
Multiclass Classification of Four Types of UML
Diagrams from Images Using Deep Learning

Sergei Shcherban and Peng Liang∗
School of Computer Science

Wuhan University, China
k1myriel@yandex.ru, liangp@whu.edu.cn

Zengyang Li
School of Computer Science

Central China Normal University, China
zengyangli@ccnu.edu.cn

Chen Yang
IBO Technology (Shenzhen) Co., Ltd.

Shenzhen, China
c.yang@ibotech.com.cn

Abstract—UML diagrams are a recognized standard mod-
elling language for representing design of software systems. For
academic research, large cases containing UML diagrams are
needed. One of the challenges in collecting such datasets is
automatically determining whether an image is a UML diagram
or not and what type of UML diagram an image contains.
In this study, we collected UML diagrams from open datasets
and manually labeled them into four types of UML diagrams
(i.e., class diagrams, activity diagrams, sequence diagrams, and
use case diagrams) and non-UML images. We evaluated the
performance of five popular neural network architectures using
transfer learning on the dataset of 3231 images that contains 700
class diagrams, 454 activity diagrams, 651 use case diagrams,
706 sequence diagrams, and 720 non-UML images, respectively.
We also proposed our neural network architecture for multiclass
classification of UML diagrams. The experiment results show
that our proposed neural network architecture achieved the
best performance amongst the algorithms we evaluated with an
accuracy of 98.65%, a precision of 96.76%, a recall of 96.48%,
and an F1-score of 96.62%. Moreover, among the neural network
architectures that we have evaluated, our proposed architecture
has the least parameters (around 2.4 millions) and spends the
least time per image (0.0135 seconds per image using GPU) for
classifying UML diagrams.

Keywords—UML Diagrams, Neural Network, Deep Learning,
Multiclass Classification

I. INTRODUCTION

To define and communicate the design and architecture of
systems, software engineers are challenged by the increasing
complexity of software systems, especially when groups of
developers use different modelling notations in distributed
development. Software developers, in particular architects and
designers, are therefore using Unified Modeling Language
(UML) [1] diagrams as a universal set of notations to promote
the concept description and collaboration in the development
of software systems. UML was stemmed as the union of three
object-oriented design practices: the Booch method [2], the
object modelling technique [3], and the Objectory method
[4]. The UML standard was published and maintained by
the Object Management Group (OMG). In addition, both in
industry and academia, the use of UML diagrams as a standard
for developing software [5]. Class diagrams, activity diagrams,
sequence diagrams, and use case diagrams are the most com-
mon four types of UML diagrams used in industry [6]. UML

* Corresponding author
DOI reference number: 10.18293/SEKE2021-185

class diagrams demonstrate the classes in a system, attributes
and operations of each class, and the relationship between
classes, and act as a focal role in defining software structure.
Activity diagrams explain how activities are organized to
deliver a service that can be at different levels of abstraction.
Sequence diagrams are diagrams of interaction that detail
how operations are done, and they capture the interaction
between objects. Use case diagrams provide description of the
interactions between users and the system.

In the research concerning UML modeling, researchers
need repositories with a large number of samples of UML
diagrams [7] [8] [9], such as the Lindholmen dataset [10].
These datasets can also be used to create helpful tools for
developers, such as creating UML diagrams by using natural
language specifications [7] or using UML diagrams to produce
code [8]. Images are one of the most used ways of storing
and sharing UML diagrams. Therefore, identifying whether
an image belongs to UML diagrams or not is the issue of
constructing such repositories. Non-UML images are often
found, especially in large datasets, such as the Lindholmen
dataset [10]. Sorting through thousands of pictures manually
requires a significant amount of time and effort. It is therefore
necessary to identify various UML diagrams from images
automatically. Recently, many researches have been focused
on classifying images by applying deep learning techniques
(e.g., [11] [12] [13]), and practitioners and researchers are
making these techniques accessible for use. Besides, in terms
of precision of image classification, deep learning algorithms
outperform classical machine learning algorithms [14]. Also,
modern deep learning frameworks (such as Tensorflow or
PyTorch) include the ability to use the GPU for neural network
training and inference, which accelerates the use of deep
learning-based image classification approaches.

