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Abstract—Bugs are usually in associations with other bugs in
a software system, e.g., a bug may result from another bug.
However, such bug associations are implicit and usually cannot be
traced without a significant amount of effort. Intuitively, if a bug
association is easier to trace, the involved bugs can be fixed in a
cleaner way. However, there is little evidence on the explicitness of
bug associations. In this paper, we aim to evaluate the explicitness
of bug associations, so as to get a basic understanding on such
associations. To this end, we defined a metric to quantify the
explicitness of a bug association, and conducted an empirical
study on 11 non-trivial Apache open source software systems.
The main findings are summarized as follows: (1) From the
perspective of code change history, around 29% of bug pairs are
not explicitly associated, and about 71% are explicitly associated
to some extent; (2) Bugs in the association of Container have rela-
tively strong association explicitness, while bugs in the association
of Blocked or Blocker, Cloners, and Dependent have relatively
weak association explicitness. These findings provide insights on
software analyzability to practitioners and researchers.
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I. INTRODUCTION

Bugs are usually in association with other bugs in a software
system [1f], [2]. For instance, in project Apache HBase, bug
HBASE-21551 on memory leak was caused by bug HBASE-
20704 that did not handle file storage properly. Such associa-
tions are important to software maintenance in the sense that
they can facilitate locating bugs and analyzing the impact of
the bugs on the system [3]], [4]. Intuitively, if a bug association
is easier to trace, the involved bugs can be fixed in a cleaner
way, i.e., the bugs can be solved more completely. Despite of
the importance of bug associations, there is little evidence on
the explicitness of bug associations from the perspective of
change history of the software system. Hence, in this work,
we aim to evaluate the explicitness of bug associations, so as
to get a basic understanding on such associations.

To this end, we conducted an empirical study on 11 non-
trivial Apache open source software (OSS) projects, which
bugs are managed in JIRA, an issue tracking system deployed
by Apache Software Foundation. In JIRA, for each project,
a proportion of bug associations are manually labeled by
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practitioners, but it is not clear whether and to what extent
such manually labeled associations can be reflected in the code
change history (i.e., commits) of the project. The results of
this question can reflect the difficulty of identifying the bug
associations and the possibility of automatic identification.

Our main contributions lie in the following two aspects. (1)
This work is an early attempt to explore the explicitness of bug
associations from the perspective of software change history.
(2) We defined a metric to quantify the explicitness of bug
associations, and examined the bug association explicitness
using this metric in 11 Apache OSS projects.

II. BACKGROUND AND RELATED WORK
A. Background

There are different types of the association between two
bugs. We collected 16 types of bug associations from JIRA[H
including: (1) Blocked, (2) Blocker, (3) ChildIssue, (4) Clon-
ers, (5) Container, (6) Dependency, (7) Dependent, (8) Dupli-
cate, (9) Incorporates, (10) ParentFeature, (11) Problem/In-
cident, (12) Reference, (13) Regression, (14) Related, (15)
Required, and (16) Supercedes. The details of all the 16 bug
association types are provided onlineﬂ

B. Links between Issues

Many studies investigated various links (e.g., associations
or dependencies) between issues (including bugs) and the
characteristics and applications of these links. Kucuk et al.
classified duplicate bugs based on analyzing the difference
between duplicate and non-duplicate bugs [5]. Tomova et al.
studied issue link type selection [[6]. Researchers use trace
links to support various development and maintenance tasks,
such as impact analysis [3]] and bug tracking [7]]. However,
our work is not to explore what kind of relationship between
bugs, but to study the explicitness of the association between
bugs that have been manually linked from the perspective of
code change history.

C. Links between Bugs and Commits

Numerous studies investigated the links between bugs and
commits on the detection and application of the links. Le et al.

