

DOI reference number: 10.18293/SEKE2021-168

Automatic Comprehension of Geometry Problems

using AMR Parser

Anca-Elena Iordan

Department of Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

anca.iordan@cs.utcluj.ro

Abstract—Automatic comprehension of geometry problems

described in natural language is a crucial and challenging stage

of numerous automatic geometry problem solvers. These systems

should comprehend the existing information in natural language

geometry problems with the purpose to extract the geometric

relationships between elements and to accomplish automatic

solutions using intelligent methods. Abstract Meaning

Representation is a popular framework for annotating whole

sentence meaning. This paper proposes the addition of a new

feature to an existing transition-based AMR parser that

constructs AMR graphs from statement of geometry problems

described in English language. The new feature consists in

explicit embedding of the coreference detection into the parser.

Integrating the automatic comprehension method with different

geometry systems will greatly enhance the efficiency and

intelligence in automatic solving. This approach shows

improvements over the best previously published systems for

extract information from statement of geometry problems

described in English language.

Keywords - Geometry Problems; Python; Natural Language

Processing; AMR Parser

I. INTRODUCTION

The Abstract Meaning Representation (abbreviated AMR)
[1] is a semantic representation of natural language text, which
attempts to catch the connotation of a sentence into a structured
AMR graph. The AMR domain retains who accomplishes what
to whom in a sentence, and because to this argument, the
collected information is kept in a rooted, directed, acyclic
graph, appointed the AMR graph [2]. AMR graphs have tags
on edges, which are acknowledged as relations, and the leaves
of an AMR graph are watched as notions. AMR cannot depict
coreferences which cross sentence limits and, likewise, it
cannot discern amongst hypothetical or real events. The
available mention-pair systems whichever identify coreferences
[3] do not analyze entity-level information when establishing if
a couple of mentions are referent or not. Therefore, beginning
from this ascertainment it was suggest an entity-centric
coreference resolution system, which composes coreference
chains step by step. This system fits in the pattern stowing type
as it engages a pipeline related architecture, where one stage
has the grouped mention-pair patterns, which forebodes some
rates, and the next stage holds the entity-centric pattern which
utilizes previously engendered rates.

A. Coreference Resolution with Neural Networks

In the paper [4] the authors introduce a coreference
resolution system using a neural network [5], whichever is
capable to create distributed appearances of pairs of
coreference groups. The appearances are used for the system to
train when to merge groups. The system trains when to take
alike decisions with the support of a simple first group-ranking
procedure. This procedure classifies, in a downward sequence,
the rates obtained from the group-ranking pattern with a design
to own the highest rate entrant coreference links chiefly, and
afterwards selects the ones with the highest rate. The group-
ranking system is composed by a single neural network, whose
architecture (Fig. 1) has the subsequent subcomponents:
mention-ranking pattern, mention-pair encoder, group-pair
encoder, and group-ranking pattern.

II. THEORETICAL FOUNDATION AND ANALYSIS OF THE

EXISTING SYSTEMS

A. Related Work

Viewed as a closed ensemble, the primary system can be
considered as just an application which, plighted as input an
English sentence from the statement of a geometry problem
[6], releases as output an Abstract Meaning Representation
graph (Fig. 2). The available solution can establish only in
some measure the wanted output, signifying it can just build an
AMR tree (AMR graph without coreferences) for the chosen
sentence. Nevertheless, it is not still possible to mark the AMR
nodes and relations with labels. Notwithstanding this model
can emerge to be rather humdrum in the situation when
considered the optimum solutions have under 70.0 out of 100.0
smatch f-scores from a simplistic view [7]. This implies that
the AMR area also affords a large possibility for investigation
and development.

Figure 1. Neural network coreference resolution arhitecture

Analyzing in profoundness, the primer solution is a
transition-based parsing system, whichever enforces a set of
transitions to the input sentence with a design to afford its
equivalent AMR graph. The transitions appertain to every of
the primary states of the system, beginning from the primary
state till the final one, are trained with a Stack Long Short-
Term Memory neural network [8]. Thereby, utilizing the
trained model engendered from the LSTM neural network, the
sequence of transitions can be automatically foreshadow
starting from a selected geometry sentence. AMR graph [2] is a
rooted, directed, acyclic graph, G = (Vx, A), whose edges and
leaves are marked. The starting solution transition system
includes the fundamental items of an arc-standard parser [9]: a
stack (S), a buffer (B) and a group of activities, whichever are
applique to the items of the stack and buffer with the purpose to
shift by one parser shape to another. A remarkable script
involves that the ending state has a blank buffer, a stack
holding just one node, which is the root of the AMR graph, and
the collection of applique activities on each transition [10]. The
parser is trained on data collections that just include English
sentences from the statement of a geometry problem and their
equivalent Abstract Meaning Representation graphs.