In this paper, we presented an approach to identify various
types of UML diagrams automatically from images using deep
learning algorithms. Initially, we gathered a dataset of 3231
images (700 class diagrams, 454 activity diagrams, 651 use
case diagrams, 706 sequence diagrams, and 720 non-UML im-
ages). An experiment was then performed with several popular
neural network architectures [15] [16] that can be found in
current deep learning frameworks [17] [18] and are widely
used for applying neural networks (i.e., MobileNet [19],
DenseNet [20], NasNet [21], ResNet [22], Inception [23]). We



evaluated these selected neural networks with semi-trainable
transfer learning (the convolutional part of pre-trained neural
networks was not trained) and fully-trainable transfer learning.
Also, we proposed a new neural network architecture for
multiclass classification UML diagrams.

The contribution of this paper is threefold: (1) a dataset
which contains UML class diagrams, activity diagrams, use
case diagrams, sequence diagrams, and non-UML images,
serving as a starting point for researchers to further investigate
the UML diagram identification and classification problem, (2)
an approach to automatically identify various types of UML
diagrams by using deep learning techniques, and (3) a neural
network architecture which can fast and effectively classify
various types of UML diagrams from images.

The rest of the paper is organized as follows: Section II
introduced related works. Section III describes the research
questions, the data collection, the classification process, and
the evaluation process, and the experimental setup. Section
IV provides the experiment results. Section V presented the
threats to validity. Section VI describe concludion of this work
with further work directions.

II. RELATED WORK

Recently, various techniques to extract features from dia-
grams have been introduced. Karasneh and Chaudron [24]
introduced a process to extract UML class diagrams from
images and transform them into XMI format. Fu and Kara
[25] proposed a method for converting engineering diagrams
into connected graphs. Ho-Quang et al. proposed an approach
to classifying UML class diagrams from images automatically
by using machine learning algorithms and different feature
extraction techniques [9]. Despite its effectiveness, this method
to image classification consumes 5.84 seconds per image,
which can be problematic when using it with big datasets.
Mohd Hafeez Osman et al. showed that reverse-engineered and
forward-engineered UML class diagrams can be classified by
using machine learning [26]. Ahmed and Huang also applied
machine learning to classify role stereotypes of UML class
diagrams in order to quickly get the knowledge about role
stereotypes for developers [27]. They achieved an accuracy
of 89.6% in the multiclass classification of role stereotypes
of UML class diagrams using Random Forest with SMOTE
oversampling. Rashid classified UML sequence diagrams by
applying machine learning and computer vision algorithms
to facilitate the creation of repositories containing UML di-
agrams [28]. His work achieved an accuracy of 90.8% using
the methods from the OpenCV framework, such as Canny
edge, probabilistic Hough lines transform, and FindCountors
as feature extraction methods. Bian et al. proposed an ap-
proach to automatically grade students’ UML class diagrams
by using semantic, structural, and syntactic matches between
the teacher’s solutions and the students’ solutions [29]. They
received a variation of 14% between the teacher’s grade and
the grade received by using their tool by grade 20 students.

Because neural networks do not demand additional feature
extraction algorithms for classification and preform feature

extraction automatically using convolution layers [11], their
classification speed is higher than that of approaches that used
combination of feature extraction algorithms and classical ma-
chine learning algorithms. Moreover, in some computer vision
tasks, such as object recognition, modern neural networks
outperform humans in terms of accuracy [12].

In deep learning, the idea of reusing the acquired knowledge
from one task to another is called transfer learning [13]. It has
been proven as an effective way to implement neural networks
without using a lot of resources on training and searching
for a neural network’s architecture. Transfer learning means
applying the neural network’s weights obtained within one
task to complete or partially complete training on a new task.