Uhttps://issues.apache.org/jira
Zhttps://github.com/breezesway/BugAssociationType



created a discriminative model for predicting whether there is
a link between commit messages and bug reports [8]]. Li et al.
made use of links between bugs and commits to identify bug-
fixing commits and then calculated the change complexity of
bug-fixing commits [9], [10]. However, these studies do not
discuss the relationship between the corresponding commits
and associated bugs, which is the focus of our study.

III. STUDY DESIGN

To investigate the explicitness of bug associations, we
conducted a preliminary case study on Apache OSS projects.

A. Research Questions

RQ1: How much explicitness do the bug associations have?
Rationale: The explicitness of bug associations helps to reveal
how difficult the association is to be identified, thereby assess-
ing the likelihood that the bug can be completely resolved to
some extent. We quantify the explicitness of bug associations
for each project, and study how the explicitness is distributed.
RQ2: Is there a difference on the association explicitness
between different association types?

Rationale: We study whether there are significant differences
between different association types, in order to understand
whether the association explicitness of different association
types is different. This gives researchers and developers in-
spiration for whether to pay different attention to different
association types.

B. Case Selection

In this study, we only investigated Apache OSS projects
which main programming language is Java. For selecting each
case (i.e., OSS project) included in our study, we applied the
following criteria: C1) Over 85% of the source code is written
in Java; C2) The history of the project is more than 5 years;
C3) The number of commits of code repository of the project
is more than 4000; and C4) The number of bug pairs that
are manually associated in JIRA is more than 100. CI is set
to ensure that the strength of the association between bugs is
clearly defined. C2 and C3 are set to ensure that the selected
project is non-trivial and has sufficient data. C4 was set to
ensure that the final sample dataset for analysis was large
enough for statistical analysis.

C. Data Collection

To answer the RQs formulated in Section III-A, we collected
the data items listed in TABLE [ which also provides the
mapping between the data items and the target RQ(s). All
data items were collected from JIRA and GitHub.

TABLE I: Data items to be collected.

# Name Description Target RQ(s)
DI bAssocgted A pair qt l?ugs RQI
ug pair in association.
Association | The type of association
b2 type between each pair of bugs. RQ2
Chaneed The number of Java source
D3 & files modified in the RQI, RQ2
source files - .
bug-fixing commit(s).

D. Data Analysis

To answer RQ1, we first defined a metric, namely Associ-
ation Explicitness or AF, to quantify the explicitness of the
association between two bugs. Assuming that the pair of bugs
« and (3 are in an association manually labeled in JIRA, the
set of Java source files modified in the commits for fixing «
is F,, and the set of source files modified in the commits for
fixing 8 is F3. The AE of the association between « and 3
is defined as follows:

|Fa () F3
AF = ——————
|F04UF5‘

The AFE of a bug pair falls into [0.0,1.0]. Second, we cal-
culated the distribution of the proportion of bug pairs against
total bug pairs over different intervals of AFE value. We divide
the interval into [0.0,0.0], (0.0,0.1], (0.1,0.2], ..., (0.9,1.0),
[1.0,1.0]. Especially, we count the cases where two bugs are
fixed in the same commit(s) in the case of [1.0,1.0].

To answer RQ?2, taking all bug pairs of the selected projects
as a whole, we ran the Mann-Whitney U tests to calculate
whether there is a significant difference on AE between bug
pairs of different association types.

(D

IV. STUDY RESULTS
A. Explicitness of Bug Associations (RQ1)

TABLE [II| shows the distribution of percentage of bug pairs
over intervals of the AFE value for the 11 projects. (1) The
percentage of the bug pairs with AE = 0.0 of each project
ranges from 22.5% to 41.1%. When taking all projects as a
whole, there are around 29.4% bug pairs with AE = 0.0. This
indicates that for those bug pairs, no source files are changed
in the bug-fixing commits for both bugs of each bug pair. (2)
Consider the AFE interval of (0.0,0.5]. Taking all projects as
a whole, the AE of about 52.6% of bug pairs falls into this
interval. (3) Consider the AFE interval of (0.5,1.0). Taking all
projects as a whole, the AE' of about 4.1% of bug pairs falls
into this interval. (4) There are 4.6%-35.1% of bug pairs that
have a perfect association explicitness, i.e., AE = 1.0, for
each project. Taking all projects as a whole, 13.9% of the bug
pairs are with AFE = 1.0, which means that the same source
files are changed in the bug-fixing commits of the two bugs
of each of those bug pairs.

