SolDetector: Detect Detfects Based on Knowledge
Graph of Solidity Smart Contract

Tianyuan Hu, Zhenyu Pan, Bixin Li
School of Computer Science and Engineering
Southeast University, Nanjing, China

Abstract—Smart contract security is one of core security issues
in the application of blockchain. In recent years, attacks on
smart contracts occur frequently, there are a lot of researches
concerning on smart contract security issues. However, almost
all solutions proposed in these researches are low precision
and high False Negative Rate(FNR). In this paper, we propose
a defect detection method for checking security of Solidity
smart contract based on knowledge graph. Therefore, we first
construct knowledge graph of smart contracts by fully integrating
syntax and semantic information of Solidity source code; then,
we define defect patterns by analyzing defect characteristics;
furthermore, we define inference rules for defects based on
knowledge graph and defect patterns; finally, we detect defects
by SPARQL query. We also implement a tool named SolDetector
and perform experiment on three different datasets, which shows
that SolDetector is effective and efficient.

Index Terms—smart contract, knowledge graph, defect detec-
tion

I. INTRODUCTION

As a distributed public ledger technology in peer-to-peer
network, blockchain provides an innovative method to store
information, execute transactions, and build trust in an untrust-
ed environment. Even though Blockchain technology provides
many new mechanisms to solve security issues compared to
traditional technologies. However, blockchain security is a
bottleneck affecting its wide use because of the existence
of vulnerabilities in smart contracts, consensus protocols,
infrastructure code, etc.

Ethereum, as a representative of public chain, uses a high-
level programming language called Solidity to write its s-
mart contract. In Ethereum, a smart contract is actually a
collection of codes, including various functions and various
states generated by the code running process. It is compiled to
Ethereum Virtual Machine (EVM) instructions for blockchain
deployment. Once published on Ethereum platform, smart
contracts will be executed on all nodes in the network as
a program, and cannot be modified. If the deployed smart
contract’s code is insecure, software vulnerabilities may be
exploited by malicious attackers. As smart contract code
involves digital assets, it may cause huge losses once the
defects of the contract code are used. Thus, how to ensure
the security of the smart contract is very important.

Over the past few years, the automated analysis tools
for smart contracts have made progress. Mainstream defect

This paper was supported by the National Key Research and Development
Program of China(No.2019YFE0105500).
DOI reference number: 10.18293/SEKE2021-133

detection methods can be divided into static analysis [1]-[3]
and dynamic analysis [4], [5]. Static analysis focuses on syntax
analysis of source code, which is not suitable for complex logic
analysis. For some defects with complex logic, static analysis
has a low precision. Dynamic analysis has a high precision
because it detects real smart contract vulnerabilities during
contract executions. But dynamic analysis fails to achieve
sufficient code coverage, which ignores some syntax errors
and produces false negatives. So there are two open challenges
in detecting smart contract.

How to increase the precision of the contract defect detec-
tion method and keep low false negatives?

How to detect more defect types of smart contract and
extend the method flexibly?

In this paper, we propose a defect detection method for
smart contract in Solidity based on knowledge graph to
improve the precision and find more defects. We summarize
our contributions as follows:

e The knowledge graph of smart contract is constructed,
including the ontology layer and the instance layer.

e A defect detection method is proposed for checking
security of Solidity contract based on knowledge graph,
which realizes defect localization by inference rules and
SPARQL.

e A tool called SolDetector is implemented to fully auto-
mate the analysis of contracts.

o An evaluation is performed to demonstrate the effective-
ness and efficiency of SolDetector over three different
datasets including 24,583 smart contracts.

The rest of the paper is organized as follows. Section II
introduces the background knowledge of smart contract defect
and knowledge graph. Section III discusses the knowledge
graph construction of smart contract. Section IV details defect
detection of smart contract based on knowledge graph. Section
V evaluates SolDetector by experiment. Section VI discusses
related work. Finally, Section VII concludes the paper and
suggests future work.

II. BACKGROUND KNOWLEDGE

A. Smart contract defect

A contract defect is an error, flaw or fault in a smart
contract that causes it to produce an incorrect or unexpected
result, or to behave in unintended ways [6]. Smart contract
defects are mainly caused by coding and may be related to

developers, implementation language, compilers, and execu-
tion mechanism of blockchain system. We collected smart
contract researches and 16 kinds of contract defects with
characteristics are concluded, including Missing Reminding
Execution Results defect, Balance Manipulation defect,Integer
Overflow and Underflow defect, etc.