Figure 2. Example of the AMR parser

Figure 3. AMR parser structure

B. Preprocessing, Learning, Postprocessing

The primary system utilizes a preprocessing phase to refers
several from the attributes of the Abstract Meaning
Representation area and create various input models parsed.
Similar attributes are presented by Named Entities, Date
Entities, quantities, or have-org-roles. The preprocessing phase
rental consists in simplification of the learning models with the
purpose for the learning method [11] to be qualified to
generalize in the best possible way. The learning method
underlying on the Stack Long Short-Term Memory
architecture, as depicted in [12], and it constitutes the start
system's solution, to the tough assignment of transition-based
dependency parsing. It utilizes three distinct LSTMs: one for
the buffer, which keeps the tokens of the sentence; one to the
stack, which includes the AMR nodes; and one for the anterior
foreshadowed activities [13]. The postprocessing phase
signifies, in a large mode, the opposite of the preprocessing
phase, which supplants Named Entities, Date Entities,
quantities, have-org-roles, and is constituted from two
important activities: subtree reattachment and AMR graph
build from the foreshadowed sequence of actions. Furthermore,
this restriction is emphasized by the incidence of sentences
which include coreferences from our data collections: each data
collection comprises approximately 50% of data which
includes coreferences [14]. Precise coreferences [15] are
referring entities which are contain in the sentence. The
precedent selected situations all had clear co-references, from
all terms, which referenced a concrete entity, presented in the
sentence, and were not deducted.

III. DESIGN AND IMPLEMENTATION

The ascensive data-processing application comprised the
next modules: data extraction, preprocessing, action sequence
generation, training, postprocessing and evaluation. Data
extraction analyzes the input files and takes out the pairs
compound from sentence and gold regular AMR graph. The
utilized data collections contain files where are data which are
split into training, testing and development. They include AMR
graphs, their equivalent sentences, and some information such
as alignment, record id and annotator [16]. Fully, there are nine
collections of data and they were extracted from different
sources, such as forums, journals, and geometry books.
Compound, they include 18946 items, which are divided
amongst the training collection (16104), test collection (1515)
and development (1327).

The chosen programming language to develop this system
is Python. The main reasons why Python was chosen are
accessibility, and scientific and numeric computing. Python is
one of the most widely used programming languages for data
science and data statistics. Another tool used was spaCy, an
open-source library for Natural Language Processing (NLP),
written in Python and Cython. It was built to aid in the
construction of information extraction or Natural language
Understanding systems, or to preprocess text for machine
learning and deep learning. NeuralCoref [17] is a neural
network pattern for annotating and solving coreference groups
and represent an extent for spaCy. It is production-ready and
can be enlarged to novel training data collections. NeuralCoref
is an adjustment of a mention-pair pattern.

IV. TESTING AND VALIDATION

A. Evaluation

The assessment of the system is accomplished on the
ensued AMR graphs from the input attempt models. They are
resembled towards the Gold regular AMR graphs and a
likeness grade is achieved by this procedure. Inasmuch as the
AMR area is established on semantic parsing, this implies that
exist more AMR graphs which are correlate with a selected
sentence. Whereas the interpretations of the AMR graphs are
alike, their compositions are, in some extent, various by one to
another. Because there is no one exclusive text-to-AMR
conversion, the assessment side is sooner complicated. The
metric used by the Natural Language Processing collectivity is
one which estimates the degree of semantic overlap [17]. The
conclusive grade of the system is calculated as an f1 grade over
the entities, starting by the foreshadowed collection, which
fitted their equivalent gold regular AMR graphs [18].

The f-measure is calculated just once, at the final,
afterwards every fit elements and unfit elements were appended
simultaneously. The f1 grade is calculated at a great level with
the purpose not to distinguish amongst the measures of the
AMR graph. Besides from the smatch and f1 grade, it was
likewise computed the accuracy of the system as an assessment
metric. The accuracy is calculated on the foreshadowed
activities reported to the gold regular actions foreshadowed by
the Action Sequence Generation pattern. This metric likewise
has an analogous deficiency because manifold AMRs can be
correlate with an especial sentence. There are distinguished
arrangements of the activities which could build the identical
AMR graph. Therefore, for assessment, it was utilized the
further metrics: accuracy and smatch f-grade. For computing
the smatch f-grade were utilized the further three
characteristics, foreshadowed by the system starting by the test
items: M - the complete number of (parent, relation, child) trios
that fitted into the gold regular side of the AMR, T - the
complete number of (parent, relation, child) trios foreshadowed
through the system and G – the complete number of (parent,
relation, child) trios through the gold regular AMR. The
accuracy symbolizes the fragment of right activity sequence
predictions build from the system towards the gold regular one.
If every foreshadowed activity sequence fit in the gold regular
activity sequences, the accuracy is 1.0, else, if none of the
foreshadowed activity sequences fit the gold regular one, the
accuracy is 0.