To the best of our knowledge, there are no works that are di-
rectly aimed at the automatic multiclass classification of UML
diagrams. Thus we open this line of research by proposing an
approach to UML diagram classification and making available
to the public the dataset used for the experiments.

III. RESEARCH DESIGN

This research aims to study how we can automatically
classify multiclass UML diagrams by using deep learning
algorithms. In this study, we investigated four Research Ques-
tions (RQs):

RQ1: What is the best performance of semi-trainable
transfer learning for multiclass classification of UML
diagrams?

Rationale: This RQ aims to get the best classification
algorithm (in terms of performance) when training algo-
rithms to recognize UML diagrams. Various deep learn-
ing algorithms can produce different results, depending on
the architecture, configurations, and datasets used. Our se-
lection fell on five deep learning architectures, including
MobileNet, DenseNet169, NasNetMobile, ResNet152V2, and
InceptionV3, because they are commonly applied in image
classification and can be founded in modern deep learning
frameworks. We evaluate the performance of semi-trainable
transfer learning of each algorithm using accuracy, precision,
recall, and F1-score metrics.

RQ2: What is the best performance of fully-trainable
transfer learning for multiclass classification of UML
diagrams?

Rationale: The process of training all layers of neural
networks takes more time and computation resources. The pur-
pose of this RQ is to understand whether the cost of training all
layers of neural networks will improve performance in the task
of classifying UML diagrams. We evaluate the performance of
fully-trainable transfer learning on the algorithms from RQ1
with all trainable layers.

RQ3: Is transfer learning essential for multiclass classi-
fication of UML diagrams?

Rationale: Transfer learning can speed up the process of
training algorithms and can improve the accuracy of classi-
fication. However, images from the most popular dataset for
transfer learning (ImageNet [30]) are not like UML diagrams
from our dataset. This RQ aims to understand whether transfer



learning is better for classifying UML diagrams than training
neural networks from scratch. We measure the performance
of MobileNet and our proposed neural network without using
transfer learning, and compare them with the best results from
RQ1 and RQ2.

RQ4: What is the best performance on time per image
of neural networks for multiclass classification of UML
diagrams?

Rationale: The aim of this RQ is to investigate the perfor-
mance of classification on time per image based on various
neural networks. Since image classification can be used to
collect datasets, refine search results, etc., the use of a clas-
sification algorithm should not be too time-consuming. The
performance time is measured by using the GPU.

A. Data Collection

For the experiments, we created a dataset based on several
existing datasets [10] [31] [9] [26], in which the Lindholmen
dataset [10] is the largest one. We scrapped more than 10000
images from these datasets, and we then manually removed
the duplicates and labeled four types of UML diagrams: class
diagrams, activity diagrams, use case diagrams, sequence dia-
grams. Non-UML images were collected from [31] and man-
ually filtered to remove UML diagrams. Overall we collected
3231 images (inlcluding 700 class diagrams, 454 activity
diagrams, 651 use case diagrams, 706 sequence diagrams, and
720 non-UML images). Our dataset has been provided online
for replication and reproduction purposes [32].

B. Image Classification Process

The process of classifying UML diagrams is composed of
four phases:

Phase 1: Input Data. The input is the dataset which
contains 700 class diagrams, 454 activity diagrams, 651 use
case diagrams, 706 sequence diagrams, and 720 non-UML
images, and we further split the dataset into a training set, a
testing set, and a validation set.

Phase 2: Preprocess Images. The images were converted
to a JPG format and to a size of 224x224 or 299x299.

Phase 3: Train Classification Algorithms. We trained dif-
ferent pre-trained neural networks and some neural networks
without pre-trained weights.

Phase 4: Evaluate Trained Classification Algorithms. We
evaluated the performance of each algorithm from Phase 3
using multiple performance measures.

