. bugi RERFEELTVS - B
0. o+ 1.0

SRR

suspiciousness

a3y 0.0

23 // BRRSNASERAY 9 FL =

suspiciousness v

value from to

0.8660254037844387 14 14

1 16 16

0.5773502691896258 17 17

0.8660254037844387 20 20

Figure 1. Proposed method to visualize the
suspiciousness values in the detailed infor-
mation of the variant

Determined that there is a high
possibility of a bug in line 16
-> Set suspicious value to high

Replace line 16

* bug: RPSLHRE

2
3./ BREENRSESY o

1 BREENSE XY 0 KL

Parent Child

Figure 2. Flow of the generation of child vari-
ants

and nodes on the same y-axis mean that they are from the
same generation of kGenProg. Circle nodes represent newly
generated variants, and small circle nodes denote variants
copied from all ages. Crosses indicate variants that failed
to compile or invalid variants. The proposed visualization
describes the number of nodes in each generation below the
cross. The adaptive value is an indicator of the pass rate.
In our method, the darker the green color, the higher the
adaptive value.

Unlike Macaw, the red intensity of the edge of the tree
structure in the bird’s eye view of our method represents the
suspiciousness value set at the point where kGenProg op-
erated (insertion, deletion, or replacement). The darker the
color, the higher the suspiciousness value of the changed
part. It should be noted that edges representing crossover
and copy operations are not colored because the crossover
operation combines codes of two variants and the copy op-
eration in kGenProg does not make any changes. Hence,
areas with high suspiciousness values are easily visualized
and the influence of fault localization on APR can be un-
derstood intuitively. Similar to Macaw, clicking on a node
shows details of the generated variants.

The input program w

Parent Child

1st generation

Insert Delete Replace
Crossover

Copy

X

2nd generation

X

1.0
O Generated variant n Suspicious Value
0.0

O Copied variant D 1.0

X Invalid variants

Figure 3. Visualization of the suspiciousness
value for the code genealogy

Fitness Value
0.0

4 Tool implementation

To implement our methodology, kGenProg must be mod-
ified. By default, kGenProg has an option to output JSON
files. In addition to JSON files, the source code and suspi-
ciousness values must also be outputted in JSON to imple-
ment our method. Therefore, we created a modified kGen-
Prog to output the source code and suspiciousness values
as JSON files. We also created a tool to implement our

methodology. We call this tool Grackle. Grackle can vi-
sualize the suspiciousness values by reading the JSON file
output from the modified kGenProg.

Figure 4 shows the flow using Grackle. First, our
methodology builds a modified kGenProg, which outputs
source code and suspiciousness values as JSON files and
creates an executable file (JAR file). Second, our methodol-
ogy runs the auto-fix in the executable file. Finally, Grackle
is used to visualize the flow of the automated modification
by inputting the JSON file output from the involuntary con-
version.

modified to output the source
code and suspected value of
each variant as JSON

kGenProg vi

grackle

Compile

s A &) 000

Executable Execution
Test suites result Vlsuahzat\o_n of
file Gar) (JSON) the repair
process

& — Run APR

Buggy
program

Figure 4. Flow of Grackle

Figure 5 shows a screenshot of the code genealogy vi-
sualized by Grackle. The left side shows the code geneal-
ogy, while the right displays detailed variant information.
Grackle highlights the selected variant with a blue border
and the parent variant with a light blue frame. Hence, users
can visualize the suspiciousness value of each line of code
in the variant. Additionally, the red intensity of the edge of
the tree structure in the bird’s eye view represents the suspi-
ciousness value set at the changed line in the code system.

Suspiciousness of| Susp\ciousness‘ P
N Parent variant changed part of each line 9
%&Iected variant — %

z ?
s b

Figure 5. Screenshot of the code genealogy
visualized by Grackle

The source code differences and test results in Variant
Details can be viewed by changing the mode. Hence, the
edge types in Code Genealogy and Macaw can express var-
ious operations. Figure 6 shows an example of the visual-
ization when changing the mode in Grackle. Figure 7 shows
a screenshot.

1.0

The input program Fitness Value

\\
. 0.0
‘\
\
s
L
I
I
[

00 X

rrrrrrrrrrrrrrr Insert Q Generated variant
—— Delete
—-—- Replace O Copied variant
——— Crossover

Copy X Invalid variants

Figure 6. Example of the visualization when
changing the mode in Grackle

Figure 7. Screenshot of the code genealogy
visualized by Grackle

We implemented Grackle using the Javascript frame-
work Vue.js. Grackle can also run in modern web browsers
such as Google Chrome, Firefox, Safari, and Microsoft
Edge. This example handles a small log. A normal behavior
is observed even for a relatively large record with 1970 vari-
ants and a generation number of 100. However, it does not
support visualizations of the suspiciousness values for mul-

tiple java programs. This support should be addressed in the
future. Clicking on a node in the bird’s-eye view on the left
shows detailed information about the variant on the right.
Clicking on the button in the upper left corner changes the
edges of the bird’s eye view. The correct upper dialog al-
lows users to select a JSON file representing the APR pro-
cess output by kGenProg. Then users can select the code
and the Diff representing the alleged value using the select
box above the detailed information. They can also select a
table of suspiciousness values and unit test results using the
selection box below the detailed information.

5 Case study
5.1 Conditions

We performed an APR with kGenProg under the follow-
ing conditions to verify whether our methodology is effec-
tively implemented:

Program: kGenProg’s QuickSort test program (Quick-
Sort.java)
Fault Localization: Ochiai

We also examined the RQs by comparing Macaw and
Grackle visualizations for APR under the above conditions.
Macaw is a project to visualize the evolution process of pro-
grams using kGenProg, while Grackle is the tool devised in
this study.