B. Results and Comparison with Primary System

The purpose of this work was to increase the available
implementation of the parser. In this scope, it was attempted to
manipulate the principal restriction of the existing solution, the
reality that the existing system could not operate using
coreferences. The collection that the pattern was trained on
includes umpteen coreferences and, thanks to this fact, and its
other restrictions, the existing system could embrace benefit of
just 23.85% of the used information. The boarding utilized was
to manipulate coreferences in the preprocessing stage, which
would ensue in felling the parser with much divers training
items. Thereby, if the parser could be trained on much diverse
situations, afterwards, the pattern would be capable to

generalize in a superior way and meliorate its capability to
foreshadow action sequences. The principal argument
wherefore the existing system could parse not many items was
since in the collection occur many coreferences. By utilizing
the NeuralCoref instrument in this solution, it was identified a
fine proportion of the available precise coreferences, attendant
in the collection. For every sentence in which precise
coreferences were identified, it was enforced to the AMR graph
to tree conversion method. The outcomes of this process can be
viewed in Table 1. Besides the 4588 sentences in which we
established coreferences and enforced the AMR conversion
method, the Action Sequence Generation pattern was capable
to calculate action sequences for 630 of them, thus, we
generated 630 novel parsable items to supply the system. Since
the 4588 sentences with their equivalent AMR graphs, 2219
from them were throwed in the preprocessing phase from a
certain of the four patterns of the existing solution: nominated
entity substitute, data entity substitute or sizes substitute.
Accordingly, to the existing 4809 parsable items on which the
existing system was entrained, were appended another 630
items, which signified a 13.3% expand in the input
information. To calculate the ending outcomes, it was
beginning at the existing design of the system and learned it
manifold variants by modifying the value of epochs.

The activity sequence size and the word encapsulated scales
stand the same from 25 sequence size and from 200 word size.
Because the learning side uses so much time consuming, the
system was just instructed for next three epoch types: 15, 20
and 25 epochs. In the Table 2 it can notice the outcomes of the
system less the coreference manipulation. Established in
advance, the metrics utilized to assess the system are smatch f-
grade and the accuracy. Resembling the primer outcomes with
that which have incorporated the coreference manipulating, it
can observe that there is nearly a 5% growing in the smatch f-
grade and a 4% growing for the accuracy. It is simple to notice
that these ameliorations are firmly bound to the 630 novel
training examples generated by the coreference manipulation
solution.

TABLE I. OUTCOMES STATISTICS FOR AMR COREFERENCE

Models Corefe-

rences

Identified

corefe-

rences

Prepro-

cessing

models

throwed

Primary

parsable

models

Novel

parsable

models

926 540 178 153 179 19

1327 886 505 142 202 32

214 78 29 10 84 7

7281 3352 1150 1017 2057 229

689 111 45 11 394 28

6894 3163 2273 714 1445 259

204 140 76 31 22 8

866 484 253 79 216 30

345 86 48 39 156 11

18946 8930 4588 2219 4809 630

TABLE II. TRAINING OUTCOMES FOR 15, 20 AND 25 EPOCHS

Type Epochs Sequen-

ce size

Embe-

dding

size

Smatch

f-grade
Accu-

racy

Without

coreference 15 25 200 38.97 88.99

With

coreference 15 25 200 42.87 92.64

Without

coreference 20 25 200 39.78 89.76

With

coreference 20 25 200 44.36 93.07

Without

coreference 25 25 200 40.02 90.02

With

coreference 25 25 200 44.97 93.67

 Like a remark, the significant distinction among the
accuracy and the smatch f-grade it is a consequence of the
situation that the mean value for sequence size is 10, thereby,
for the network is more convenient to learn from the ultimate
side of the action, conversely of learning the complicacy of the
sequences of the parsing stages. In this way just grows the
accuracy and hold no effect on smatch, because the smatch just
handles by AMR graphs.

V. CONCLUSIONS

In this paper it was tried to improve the main limitation of
the primary system by coreferences manipulation. This goal
has been achieved in the preprocessing and postprocessing
stages of the system pipeline since replacing the parser would
have implicated beginning a whole novel project from scheme,
and not ameliorating the being one. The contribution for
ameliorating the system to manipulate coreferences can be
divided in two major stages. The first stage has the purpose to
discover an algorithm for detection of explicit coreferences in
the input sentences. For this purpose, it was used a tool named
NeuralCoref, which utilizes a mention pair pattern and two
neural networks for approximating grades. Starting from these,
two tokens are reported as being coreferent or not. It has
identified approximately 50% of the available coreferences
from the collections. It deserves emphasized the situation that it
was identified just portion of the explicit coreferences existent
in a data collection which included both implicit and explicit
coreferences.