We further studied the bug pairs in which the two associated
bugs are fixed in the same commit(s). The results are shown
in TABLE [[II] where column #BugPairA denotes the number
of bug pairs with AE = 1.0, column #BugPairSC denotes
the number of bug pairs fixed in the same commit(s), and
Y%BugPairSC denotes the percentage of #BugPairSC over
#BugPairA. For each project, the %BugPairSC ranges from
0.0% from 68.6%. Especially, projects Accumulo and Hadoop
do not have any bug pairs fixed in the same commit(s).

Summary: From the perspective of code change history,
on average, 29.4% of bug pairs are not explicitly associated,
while 70.6% of bug pairs are explicitly associated; further-
more, 52.6% of bug pairs have a relatively low association



TABLE II: Distribution of the percentage of bug pairs against the total bug pairs over intervals of AFE for the selected projects.

Project [0.0,0.0] | (0.0,0.1] | (0.1,0.2] | (0.2,0.3] | (0.3,0.4] | (0.4,0.5] | (0.5,0.6] | (0.6,0.7] | (0.7,0.8] | (0.8,0.9] | (0.9,1.0) | [1.0,1.0]
Accumulo 38.2 13.6 20.0 73 10.0 6.4 0.0 0.0 0.0 0.0 0.0 4.6
ActiveMQ 33.1 9.7 17.7 9.7 6.5 4.8 1.6 32 0.8 1.6 0.0 11.3
Calcite 22.5 239 152 12.3 6.5 5.8 0.0 2.2 0.0 0.0 0.0 11.6
Hadoop 232 10.6 16.7 8.9 12.3 9.2 1.4 2.1 0.3 0.3 0.0 15.0
HBase 29.1 14.9 17.9 7.6 8.9 7.6 0.7 2.7 1.0 0.0 0.3 9.3
Hive 25.5 12.2 17.8 7.4 9.0 12.4 0.7 2.1 0.9 0.5 0.0 11.6
Jackrabbit Oak 38.4 11.6 16.4 9.6 7.2 6.4 0.4 2.0 0.0 0.0 0.0 8.0
Maven 41.1 4.5 10.7 3.6 10.7 11.6 0.0 0.9 0.0 0.0 0.0 17.0
PDFBox 25.0 8.8 6.1 2.7 6.1 10.8 2.0 2.7 0.0 0.7 0.0 35.1
Solr 31.8 9.9 9.9 7.1 7.5 8.3 2.0 2.4 0.8 0.0 0.0 20.2
Wicket 30.8 3.0 15.0 7.5 9.0 9.8 0.0 7.5 0.0 0.0 0.0 17.3

Average 29.4 11.6 15.5 7.7 8.7 9.1 0.9 2.4 0.5 0.3 0.0 13.9

TABLE III: Proportion of associated bugs that are fixed in the
same commit for each selected project.

Project #BugPairA | #BugPairSC | %BugPairSC
Accumulo 5 0 0.0
ActiveMQ 14 4 28.6
Calcite 16 5 31.2
Hadoop 44 0 0.0
HBase 28 7 25.0
Hive 67 3 4.5
Jackrabbit Oak 20 5 25.0
Maven 19 5 26.3
PDFBox 52 7 13.5
Solr 51 35 68.6

Wicket 23 6 26.1

explicitness (< 0.5), and 13.9% of bug pairs are perfectly
associated.

