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Abstract—Automatic comprehension of geometry problems 

described in natural language is a crucial and challenging stage 

of numerous automatic geometry problem solvers. These systems 

should comprehend the existing information in natural language 

geometry problems with the purpose to extract the geometric 

relationships between elements and to accomplish automatic 

solutions using intelligent methods. Abstract Meaning 

Representation is a popular framework for annotating whole 

sentence meaning. This paper proposes the addition of a new 

feature to an existing transition-based AMR parser that 

constructs AMR graphs from statement of geometry problems 

described in English language. The new feature consists in 

explicit embedding of the coreference detection into the parser. 

Integrating the automatic comprehension method with different 

geometry systems will greatly enhance the efficiency and 

intelligence in automatic solving. This approach shows 

improvements over the best previously published systems for 

extract information from statement of geometry problems 

described in English language. 
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I.  INTRODUCTION 

The Abstract Meaning Representation (abbreviated AMR) 
[1] is a semantic representation of natural language text, which 
attempts to catch the connotation of a sentence into a structured 
AMR graph. The AMR domain retains who accomplishes what 
to whom in a sentence, and because to this argument, the 
collected information is kept in a rooted, directed, acyclic 
graph, appointed the AMR graph [2]. AMR graphs have tags 
on edges, which are acknowledged as relations, and the leaves 
of an AMR graph are watched as notions. AMR cannot depict 
coreferences which cross sentence limits and, likewise, it 
cannot discern amongst hypothetical or real events. The 
available mention-pair systems whichever identify coreferences 
[3] do not analyze entity-level information when establishing if 
a couple of mentions are referent or not. Therefore, beginning 
from this ascertainment it was suggest an entity-centric 
coreference resolution system, which composes coreference 
chains step by step. This system fits in the pattern stowing type 
as it engages a pipeline related architecture, where one stage 
has the grouped mention-pair patterns, which forebodes some 
rates, and the next stage holds the entity-centric pattern which 
utilizes previously engendered rates.  

A. Coreference Resolution with Neural Networks 

In the paper [4] the authors introduce a coreference 
resolution system using a neural network [5], whichever is 
capable to create distributed appearances of pairs of 
coreference groups. The appearances are used for the system to 
train when to merge groups. The system trains when to take 
alike decisions with the support of a simple first group-ranking 
procedure. This procedure classifies, in a downward sequence, 
the rates obtained from the group-ranking pattern with a design 
to own the highest rate entrant coreference links chiefly, and 
afterwards selects the ones with the highest rate. The group-
ranking system is composed by a single neural network, whose 
architecture (Fig. 1) has the subsequent subcomponents: 
mention-ranking pattern, mention-pair encoder, group-pair 
encoder, and group-ranking pattern. 

II. THEORETICAL FOUNDATION AND ANALYSIS OF THE 

EXISTING SYSTEMS 

A. Related Work 

Viewed as a closed ensemble, the primary system can be 
considered as just an application which, plighted as input an 
English sentence from the statement of a geometry problem 
[6], releases as output an Abstract Meaning Representation 
graph (Fig. 2). The available solution can establish only in 
some measure the wanted output, signifying it can just build an 
AMR tree (AMR graph without coreferences) for the chosen 
sentence. Nevertheless, it is not still possible to mark the AMR 
nodes and relations with labels. Notwithstanding this model 
can emerge to be rather humdrum in the situation when 
considered the optimum solutions have under 70.0 out of 100.0 
smatch f-scores from a simplistic view [7]. This implies that 
the AMR area also affords a large possibility for investigation 
and development.  