B. Defect pattern

The defect pattern is an abstract representation for defects
capturing defect characteristics, including core elements, re-
lationships between elements and restrictions on elements. A
reasonable definition of defect pattern implies satisfaction of
the contract defect. For example, a defect pattern of Reentran-
cy defect is defined as below.

1. ReentrancyPattern =

2. 3 containAssignment. Assignmentl]

3. 3 callFunction. FunctionCalln

4. (Assignment, follow, FunctionCall)M

5. (FunctionCall, without, gasLimitation)

In the definition, a pattern is composed of core elements,
relationships and other restrictions. Core elements in Reen-
trancy defect pattern are Assignment(line2) and Function-
Call(line3). The relationship between Assignment(line2) and
FunctionCall is follow(line4). There is also a gasLimitation
on FunctionCall(line5). A core element involved in the defect
pattern can be described as a class in knowledge graph.
Similarly, a relationship can be described as a object property
between two classes, which restricts the logical relationship
between elements. Specific defects not only have logical rela-
tionship restrictions between elements, but also have limitation
on elements themselves(line5).

C. Knowledge graph

Knowledge graph is a technical to describe knowledge and
construct connections between all things in the world using
graph models [7]. It consists of nodes and edges. Nodes
are individuals or abstract concepts. Edges are properties
of individuals or relationships between individuals. Based
on knowledge graph, we can identify, discover and infer
complex relationships between things and concepts from data.
Knowledge inference is the process of inferring unknown facts
or relations based on existing facts or relations in the graph
and applying certain rules to draw logical conclusions. The
knowledge graph of smart contracts represents the basic syntax
and semantic of smart contracts. Furthermore, more complex
unknown facts that can be obtained by inferring.

III. KNOWLEDGE GRAPH CONSTRUCTION OF SMART
CONTRACT

Fig.1 depicts knowledge graph construction process. Knowl-
edge graph is constructed based on the source code of a smart
contract. Combined with Solidity grammar, Abstract Syntax
Tree (AST) is generated to extract information for building
knowledge graph. The knowledge graph of smart contract in-
tegrates two layers: ontology layer describing abstract concepts
and instance layer describing concrete facts.

=

Smart Contract
Source Code

B

Solidity
Grammar

Ontology: Classes and
Object Properties

RIS

Abstract Syntax Tree (AST)
Information] E
Extractor

Fig. 1. Knowledge graph construction process

Instances: Individual and

relationships

Knowledge Graph of Smart
Contract

A. Ontology layer

Ontologies are artifacts used to model and represent knowl-
edge related to a specific domain in an explicit way [8]. A
typical ontology consists of a finite number of terms and
relations between them. Terms are important concepts of the
given domain. The smart contract focused in the paper is
written in Solidity. Therefore, how to model and represent
the Solidity by ontology is illustrated in this section.

The purpose of ontology layer is to represent Solidity in
terms of concepts and relations. In this paper, the ontology
layer describes code elements and corresponding relationship
of Solidity source code. Code elements are modeled as classes
and relationships between code elements are modeled as object
properties.

For example, a Solidity code snippet is shown in Fig.2.
The contract has four main code elements, including a s-
tate variable, a function, a function call and an assignment.
Four main classes can be abstracted from the code snip-
pet, including Contract, Function, StateVar, FunctionCall and
Assignment. Correspondingly, relationships between classes
can be concluded, such as hasStateVar, containAssignment.
Hence, object properties can be abstracted as hasFunction,
containAssignment and hasStateVar.

The illustration of the class and object property for the
code snippetl can only represent part of key elements. Full
knowledge graph definition of smart contract contains 13 types
of classes and 26 types of object properties.

1.contract SimpleWithdraw {

2. mapping (address => uint) public credit;
3. function withdraw(uint amount) public{
4 require(msg.sender.call.value(amount)());
5 credit[msg.sender]-=amount;

6. }
7

Fig. 2. Solidity code snippetl

B. Instance layer

As the definition of classes and object properties in ontology
layer, the next step is to extract required information from
source code to build the instance layer and construct the entire
knowledge graph. In Fig. 1, the information extractor extracts
key facts as individuals and attaches relationships between
individuals based on AST of source code. An abstract syntax
tree parser ANTLR generates AST of smart contract source

code. Information in each AST node can be assessed by visitor.
The tool can be extended to support other smart contract
language by adding an ANTLR grammar. To deal with the
instance extraction for multiple classes or object properties,
the node visitor is defined for each class. A node visitor is
responsible for the individuals generation of one class. Details
of extracting individual and relationship are illustrated below
with the explanation for the code snippetl.