B. AE of Different Association Types (RQ2)

We calculated the average AF values of different associa-
tion types for each selected project as shown in TABLE
where the last row is the average for all projects. Association
types Blocked/Blocker, Cloners, Dependent, and Required
have relatively small AE values on average, while Container
has a relatively large AFE on average. Association types
ChildIssue/ParentFeature and Dependency each has only one
bug pair, the average AFE values for these two types do not
make much sense.

We ran Mann-Whitney U tests to examine if there are
significant differences on AF between bug pairs of different
association types. Since ChildIssue/ParentFeature and Depen-
denccy have only one bug pair, and Duplicate has even no bug
pair, we did not run the tests for these three association types.
The test results are shown in TABLE [V} where cells with p-
value<0.05 are filled in gray. Specifically, a gray-filled cell
with a number in bold (resp. regular) indicates that the AE
of bug pairs with the association type of the corresponding
row is significantly larger (resp. smaller) than the AFE of bug
pairs with the association type of the corresponding column.
The main points are reported as follows: (1) The average
AE of bug pairs with association type Blocked/Blocker is
significantly smaller than the average AFE of bug pairs with
association types Container, Problem/Incident, Required, and
Supercedes. (2) The average AFE of bug pairs with association
type Cloners is significantly smaller than the average AE of

bug pairs with association types Container, Problem/Incident,
Reference/Related, Regression, and Supercedes. (3) The av-
erage AFE of bug pairs with association type Container is
significantly larger than the average AF of bug pairs with
association types Dependent, Incorporates, Reference/Related,
Regression, and Required. (4) The average AFE of bug pairs
with association type Dependent is significantly smaller than
the average AE of bug pairs with association types Prob-
lem/Incident, Reference/Related, Regression, and Supercedes.

Summary: Relatively speaking, bug pairs with association
types Blocked/Blocker, Cloners, Dependent have relatively
weak association explicitness, while bug pairs with association
type Container have relatively strong association explicitness.

V. DISCUSSION

A. Interpretation of Study Results

RQ1: (1) As we can see from TABLE the association
explicitness of each project shows a distribution pattern: a
significant proportion of bug pairs are not explicitly associated,
a majority of bug pairs are explicitly associated to some
extent, and a non-trivial proportion of bug pairs are perfectly
associated in the bug-fixing commits. (2) On average, 70.6%
of the bug pairs are with an association explicitness larger
than 0, which indicates that the association of a majority of
manually-associated bug pairs can be traced with some clues
in the code change history. In contrast, on average 29.4% of
bug pairs in the selected projects are not explicitly associated,
indicating that the association of a minority of manually-
associated bug pairs cannot be reflected in the code change
history. (3) 13.9% of the bug pairs are fixed in the same
commit(s), and a potential reason is that those bug pairs may
be in specific types of associations so that the bug pairs tend to
be fixed simultaneously in the same commit(s). For instance,
in project ActiveMQ, bugs AMQ-2967 and AMQ-2959 are in
the association of Supercedes; by definition, when AMQ-2967
is fixed, AMQ-2959 should also be fixed, and consequently
these two bugs are fixed in the same commit.

RQ2: (1) The association explicitness of bug pairs with
association type Container is significantly larger than that of
bug pairs with most of other association types. One potential
reason for this phenomenon is that the two bugs in an
association of Container tend to be fixed in the same commit(s)
according to the definition of Container. (2) The association



TABLE IV: Average AF values of different association types for each selected project.