In Phase 1 (i.e., input data), we split the dataset into
validation, testing and training sets: 10% of images (323) as
the validation set, 20% of images (646) as the testing set,
and 70% of images (2262) as the training set. Deep learning
frameworks often do not work with all image formats, so
we converted all images to a JPG format. Also, for pre-
trained models, we needed to bring all the images to the
particular size, in this case, we brought the images to the
size of 299x299x3 for InceptionV3 and 224x224x3 for the
rest of the neural networks that we used (recommended image
sizes for transfer learning). All the images were normalized

by changing the range of pixel intensity values between 0 to
1. The training dataset was augmented with a horizontal flip,
slight shifts in the horizontal and vertical axis (up to 20%).

To raise the accuracy and decrease the training time in
Phase 3, we trained neural networks with and without using
transfer learning, which is a method to reuse the information
received during training on one task to new tasks. We used
models pre-trained on the ImageNet task [30], including
MobileNet, DenseNet169, NasNetMobile, ResNet152V2, and
InceptionV3. Convolutional layers were not trained during the
semi-trainable transfer learning process and all layers were
trained during the fully-trainable transfer learning process. The
output from pre-trained models was fed to a fully-connected
layer with 1024 neurons and the relu activation function, then
through dropout layer to the next fully-connected layer with
512 neurons and the relu activation function, and after the last
dropout layer to a fully-connected layer with five neurons and
a softmax activation function.

Our proposed neural network was inspired by Mo-
bileNetV3 [33] and ResNet [22]. Figure 1 provides the details
about our proposed neural network architecture. The input
layer is a convolutional layer with kernel size 3x3, 32 filters
and ReLU as an activation non-linear function. Next are
the architecture blocks, which are repeated throughout the
architecture. The input of each logical block is a convolutional
layer with twice as many filters as the previous layer and
ReLU as an activation function. The next layer is the batch
normalization layer. The output of the batch normalization
layer is then split into two single outputs, one of which is
called a shortcut which goes directly to the end of the logic
block. Shortcut was made by using a maximum pooling layer.
The second output goes through a separable convolution layer
with half as many filters as the input layer and a 1x1 kernel size
with ReLU activation function. It then goes into a convolution
layer identical to the input layer of the logic block with stride 2
and the HardSwish activation function. Then goes to a similar
layer but with LeakyReLU activation function. And after the
batch normalization layer is concatenated with the shortcut
output to the next logical block. Each logic block of our
architecture contains convolution layers with different kernel
size and stride, separable convolution layer [34]. We also
used ReLU, LeakyReLU, and HardSwish [35] as activation
functions. Following the sequential use of several logical
blocks, the Global average pooling layer is used. Instead of
using classical fully-connected layers at the end of the neural
network, we used two convolutional layers with 1x1 kernel
and the numbers of filters are 1024 and 5 (i.e., number of
classes in the dataset). This allows us to reduce the number
of parameters and speed up the neural network.

C. Performance Evaluation

We measured the performance of each algorithm by using
accuracy, precision, recall, and F1-score, which are usually
used in performance evaluation of image classification. The
images from one class that have been correctly classified by
a classifier are considered as True Positive (TP), while the