Extracting individual. Class is an abstract concept used to
describe key code elements in smart contract. Each component
in source code can be extracted as an individual belonging to
a class. Given the class Function in the code snippetl, it’s
visitor enumerates all Function and generates an individual of
Function with name “withdraw”.

Extracting relationship. Relationship between individuals
can be extracted according to the object property definition.
Relationship between different individuals can be extracted
during the nested visits by visitor, which is called syntax
relationships in this paper. For instance, when the visitor from
the Contract node to the Function node, hasFunction property
associates Function individual withdraw with it’s declaring
Contract SimpleWithdraw.

In addition, relationships include not only syntax relation-
ship defined in smart contract, but also logical relationship. For
the code snippetl, the logical relationship is currently reflected
in order of execution statement within a function, as reflected
by follow, e.g. (Assignment, follow, FunctionCall) (Line4 and
Line3). Finally, the knowledge graph constructed for the code
snippetl is shown in the Fig. 3. More specific description are
omitted for brevity.

We use OWL as an ontology description language, which
is a rich vocabulary description language that can characterize
relationships between classes, types of properties and charac-
teristics of properties. The proposed method refers to OWL
documents as a knowledge graph. In OWL, line numbers are
stored in the individual name and help to localize defects in
source code.

Instance layer

o
Ontology layer :[

|

i
|

hu~'lndwldual SimpleWithdraw

|
hasSubclass StateVar hasIndividual- credit
hasSubel |

! i

! i

! i

! i

! i
i

i |

i

1 ! |

1 [owl-Thing { Function | withdraw !

i L1

i i

! hasSubclass i callFunction !

| \4 |

! |

i

! |
i

! i

| ' .

i

i

Expression k—has$ require(msg.sender.ca| containAssignment
ILvalue(amount)())

hasSubclass !

Fig. 3. The knowledge graph of the code snippetl

IV. DEFECT DETECTION OF SMART CONTRACT

Based on knowledge graph of smart contract, we conduct
defect detection process as shown in Fig.4. The process
consists of two main steps: knowledge inference and defect
localization.

Defect Detection

Knowledge Inference

SPARQL Query

Defect Localization

ﬂE Defect Patterns
—P\E Defect Report

Knowledge Graph of
Smart Contract

Fig. 4. Defect detection process

A. Knowledge inference

In this step, indirect knowledge is inferred upon the knowl-
edge graph which contains facts extracted from the source
code. The inference process infers the indirect relationships
between code elements from known facts and relationships.
For example, direct logical relationship of two adjacent code
elements represented by “follow” in instance layer. Indirect
logical relationship can be inferred from basic relationships.
The facts can be expressed as triples. By matching triples, the
inference rule for logical relationship can be expressed as:

(?A follow ?B), (1B follow ?7C) = (?A follow ?C)

In the rule, the variables start with a question mark (?) denote
matched subjects or objects of triples [9]. The indirect logical
relationship between A and C can be inferred. Similarly, the
inference rule for judging types of s state variable in and
arithmetic operations can be expressed below, which is critical
for identifying Integer Overflows and Underflow defect.

(?x is Assignment), (?z assignObject ?y),
(?y typeName ?type), (Ttype like "wint’)

Inference rules are applied to capture complex relationships
and abstract elements satisfying the definition of the defect
pattern. Even basic fact from AST are not sufficient, complex
relationships and code details critical to defect detection can
be drawn by inference rules. An example that recognizes
Reentrancy defect by inferring is explained below. In Fig.5,
the inference rule of Reentrancy defect is shown. In contract
SimpleReentrancy, Functionyihdraw calls a function (1) re-
alizing transferring by “call” and contains an assignment (3)
subtracting the transferring amount from credit[msg.sender].
According to Reentrancy defect pattern, the contract contains
main code elements of Assignment and FunctionCall. Besides,
FunctionCallequire realizes transferring by “call”, which has
no gas limitation (2). Combined with the logical relationships
inference rule, it is inferred that Assignment, egitfmsg.sender] f01-
lows FunctionCallyequire (4). Therefore, FunctionCallyequire
and Assignment regitimsg.sender] May lead a malicious contract
calls back into the contract before the first invocation of the
function is finished. Because SimpleReentrancy contains all
code elements in Reentrancy defect and meet other restrictions,
the contract has Reentrancy defect.

In this section, only one example is given. For other contract
defects, inference rules are customized according to defect

contract SimpleReentrancy {
mapping (address => uint) public credit;
uint withdrawNum=0;

T function withdraw(uint amount) public{ -y
‘) 2

- require(msg.sender..Value(amount)());
3

1
s
1
J

(6]

(1) Functionyigmaraw contains a FunctionCall,equir. that
“require(msg.sender.call.value(amount)())” .