 

 

Figure 1. Neural network coreference resolution arhitecture 



 

 

Analyzing in profoundness, the primer solution is a 
transition-based parsing system, whichever enforces a set of 
transitions to the input sentence with a design to afford its 
equivalent AMR graph. The transitions appertain to every of 
the primary states of the system, beginning from the primary 
state till the final one, are trained with a Stack Long Short-
Term Memory neural network [8]. Thereby, utilizing the 
trained model engendered from the LSTM neural network, the 
sequence of transitions can be automatically foreshadow 
starting from a selected geometry sentence. AMR graph [2] is a 
rooted, directed, acyclic graph, G = (Vx, A), whose edges and 
leaves are marked. The starting solution transition system 
includes the fundamental items of an arc-standard parser [9]: a 
stack (S), a buffer (B) and a group of activities, whichever are 
applique to the items of the stack and buffer with the purpose to 
shift by one parser shape to another. A remarkable script 
involves that the ending state has a blank buffer, a stack 
holding just one node, which is the root of the AMR graph, and 
the collection of applique activities on each transition [10]. The 
parser is trained on data collections that just include English 
sentences from the statement of a geometry problem and their 
equivalent Abstract Meaning Representation graphs. 

 

Figure 2. Example of the AMR parser 

 

 

Figure 3. AMR parser structure 

B. Preprocessing, Learning, Postprocessing 

The primary system utilizes a preprocessing phase to refers 
several from the attributes of the Abstract Meaning 
Representation area and create various input models parsed. 
Similar attributes are presented by Named Entities, Date 
Entities, quantities, or have-org-roles. The preprocessing phase 
rental consists in simplification of the learning models with the 
purpose for the learning method [11] to be qualified to 
generalize in the best possible way. The learning method 
underlying on the Stack Long Short-Term Memory 
architecture, as depicted in [12], and it constitutes the start 
system's solution, to the tough assignment of transition-based 
dependency parsing. It utilizes three distinct LSTMs: one for 
the buffer, which keeps the tokens of the sentence; one to the 
stack, which includes the AMR nodes; and one for the anterior 
foreshadowed activities [13]. The postprocessing phase 
signifies, in a large mode, the opposite of the preprocessing 
phase, which supplants Named Entities, Date Entities, 
quantities, have-org-roles, and is constituted from two 
important activities: subtree reattachment and AMR graph 
build from the foreshadowed sequence of actions. Furthermore, 
this restriction is emphasized by the incidence of sentences 
which include coreferences from our data collections: each data 
collection comprises approximately 50% of data which 
includes coreferences [14]. Precise coreferences [15] are 
referring entities which are contain in the sentence. The 
precedent selected situations all had clear co-references, from 
all terms, which referenced a concrete entity, presented in the 
sentence, and were not deducted. 

III. DESIGN AND IMPLEMENTATION 

The ascensive data-processing application comprised the 
next modules: data extraction, preprocessing, action sequence 
generation, training, postprocessing and evaluation. Data 
extraction analyzes the input files and takes out the pairs 
compound from sentence and gold regular AMR graph. The 
utilized data collections contain files where are data which are 
split into training, testing and development. They include AMR 
graphs, their equivalent sentences, and some information such 
as alignment, record id and annotator [16]. Fully, there are nine 
collections of data and they were extracted from different 
sources, such as forums, journals, and geometry books. 
Compound, they include 18946 items, which are divided 
amongst the training collection (16104), test collection (1515) 
and development (1327).  

The chosen programming language to develop this system 
is Python. The main reasons why Python was chosen are 
accessibility, and scientific and numeric computing. Python is 
one of the most widely used programming languages for data 
science and data statistics. Another tool used was spaCy, an 
open-source library for Natural Language Processing (NLP), 
written in Python and Cython. It was built to aid in the 
construction of information extraction or Natural language 
Understanding systems, or to preprocess text for machine 
learning and deep learning. NeuralCoref [17] is a neural 
network pattern for annotating and solving coreference groups 
and represent an extent for spaCy. It is production-ready and 
can be enlarged to novel training data collections. NeuralCoref 
is an adjustment of a mention-pair pattern. 