5.2 Results

Figure 8 shows a screenshot of Macaw. Figure 9 shows
a screenshot of Grackle. Both Macaw and Grackle provide
code genealogy to intuitively understand the test case pass
rate, generation, status, and operation performed by kGen-
Prog to generate each variant. Both also generate detailed
information about the variants, allowing users to understand
the differences between the before and after operations and
the unit test results. In addition, Grackle provides the al-
leged value of the changes made. Grackle also shows the
suspiciousness value calculated for each variant line by fault
localization in the variant details.

5.3 RQI1: Does the proposed methodology facili-
tate the understanding of fault localization?

Macaw does not give information about the suspicious-
ness with bugs calculated by fault localization in each vari-
ant. On the other hand, Grackle provides an intuitive under-
standing of which line of code in each variant is responsible
for the calculated suspiciousness value. Thus, the proposed
method facilitates the understanding of fault localization.

T 00X

T

> X
5

Figure 9. Screenshot of Grackle

5.4 RQ2: Is the effect of fault localization in GA-
based APR easily understood?

Macaw’s code genealogy does not provide information
about the alleged value of the point of change in each op-
eration. On the other hand, Grackle’s code genealogy gen-
erates information about the alleged value of the point to
be changed in each mutation operation. This information
helps realize an intuitive understanding of APR’s fault lo-
calization behavior using GAs. Thus, the proposed method
clarifies the effect of fault localization.

6 Conclusion and future work

Herein we propose a methodology and tool to visualize
the impact of fault localization on the evolution of programs
in kGenProg. The effectiveness was evaluated via a case
study. The case study qualitatively demonstrates the useful-
ness of our methodology and tool.

We visualize three prominent use cases: to compare dif-
ferent fault localization strategies, to select an appropriate
fault localization strategy, and to realize an intuitive un-
derstanding of changes made by KGenProg. kGenProg
can easily change fault localization strategies. The pro-
posed methodology supports an intuitive understanding of

the changed parts of the code using the code genealogy and
the suspiciousness values. For example, using a test suite
and a buggy program as inputs, different fault localization
strategies (Ample, Jaccard, Ochiai, Tarantula, or Zoltar) can
be applied and the APR run. The proposed methodology
can compare fault localization strategies directly and eluci-
date the impact of automated corrections by strategy.

The proposed methodology can provide an understand-
ing for setting suspiciousness values for fault localization.
It can be employed to check the code genealogy and the de-
tails of the variant to verify that the suspiciousness value is
set appropriately. For example, a fault localization strategy
may negatively impact the APR if the suspiciousness value
is set low for a buggy part or high for a non-buggy part. In
this way, fault localization can be evaluated, allowing users
to select an appropriate bug identification tool. This should
improve the efficiency of APR.

Use cases assume that the fault localization strategy
is working properly. Our methodology highlights signif-
icant changes made by kGenProg. The visualization of
suspiciousness values using code genealogy edges shows
changes with high suspiciousness values (i.e., where bugs
are likely to be present). In this case, a bug is likely to be
fixed accurately.

In the future, we plan to evaluate our methodology and
tool quantitatively. We also plan to devise use cases for
the proposed methodology and verify the practicality of our
methodology and tool.

References

[1] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado, K.
Naitou, J. Matsumoto, Y. Tomida, and S. Kusumoto,
“kGenProg: A High-Performance, High-Extensibility
and High-Portability APR System,” 2018 25th Asia-
Pacific Software Engineering Conference (APSEC),
Nara, Japan, 2018, pp. 697-698.

[2] Y. Tomida, Y. Higo, S. Matsumoto and S. Kusumoto,
”Visualizing Code Genealogy: How Code is Evolu-
tionarily Fixed in Program Repair?,” 2019 Working
Conference on Software Visualization (VISSOFT),
2019, pp. 23-27, doi: 10.1109/VISSOFT.2019.00011.

[3] J. Xuan and M. Monperrus “Learning to Combine
Multiple Ranking Metrics for Fault Localizetion”
2014 IEEE International Conference on Software
Maintenance and Evolution pp. 191-200 2014.

[4] J. A. Jones, M. J. Harrold and J. Stasko, “’Visualiza-
tion of test information to assist fault localization”,
Proceedings of the 24th international conference on
Software engineering, pp. 467-477, 2002.

[5] R. Abreu, P. Zoeteweij and A. J. Van Gemund, ’On the
accuracy of spectrum-based fault localization”, Test-
ing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION 2007. TAICPART-
MUTATION 2007, pp. 89-98, 2007.

[6] V. Dallmeier, C. Lindig and A. Zeller, "Lightweight
bug localization with ample”, Proceedings of the sixth
international symposium on Automated analysis-
driven debugging, pp. 99-104, 2005.

[7] T. Janssen R. Abreu and A. J. C. van Gemund
”ZOLTAR: A toolset for automatic fault localization”
Proceedings of the International Conference on Auto-
mated Software Engineering (ASE’09) - Tool Demon-
strations.

[8] Britton, T., Jeng, L., Carver, G., Cheak, P. and
Katzenellenbogen, T. (2013). Reversible Debugging
Software: Quantify the time and cost saved using re-
versible debuggers.

[9] YASUDA, Kazuya, ITOH, Shinji, NAKAMURA,
Tomonori, HARADA, Masao, HIGO, Yoshiki. Au-
tomated Program Repair Using Donor Code Gener-
ation Based on Features of Targeted Systems. Com-
puter Software. 2021, vol. 38, no. 4, p. 4.23-4_32.

[10] C. Le Goues, M. Dewey-Vogt, S. Forrest and W.
Weimer, ”A Systematic Study of Automated Program
Repair: Fixing 55 out of 105 Bugs for $8 Each”,
ICSE’12, pp. 3-13.