(2) FunctionCall,qir. calls external function “call” without gas limit.
(3) Function,igraw coNtains an Assignmenteredigmse sender] that
“creditfmsg.sender]-—=amount” .

(4) Assignment. eigmse sender| follows FunctionCallyequire.

(5) FunctionCallyequire and Assignmentyegigmse sender) 1€2d to reentrancy defect.

Fig. 5. Inference of Reentrancy defect

characteristics. Furthermore, inference rules are universal for
smart contract in different program language.

B. Defect localization

The inference rules use SPARQL language to query and
manipulate the knowledge graph data. Based on all available
definition in ontology layer and instance layer, the SPARQL
of a defect is able to utilize main elements and restrictions.
From the perspective of defect matching, SPARQL enables
flexible search strategies based on knowledge expressed in
higher levels. Based on triple matching, SPARQL query is
conducted on knowledge graph. Successful triple matching
will return an individual name, which shows a defect is found;
otherwise, no defect is found. Due to the line number is stored
in each individual name, there are following two cases of
successful SPARQL query.

(1) Casel: A defect pattern is satisfied (e.g., Integer Over-
flow and Underflow defect) and an individual name containing
specific location is returned, which indicates the defective
statement.

(2) Case2: A defect pattern is satisfied (e.g., Frozen Ether
defect) and the contract individual name is returned. Thus, the
contract has this defect and cannot be localized to specific line.

For example, one challenge in identifying Integer Overflows
and Underflow defect is judging the type of an operation
variable in an assignment. We illustrate the SPARQL query
of Integer Overflow and Underflow defect as shown in Fig.6.

SPARQL simplifies the access to knowledge graph data to
with strong expressiveness and speed optimization. Further-
more, it provides a unified interface for the management of
knowledge graph data. Compared to hard-coded algorithms,
SPARQL supports flexible defect detection strategies. SPAR-
QL can be added based on available vocabularies according
to the inference rule for new contract defect.

query.png

SELECT ?subject

1

2 WHERE {

3. {?subject a sol:Assignment.

4 ?subject sol:assignObject ?object; sol:assignValue ?value.

5 FILTER (regex(?value,"\\+\-\\¥\V|\"")& ®ex(?object, "\['))

6. ?stateVar a sol:StateVar; sol:namels ?stateVarName;sol:typeName ?typeName.
7. 2object sol:elementTypeName2 ?mappingType2.

8. FILTER (regex(str(?mappingType2), "int")

10.| &®ex(?typeName, "mapping")

11.] &®ex(?object, ?stateVarName))}

4. }

Fig. 6. SPARQL query of Integer Overflow and Underflow defect

V. EVALUATION

To put the proposed method into practice, we have im-
plemented SolDetector based on Jena. It integrates the Antlr
generating AST and information extractor building knowledge
graph for smart contract dynamically. The defect inference
rules are executed by SPARQL query engine on OWL files.

We use three datasets to evaluate SolDetector. Datasetl
consists of 179 smart contracts selected from test datasets of
three popular analysis tools [1], [2], [10] and has been attacked
in a real-world, totaling 31,904 lines of the code. Dataset2
consists of 15,623 smart contracts crawled from Etherscan in
2018, totaling 4,197,965 lines of the code. Dataset3 consists
of 8,781 smart contracts crawled from Etherscan in 2020,
totaling 5,215,734 lines of the code. There is no restriction
on Solidity contract versions and contracts’ lines. It is useful
to estimate the efficiency of SolDetector for massive contracts
with different Solidity version.

A. Effectiveness of SolDetector

To evaluate the effectiveness of defect detection, we run
SolDetector on three datasets and use measurements listed
below. 1) TP indicates the number of vulnerable contracts
detected by the tool correctly. 2) FP indicates the number of
vulnerable contracts detected by the tool incorrectly. 3) TN
indicates the number of contracts without defects detected by
the tool correctly. 4) FN indicates the number of contracts free
of defect detected by the tool incorrectly. Precision, Recall,
FDR and FNR can be calculated as: Precision = TP/(TP+
FP) x 100%, Recall = TP/(TP + FN) x 100%, FDR =
FP/(TP+FP)x100%, FNR= FN/(TP+FN) x100%.

Dataset] contains famous vulnerable contracts with distinct
defect characteristics, While Dataset2 and Dataset3 consist of
contracts randomly crawled. In order to simplify the evalua-
tion, the careful analysis is mainly aimed at Datasetl and 10%
contracts of Dataset2 and Dataset3 were randomly selected to
calculate TP, TN, FP, FN. Evaluation of SolDetector is shown
in Table I.