The succeeding stage was to encapsulate into the AMR
parser the reveals from the above stage. In this scope, it was
designed a method which would convert an AMR graph within
an AMR tree, whensoever precise coreferences were establish
in the input sentence. Through this embedding, it was
succeeded to engender 630 novel training models to the 4588
being ones, as can be seen in Table 1. This 13.73% growing in
entrainment models aided the system to generalize in a better
percentage and ensued in a 5% growth of the universal smatch
f-grade and accuracy resembled to the primary system
outcomes as viewed in Table 2.

REFERENCES

[1] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, U. Hermjakob, and N.

Schneider, “Abstract meaning representation for sembanking”, 7th
Linguistic Annotation Workshop and Interoperability with Discourse,
pp.178-186, 2013.

[2] C. Lyu and I. Titov, “AMR parsing as graph prediction with latent
alignment”, 56th Annual Meeting of the Association for Computational
Linguistics, 2018.

[3] R. Mishra and T. Gayen, “Automatic Lossless-Summarization of News
Articles with Abstract Meaning Representation”, Procedia Computer
Science, vol. 135, pp. 178-185, 2018.

[4] K. Clark and C.D. Manning, “Improving coreference resolution by
learning entity-level distributed representations”, 54th Annual Meeting
of the Association for Computational Linguistics, pp. 643–653, 2016.

[5] I. Muscalagiu, A. Iordan, D.M. Muscalagiu, and M. Panoiu, “The effect
of synchronization of agents' execution in randomly generated networks
of constraints”, European Computing Conference, pp. 285-290, 2011.

[6] M. Sachan and E. Xing, “Learning to solve geometry problems from
natural language demonstrations in textbooks”, 6th Joint Conference on
Lexical and Computational Semantics, pp. 251–261, 2017.

[7] J. Buys and P. Blunsom, “Neural AMR parsing with pointer-augmented
attention”, 11th International Workshop on Semantic Evaluation, pp.
914–919, 2017.

[8] G.Van Houdt, C. Mosquera, and G. Napoles, “A review on the long
short-term memory model”, Artificial Intelligence Review, vol. 53, pp.
5929–5955, 2020.

[9] Y. Liu, W. Che, B. Zheng, B. Qin, and T. Liu, “An AMR aligner turned
by transition-based parser”, Conference on Empirical Methods in
Natural Language Processing, pp. 2422-2430, 2018.

[10] I. Muscalagiu, H.E. Popa, and V. Negru, “Improving the performaces of
asynchronous search algorithms in scale-free networks using the nogood
processor technique”, Computing and Informatics, vol. 34, pp. 254-274,
2015.

[11] A. Iordan, M. Panoiu, I. Baciu, and C.D. Cuntan, “Design of an
intelligent system for the automatic demonstration of geometry
theorems”, International Conference on Telecommunications and
Informatics, pp. 221-226, 2010.

[12] C. Wei, “Development of Stacked Long Short-Term Memory Neural
Networks with Numerical Solutions for Wind Velocity Predictions”,
Advances in Meteorology, vol. 2020, article number 5462040, 2020.

[13] M. Damonte, S. B. Cohen, and G. Satta, “An incremental parser for
abstract meaning representation”, 15th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 536–546,
2017.

[14] C. Wang and N. Xue, “Boosting transition-based AMR parsing with
refined actions and auxiliary analyzers”, 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pp. 857–862, 2015.

[15] K. Werling, G. Angeli, and C. D. Manning, “Robust subgraph
generation improves abstract meaning representation parsing”, 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing,
pp. 982–991, 2015.

[16] L. Nguyen, V. Pham, H. Minh, D. Dinh, and T. Manh, “Integrating amr
semantic graphs to convolutional neural machine translation“, ICIC
Express Letters, vol. 12, pp. 133-141, 2021.

[17] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural
coreference resolution”, Conference on Empirical Methods in Natural
Language Processing, pp. 188–197, 2017.

[18] N. Stylianou and I. Vlahavas, “A neural Entity Coreference Resolution
review”, Expert Systems with Applications, vol. 168, article number
114466, 2021.

https://www.aclweb.org/anthology/volumes/P16-1/
https://www.aclweb.org/anthology/volumes/P16-1/
https://www.aclweb.org/anthology/people/m/mrinmaya-sachan/
https://www.aclweb.org/anthology/people/e/eric-xing/
https://www.aclweb.org/anthology/S17-1029.pdf
https://www.aclweb.org/anthology/S17-1029.pdf
https://www.aclweb.org/anthology/volumes/S17-1/
https://www.aclweb.org/anthology/volumes/S17-1/
https://link.springer.com/journal/10462
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www.aclweb.org/anthology/volumes/P15-1/
https://www.aclweb.org/anthology/volumes/P15-1/
https://www.aclweb.org/anthology/volumes/P15-1/