 

 

IV. TESTING AND VALIDATION 

A. Evaluation 

The assessment of the system is accomplished on the 
ensued AMR graphs from the input attempt models. They are 
resembled towards the Gold regular AMR graphs and a 
likeness grade is achieved by this procedure. Inasmuch as the 
AMR area is established on semantic parsing, this implies that 
exist more AMR graphs which are correlate with a selected 
sentence. Whereas the interpretations of the AMR graphs are 
alike, their compositions are, in some extent, various by one to 
another. Because there is no one exclusive text-to-AMR 
conversion, the assessment side is sooner complicated. The 
metric used by the Natural Language Processing collectivity is 
one which estimates the degree of semantic overlap [17]. The 
conclusive grade of the system is calculated as an f1 grade over 
the entities, starting by the foreshadowed collection, which 
fitted their equivalent gold regular AMR graphs [18].  

The f-measure is calculated just once, at the final, 
afterwards every fit elements and unfit elements were appended 
simultaneously. The f1 grade is calculated at a great level with 
the purpose not to distinguish amongst the measures of the 
AMR graph. Besides from the smatch and f1 grade, it was 
likewise computed the accuracy of the system as an assessment 
metric. The accuracy is calculated on the foreshadowed 
activities reported to the gold regular actions foreshadowed by 
the Action Sequence Generation pattern. This metric likewise 
has an analogous deficiency because manifold AMRs can be 
correlate with an especial sentence. There are distinguished 
arrangements of the activities which could build the identical 
AMR graph. Therefore, for assessment, it was utilized the 
further metrics: accuracy and smatch f-grade. For computing 
the smatch f-grade were utilized the further three 
characteristics, foreshadowed by the system starting by the test 
items: M - the complete number of (parent, relation, child) trios 
that fitted into the gold regular side of the AMR, T - the 
complete number of (parent, relation, child) trios foreshadowed 
through the system and G – the complete number of (parent, 
relation, child) trios through the gold regular AMR. The 
accuracy symbolizes the fragment of right activity sequence 
predictions build from the system towards the gold regular one. 
If every foreshadowed activity sequence fit in the gold regular 
activity sequences, the accuracy is 1.0, else, if none of the 
foreshadowed activity sequences fit the gold regular one, the 
accuracy is 0. 

B. Results and Comparison with Primary System 

The purpose of this work was to increase the available 
implementation of the parser. In this scope, it was attempted to 
manipulate the principal restriction of the existing solution, the 
reality that the existing system could not operate using 
coreferences. The collection that the pattern was trained on 
includes umpteen coreferences and, thanks to this fact, and its 
other restrictions, the existing system could embrace benefit of 
just 23.85% of the used information. The boarding utilized was 
to manipulate coreferences in the preprocessing stage, which 
would ensue in felling the parser with much divers training 
items. Thereby, if the parser could be trained on much diverse 
situations, afterwards, the pattern would be capable to 

generalize in a superior way and meliorate its capability to 
foreshadow action sequences. The principal argument 
wherefore the existing system could parse not many items was 
since in the collection occur many coreferences. By utilizing 
the NeuralCoref instrument in this solution, it was identified a 
fine proportion of the available precise coreferences, attendant 
in the collection. For every sentence in which precise 
coreferences were identified, it was enforced to the AMR graph 
to tree conversion method. The outcomes of this process can be 
viewed in Table 1. Besides the 4588 sentences in which we 
established coreferences and enforced the AMR conversion 
method, the Action Sequence Generation pattern was capable 
to calculate action sequences for 630 of them, thus, we 
generated 630 novel parsable items to supply the system. Since 
the 4588 sentences with their equivalent AMR graphs, 2219 
from them were throwed in the preprocessing phase from a 
certain of the four patterns of the existing solution: nominated 
entity substitute, data entity substitute or sizes substitute. 
Accordingly, to the existing 4809 parsable items on which the 
existing system was entrained, were appended another 630 
items, which signified a 13.3% expand in the input 
information. To calculate the ending outcomes, it was 
beginning at the existing design of the system and learned it 
manifold variants by modifying the value of epochs. 