2
\; [ z = o 5",.’. > S 4
Project ] EL“E £ ‘E = g = 2 =% i a El £
=2 | P | S| k& 8|z |2 E L] 2
u Ll
Accumulo | 0.133 0.063 0.069 0.083 | 0.271 | 0.147 | 0.230 0.056
ActiveMQ 0.159 0.353 | 0.500 | 0.256 | 0.370 | 0.109 | 0.385
Calcite 0.110 0.292 | 0.667 0.142 0.206 | 0410 | 0.245 | 0.341 | 0.071 | 0.643
Hadoop 0.068 | 1.000 | 0.142 0.269 0.333 | 0.378 | 0.345 | 0.291 | 0.148 | 0.200
Hbase 0218 0.000 0.305 0.546 | 0.271 | 0.249 | 0.174 | 0.322 | 0.500
Hive 0.166 0.202 | 1.000 | 0.000 | 0.219 0.099 | 0.544 | 0.317 | 0.371 | 0.195 | 0.325
Jackrabbit Oak | 0.129 0.177 | 0.125 0.108 0.500 | 0.089 | 0.218 | 0.289 | 0.414 | 0.000
Maven 1.000 0.398 0.778 | 0.246 1.000
PDFBox 1.000 1.000 | 1.000 0.193 0.500 | 0.470 | 0.750 0.500
Solr 0.161 0.333 | 0.639 0.280 0.273 | 0.202 | 0.362 | 0.339 0.235
Wicket 0.167 0357 0.429 0.000 | 0.281 | 0.341 | 0.375
All 0.180 | 1.000 | 0.235 | 0.668 | 0.000 | 0.224 0.287 | 0.345 | 0.302 | 0.318 | 0.233 | 0.384
TABLE V: P-values of Mann-Whitney U tests between different association types.
i = § > ] %
35 g | 2 3 £ S 2 | % T2
Association type 53 £ g 5 = =3 22 o S 4
=2 = £ & H] 33 &= 0 =2 2
= o S 2 S Pt =2 & g £
S 7]
Blocked/Blocker - 0.755 | 0.001 | 0.465 | 0.151 | <0.001 | 1.097 | 2.733 | 0.012 | 0.001
Cloners 0.755 — [0003 | 0419 | 0210 | 0.021 | 0.034 | 0.007 | 0.098 | 0.019
Container 0.001 | 0.003 | - 0.002 [ 0.010 | 0.057 | 0.009 | 0.017 | 0.010 | 0.093
Dependent 0465 | 0.419 [ 0.002 - 0.394 | 0.008 | 0.006 | <0.001 | 0.067 | 0.011
Tncorporates 0.151 | 0210 | 0.010 | 0.394 - 0.155 | 0502 | 0.154 | 0.434 | 0.119
Problem Incident | <0.001 | 0.021 | 0.057 | 0.008 | 0.155 - 0.181 | 0509 | 0.159 | 0.722
Reference/Related | 1.097 | 0.034 | 0.009 | 0.006 | 0502 | 0.181 - 0.072 | 0.942 [ 0.130
Regression 2733 | 0007 | 0.017 | <0001 | 0.154 | 0509 | 0072 - 0359 | 0323
Required 0.012_ | 0.098 [ 0.010 | 0.067 | 0434 | 0.159 | 0.942 | 0.359 - [ 0095
Supercedes 0.001 | 0.019 | 0.093 | 0011 | 0.119 | 0722 | 0.130 | 0323 | 0.095 | -

explicitness of bug pairs with association type Dependent is
significantly smaller than that of bug pairs with most of other
association types. One potential reason is that the two bugs
in an association of Dependent may be coupled more in code
structure than in code change history.

B. Implications

Most bug pairs are explicitly associated to certain degree,
which implies that the code change history is a helpful
resource for developers to deal with bugs and their impact. A
significant proportion of bug pairs are not explicitly associated
at all in each project, which implies that it is necessary to turn
to other sources (e.g., code structure dependencies) for bug
analysis.

VI. CONCLUSIONS

This work investigates to what extent manually associated
bugs can be explicitly traced in their code change history,
and whether there is significant difference on the association
explicitness between bugs in different types of association. To
answer these questions, we performed an empirical study on
11 Apache OSS projects, and obtained the following findings:
(1) Around 71% of manually-associated bug pairs can be
traced with overlapped changed source files in the code change
history, and in contrast, around 29% are not explicitly reflected
in the code change history at all. (2) Bug pairs with association
types Blocked/Blocker, Cloners, and Dependent have relatively

weak association explicitness, while bug pairs with association
type Container has relatively strong association explicitness.
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