ReLU

Batch Normalization

ReLU

HardSwish

Batch Normalization

LeakyReLU

ReLU

HardSwish

ReLU

HardSwish

LeakyReLU

Batch Normalization

Avarage Pooling, pool size = 4

Softmax

Batch Normalization

ReLU

Batch Normalization

LeakyReLU

Batch Normalization

ReLU

shortcut

shortcut

shortcut

Conv2d, kernel size = (3, 3),
strides = 1, lters = 64

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 32

Conv2d, kernel size = (3, 3),
strides = 2, lters = 64

Conv2d, kernel size = (3, 3),
strides = 2, lters = 64

Conv2d, kernel size = (3, 3),
strides = 1, lters = 128

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 64

Conv2d, kernel size = (3, 3),
strides = 2, lters = 128

Conv2d, kernel size = (3, 3),
strides = 2, lters = 128

Conv2d, kernel size = (3, 3),
strides = 1, lters = 256

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 128

Conv2d, kernel size = (3, 3),
strides = 2, lters = 256

Conv2d, kernel size = (3, 3),
strides = 2, lters = 256

Conv2d, kernel size = (1, 1),
strides = 1, lters = 1024

Conv2d, kernel size = (1, 1),
strides = 1, lters = 5

Conv2d, kernel size = (3, 3),
strides = 1, lters = 32

ReLU

Fig. 1: Specification for our neural network architecture

images from another class that have been incorrectly classified
are considered as False Positive (FP). The images from one
class incorrectly identified as images from other classes are
considered as False Negative (FN). The images from another
class that have been correctly identified by a classifier are
considered as True Negative (TN).

Accuracy (ACC) is the proportion of accurately predicted
set from the whole observations. Precision is the ratio of
images correctly identified as one class to all images identified
as this class. Recall is the fraction of all images of one class
correctly demarcated. The harmonic mean of precision and
recall is called F1-score or F1 Measure. We calculated those
metrics using the following equations:

ACC =
TP + TN

TP + TN + FP + FN
(1)

F1− score =
2TP

2TP + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

To measure the time spent, we used the free version of
Google Colaboratory. This will make the results reproducible
and verifiable. The free version of Google Colaboratory uses
Nvidia Tesla T4 as the GPU device.

IV. RESULTS AND ANALYSIS

To answer the RQs, we used deep learning algorithms. Over-
all, we experimented with 12 (5 classification algorithms as a
semi-trainable transfer learning + 5 classification algorithms as
a fully-trainable transfer learning + 2 classification algorithms
without pre-trained weights) experiment configurations. These
configurations were applied on a training set of 2262 images,
a testing set of 646 images, and a validation set of 323 images.
Since the neural networks have some bias in performance
results, each experiment configuration was evaluated 5 times
and the results bellow are an average of the 5 times when the
experiment configuration is repeated.

RQ1: What is the best performance of semi-trainable
transfer learning for classification of UML diagrams?

To answer RQ1, we applied several pre-trained neural
networks such as MobileNet, DenseNet169, NasNetMobile,
ResNet152V2, and InceptionV3 without training convolution
layers. Table I shows the precision, recall, and F1-score for
each algorithm. The best performed algorithm was MobileNet
(accuracy = 96.79%, precision = 92.77%, recall = 91.06%,
and F1-score = 91.91%). In the five classification algorithms,
MobileNet outperforms other algorithms.

TABLE I: Performance in precision, recall, and F1-score by
using semi-trainable transfer learning

Recall Precision Accuracy F1-score
ResNet152V2 88.28% 91.87% 96.09% 90.04%
InceptionV3 89.52% 91.88 96.32% 90.69
MobileNet 91.06% 92.77% 96.79% 91.91%

DenseNet169 89.41% 92.26% 96.38% 90.81%
NasNetMobile 85.41% 89.26% 95.03% 87.29%

RQ2: What is the best performance of fully-trainable
transfer learning for classification UML diagrams?

To answer RQ2, we applied all pre-trained algorithms from
RQ2 with training all layers. Table II shows the precision,
recall, and F1-score for each algorithm. The best performed
algorithm was DenseNet169 (accuracy = 97.76%, precision
= 94.44%, recall = 94.35%, and F1-score = 94.40%). In
the five classification algorithms, DenseNet169 outperforms
other algorithms. Moreover, DenseNet169 with all trainable
layers outperforms all semi-trainable algorithms from RQ1.
However, the training process for all layers takes more time
than the training process of semi-trainable transfer learning.

RQ3: Is transfer learning essential for multiclass classi-
fication of UML diagrams?