The activity sequence size and the word encapsulated scales 
stand the same from 25 sequence size and from 200 word size. 
Because the learning side uses so much time consuming, the 
system was just instructed for next three epoch types: 15, 20 
and 25 epochs. In the Table 2 it can notice the outcomes of the 
system less the coreference manipulation. Established in 
advance, the metrics utilized to assess the system are smatch f-
grade and the accuracy. Resembling the primer outcomes with 
that which have incorporated the coreference manipulating, it 
can observe that there is nearly a 5% growing in the smatch f-
grade and a 4% growing for the accuracy. It is simple to notice 
that these ameliorations are firmly bound to the 630 novel 
training examples generated by the coreference manipulation 
solution.  

TABLE I.  OUTCOMES STATISTICS FOR AMR COREFERENCE   

Models Corefe-

rences  

Identified 

corefe-

rences 

Prepro-

cessing 

models 

throwed 

Primary 

parsable 

models  

Novel 

parsable 

models 

926 540 178 153 179 19 

1327 886 505 142 202 32 

214 78 29 10 84 7 

7281 3352 1150 1017 2057 229 

689 111 45 11 394 28 

6894 3163 2273 714 1445 259 

204 140 76 31 22 8 

866 484 253 79 216 30 

345 86 48 39 156 11 

18946 8930 4588 2219 4809 630 



 

 

TABLE II.  TRAINING OUTCOMES FOR 15, 20 AND 25 EPOCHS 

Type Epochs  Sequen-

ce size 

Embe-

dding 

size 

Smatch 

f-grade 
Accu-

racy 

Without 

coreference 15 25 200 38.97 88.99 

With 

coreference 15 25 200 42.87 92.64 

Without 

coreference 20 25 200 39.78 89.76 

With 

coreference 20 25 200 44.36 93.07 

Without 

coreference 25 25 200 40.02 90.02 

With 

coreference 25 25 200 44.97 93.67 

 

 Like a remark, the significant distinction among the 
accuracy and the smatch f-grade it is a consequence of the 
situation that the mean value for sequence size is 10, thereby, 
for the network is more convenient to learn from the ultimate 
side of the action, conversely of learning the complicacy of the 
sequences of the parsing stages. In this way just grows the 
accuracy and hold no effect on smatch, because the smatch just 
handles by AMR graphs. 

V. CONCLUSIONS 

In this paper it was tried to improve the main limitation of 
the primary system by coreferences manipulation. This goal 
has been achieved in the preprocessing and postprocessing 
stages of the system pipeline since replacing the parser would 
have implicated beginning a whole novel project from scheme, 
and not ameliorating the being one. The contribution for 
ameliorating the system to manipulate coreferences can be 
divided in two major stages. The first stage has the purpose to 
discover an algorithm for detection of explicit coreferences in 
the input sentences. For this purpose, it was used a tool named 
NeuralCoref, which utilizes a mention pair pattern and two 
neural networks for approximating grades. Starting from these, 
two tokens are reported as being coreferent or not. It has 
identified approximately 50% of the available coreferences 
from the collections. It deserves emphasized the situation that it 
was identified just portion of the explicit coreferences existent 
in a data collection which included both implicit and explicit 
coreferences.  

The succeeding stage was to encapsulate into the AMR 
parser the reveals from the above stage. In this scope, it was 
designed a method which would convert an AMR graph within 
an AMR tree, whensoever precise coreferences were establish 
in the input sentence. Through this embedding, it was 
succeeded to engender 630 novel training models to the 4588 
being ones, as can be seen in Table 1. This 13.73% growing in 
entrainment models aided the system to generalize in a better 
percentage and ensued in a 5% growth of the universal smatch 
f-grade and accuracy resembled to the primary system 
outcomes as viewed in Table 2. 
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