Since the images from the ImageNet dataset [30] used
for transfer learning are not similar to the images from our



TABLE II: Performance in precision, recall, and F1-score by
using fully-trainable transfer learning

Recall Precision Accuracy F1-score
ResNet152V2 93.11% 93.50% 97.33% 93.31%
InceptionV3 94.14% 94.24 97.68% 94.19
MobileNet 93.83% 94.22% 97.62% 94.03%

DenseNet169 94.35% 94.44% 97.76% 94.40%
NasNetMobile 87.15% 90.21% 95.54% 88.65%

dataset, the question arises about the need for transfer learning.
To answer RQ3, we compared the best results from RQ1
(MobileNet (STTL)) and RQ2 (DenseNet169 (FTTL)) with
the results of MobileNet and our proposed neural network ar-
chitecture, which were trained without using transfer learning
(WPW). The comparison shows that the pre-trained out-of-the-
shelf neural networks are better than the out-of-the-shelf neural
networks that are trained without using transfer learning, but
worse than our proposed neural network at classifying UML
diagrams. Table III shows the comparison between the pre-
trained and not pre-trained neural networks. Moreover, it is
possible to pick up a custom neural network architecture that
will cope almost as well as off-the-shelf neural networks, but
the process of picking architecture parameters takes time.

TABLE III: Comparison between pre-trained and not pre-
trained neural networks (STTL = semi-trainable transfer learn-
ing, FTTL = fully-trainable transfer learning, WPW = training
without pre-trained weights)

Recall Precision Accuracy F1-score
MobileNet (STTL) 91.06% 92.77% 96.79% 91.91%

DenseNet169 (FTTL) 94.35% 94.44% 97.76% 94.40%
MobileNet (WPW) 88.59% 89.23% 95.58% 88.90%

Our Solution (WPW) 96.48% 96.76% 98.65% 96.62%

RQ4: What is the best performance on time per image
of neural networks for multiclass classification of UML
diagrams?

We measured time per image by using Google Colaboratory
to answer RQ4. Table IV shows the measured time for our
approach and comparison with the solution from [9]. For the
transfer learning approach, MobileNet is the most effective
algorithm in term of performance time (0.014 second per
image). For all the approaches, our proposed neural network
showed the best performance time (0.0135 second per image).

TABLE IV: Performance in time per image (seconds) and
required parameters (millions)

ResNet
152V2

Incepti
onV3

Mobile
Net

Dense
Net169

NasNet
Mobile

Our So-
lution

GPU 0.0206 0.0183 0.0140 0.0151 0.0142 0.0135
Num of
params 60.9 24.4 4.8 14.8 5.8 2.4

Summing up the results of the RQs, we can say that the
DenseNet169 with all trainable layers is a good and out-of-

the-shelf choice to classify UML diagrams from images. We
have also found that it is possible to find an architecture that
performs better than the pre-trained out-of-the-shelf neural net-
works, but that architecture selection takes time. Our proposed
neural network architecture showed the best results (accuracy
= 98.65%, precision = 96.76%, recall = 96.48%, and F1-score
= 96.62%) and it also has the least parameters (2.4millions)
and spends the least time per image (0.0135 seconds per image
using GPU) for classifying UML diagrams.

V. THREATS TO VALIDITY

Internal validity concentrates on whether the results can
be drawn from the data, and one of the threats to the internal
validity of this study are the overfitting of neural networks and
the manual labelling of the dataset used in the experiment.
Since pre-trained models are trained on a complex multi-
class task of 1000 classes, they can be retrained when we
move on to five class classification. To avoid overfitting, we
used a Dropout layer after each fully connected layer. This
allows us to ignore some of the information coming from fully
connected layers and increases the stability of models. The
images used in the experiment were manually labelled, which
may introduce selection bias. It is possible that images were
incorrectly labelled, leading to incorrect classification results.
To mitigate this threat, the labeled data was manually checked
by the first author, and for any unsure labels the first author
discussed with the second author to get a consensus.

External validity reflects the extent to which the study
results and findings can be generalized in other cases with sim-
ilar characteristics. The potential threat to the external validity
is about the diversity of the dataset used in the experiment,
which was created based on several existing datasets [10]
[31] [9] [26], in which the Lindholmen dataset [10] is the
largest UML models repository from OSS projects and the
other three datasets were retrieved by Google Images search.
We believe that the experiment results can be applicable to the
classification of UML digrams in practice to a large extent.

Construct validity in this work focuses on whether the
evaluation metrics are suitable and measured correctly. A
set of metrics (i.e., accuracy, recall, precision, and F1-score)
were used to measure the performance of the classification
algorithms, which have been widely used in assessing the
quality of algorithms in image classification.

Reliability refers to whether the experiment yields the
same results when it is replicated. In this work, this validity
is mainly related to the dataset and the execution of the
experiment. We defined the protocol for the classification
process and evaluation metrics, which were confirmed and
followed by all the researchers. We also made our experiment
dataset available for replication purposes [32].

VI. CONCLUSIONS AND FUTURE WORK

In this work, we automatically identify four most popular
types of UML diagrams (class diagrams, use case diagrams,
activity diagrams, and sequence diagrams) and non-UML



diagrams from images by using five popular neural network ar-
chitectures (including MobileNet, DenseNet, NasNet, ResNet,
and Inception) using transfer learning. We scrapped over
10000 images from open datasets and manually labelled it
into four types of UML diagrams. In total, we have collected
a dataset that contains 3231 images (700 class diagrams,
454 activity diagrams, 651 use case diagrams, 706 sequence
diagrams, and 720 non-UML images). Then, we used transfer
learning to classify UML diagrams by applying the neural
network architectures. We also proposed our neural network
architecture for multiclass classification of UML diagrams.
The experiment results show that our proposed neural network
architecture outperformed the existing neural network archi-
tectures with an accuracy of 98.65%, a precision of 96.76%,
a recall of 96.48%, and and F1-score of 96.62%. To measure
the time spent for the classification, we used a free version
of Google Colaboratory. We found that the most efficient
algorithm by using GPU is our proposed neural network
architecture with 0.0135 seconds per image for classifying
UML diagrams and our proposed neural network architecture
also has the least parameters (around 2.4 millions).

In the next step, we plan to (1) construct cost-effective
neural network architectures for classifying major types of
UML diagrams from images; and (2) automatically recover the
relationships between various types of UML diagrams from
images within a project in order to establish the tractability
between UML models.

REFERENCES

[1] OMG, “About the unified modeling language specification version
2.5,” 2015. [Online]. Available: https://www.omg.org/spec/UML/2.5/
About-UML

[2] J. Aranda, S. Easterbrook, and G. Wilson, “Requirements in the wild:
How small companies do it,” in Proc. of the 15th IEEE International
Requirements Engineering Conference (RE). IEEE, 2007, pp. 39–48.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[4] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Pearson Education, 1993.

[5] M. R. Chaudron, W. Heijstek, and A. Nugroho, “How effective is uml
modeling?” Software and Systems Modeling, vol. 11, no. 4, 2012.

[6] W. Lynch, “A comprehensive guide to 14 types of UML diagram,”
2019. [Online]. Available: https://medium.com/@warren2lynch/
a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e

[7] P. More and R. Phalnikar, “Generating uml diagrams from natural
language specifications,” International Journal of Applied Information
Systems, vol. 1, no. 8, pp. 19–23, 2012.

[8] M. Usman and A. Nadeem, “Automatic generation of java code from
UML diagrams using ujector,” International Journal of Software Engi-
neering and Its Applications, vol. 3, no. 2, pp. 21–37, 2009.

[9] T. Ho-Quang, M. R. Chaudron, I. Samúelsson, J. Hjaltason, B. Karas-
neh, and H. Osman, “Automatic classification of UML class diagrams
from images,” in Proc. of the 21st Asia-Pacific Software Engineering
Conference (APSEC), vol. 1. IEEE, 2014, pp. 399–406.

[10] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use UML: mining
github,” in Proc. of the 19th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MoDELS). IEEE,
2016, pp. 173–183.

[11] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech,
and Time Series. MIT Press, 1998, vol. 3361, pp. 255–258.

[12] R. Geirhos, D. H. Janssen, H. H. Schütt, J. Rauber, M. Bethge, and F. A.
Wichmann, “Comparing deep neural networks against humans: object
recognition when the signal gets weaker,” arXiv abs/1706.06969, 2017.

[13] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in Proc. of the 28th International Conference
on Artificial Neural Networks (ICANN). Springer, 2018, pp. 270–279.

[14] S. Loussaief and A. Abdelkrim, “Deep learning vs. bag of features in
machine learning for image classification,” in Proc. of the International
Conference on Advanced Systems and Electric Technologies (IC ASET).
IEEE, 2018, pp. 6–10.

[15] J. Jordan, “Common architectures in convolutional neural
networks,” 2018. [Online]. Available: https://www.jeremyjordan.me/
convnet-architectures/

[16] M. Hollemans, “New mobile neural network architectures,” 2020.
[Online]. Available: https://machinethink.net/blog/mobile-architectures/

[17] T. Contributors, “Torchvision.models,” 2019. [Online]. Available:
https://pytorch.org/docs/stable/torchvision/models.html

[18] TensorFlow, “Module: tf.keras.applications,” 2019. [Online]. Available:
https://www.tensorflow.org/api docs/python/tf/keras/applications

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv abs/1704.04861, 2017.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[21] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018, pp. 8697–8710.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2016, pp. 2818–2826.

[24] B. Karasneh and M. R. Chaudron, “Img2UML: A system for extracting
UML models from images,” in Proc. of the 39th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2013, pp. 134–137.

[25] L. Fu and L. B. Kara, “From engineering diagrams to engineering
models: Visual recognition and applications,” Computer-Aided Design,
vol. 43, no. 3, pp. 278–292, 2011.

[26] M. H. Osman, T. Ho-Quang, and M. Chaudron, “An automated approach
for classifying reverse-engineered and forward-engineered UML class
diagrams,” in Proc. of the 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2018.

[27] J. Ahmed and M. Huang, “Classification of role stereotypes for classes
in UML class diagrams using machine learning,” Master’s thesis, Uni-
versity of Gothenburg, 2020.

[28] S. Rashid, “Automatic classification of UML sequence diagrams from
images,” Bachelor of Science Thesis, University of Gothenburg.

[29] W. Bian, O. Alam, and J. Kienzle, “Automated grading of class
diagrams,” in Proc. of the 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 2019, pp. 700–709.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2009, pp. 248–255.

[31] SunEdition, “Graphs dataset,” 2010. [Online]. Available: https:
//www.kaggle.com/sunedition/graphs-dataset

[32] S. Shcherban, P. Liang, Z. Li, and C. Yang, “Dataset of the
paper: Multiclass classification of four types of UML diagrams
from images using deep learning,” March 2021. [Online]. Available:
http://doi.org/10.5281/zenodo.4595956

[33] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proc. of the IEEE International Conference on Computer Vision (ICCV).
IEEE, 2019, pp. 1314–1324.

[34] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 1251–1258.

[35] R. Avenash and P. Viswanath, “Semantic segmentation of satellite
images using a modified cnn with hard-swish activation function.” in
Proc. of the International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP), 2019.

https://www.omg.org/spec/UML/2.5/About-UML
https://www.omg.org/spec/UML/2.5/About-UML
https://medium.com/@warren2lynch/a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e
https://medium.com/@warren2lynch/a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e
https://www.jeremyjordan.me/convnet-architectures/
https://www.jeremyjordan.me/convnet-architectures/
https://machinethink.net/blog/mobile-architectures/
https://pytorch.org/docs/stable/torchvision/models.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.kaggle.com/sunedition/graphs-dataset
https://www.kaggle.com/sunedition/graphs-dataset
http://doi.org/10.5281/zenodo.4595956

	Introduction
	Related Work
	Research Design
	Data Collection
	Image Classification Process
	Performance Evaluation

	Results and Analysis
	Threats to Validity
	Conclusions and Future Work
	References