For Datasetl, SolDetector successfully detected 125 real
vulnerable contracts. Meanwhile, it mistakes 4 safe contracts
as vulnerable. The number of vulnerable contracts omitted
by SolDetector is 12. We manually analyze 12 vulnerable
contracts omitted by the tool. There are 7 contracts containing
Reentrancy, 2 contracts containing Balance Manipulation, 1

TABLE I
EVALUATION OF SOLDETECTOR ON THREE DATASETS

Dataset Selected contract number | Vulnerable contract number TP TN | FP | FN | Precision Recall FDR FNR
Dataset1 179 137 125 38 4 12 96.90% 91.24% 3.10% 8.76%
Dataset2 1562 1285 1275 5 272 10 82.42% 99.22% | 17.58% | 0.78%
Dataset3 878 658 655 11 209 3 75.81% 99.54% | 24.19% | 0.46%

contract containing Unprotected Suicide, 1 contract containing
Useless Code, and 1 contract containing Erroneous Construc-
tor Name. The FNR of Reentrancy defect is the highest, which
is mainly resulted from the diverse code forms of Reentrancy
defect. Although we have abstracted the inference rule for
Reentrancy defect, the defect is manifested in various forms of
code. Thus, only one SPARQL query is not enough. We can fix
this problem by adding new inference rules for various forms
of Reentrancy defect according to each different defective
contract code. Similarly, the inference rules of Useless Code
defect are diverse. We just abstract one situation that the
assignment containing the useless operation “==", missing
unused variables and other forms. More inference rules need
to be enriched. Two contracts containing Balance Manipula-
tion defect are not detected. The main reason is that some
expressions do not conform to the conventional code form of
this defect, such as “If(O!=this.balance)”. In general, most of
the false negative can be solved by expanding the inference
rules and the SPARQL query.

For Dataset2 and Dataset3, the high Recall is mainly due
to the fact that randomly crawled contracts may have no
transaction and Ether and contain a large number of duplicate
codes. Moreover, a contract may contain multiple defects.
Only if all defects within a contract are detected, the detection
is considered successful, which leads to the low Precision.

B. Efficiency of SolDetector

To evaluate the efficiency of SolDetector, we recorded time
consumed for the experiment on three datasets. As shown
in Table II, the time cost of SolDetector is mostly for the
construction of the knowledge graph and the defect location.
It is dependent on the size of the contract code and the
defect number. It took on average 0.15s, 0.17s and 0.23s
to check a single smart contract by using SolDetector on
Dataset1, Dataset2 and Dataset3 respectively. For knowledge
graph construction, analyzing each smart contract only cost
0.04s, 0.04s and 0.05s respectively. For 16 kinds of defects
detection, defecting each smart contract cost 0.11s, 0.13s and
0.18s respectively. Because the average lines of smart contract
in Dataset3 is larger than that in Dataset2, so the average time
of construction and detection for Dataset3 is larger.

C. Comparison experiment

We conduct comparison with SmartCheck (SC) to demon-
strate the advantages and disadvantages of SolDetector (SD).
SmartCheck is an extensive static analysis tool working on
Solidity source code. The empirical research [11] shows that
SmartCheck tool is statistically more effective than Securify

[10], Oyente [12] and Mythril [5]. Hence, we compare Sol-
Detector with SmartCheck. We do not consider tools based on
dynamic analysis, such as ContractFuzzer.

Since it is too expensive to run SmartCheck on all 20k+
contracts, we only run it on the Dataset]l that is manually
annotated with defects. For a fair comparison, we focus
our evaluation exclusively on 8 kinds of defects that can
be detected by both tools, including Missing Reminding
Execution Results(D1), DelegateCall(D2), Frozen Ether(D3),
Missing Return Statement(D4), Dependency of Timestam-
p(D5), Unchecked Send(D6), Balance Manipulation(D7), Tx-
Origin(D8). The comparison of detection result is shown in
Fig.7.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

SD SC SD SC SD SD SC SD SC SD SC SD SC SD sC
D1 D2 D3 D4 D5 D6 D7 D8
uRecall =FNR

Fig. 7. Comparison of detection result between SD and SC

The following result can be drawn: 1) for seven defects,
Recall of SolDetector is greater than or equal to SmartCheck.
2) for eight defects, FNR of SolDetector is less than or equal
to SmartCheck.3) for only one defect (D7), SolDetector has a
lower Recall of 81.82%. In general, SolDetector has a higher
Recall and lower FNR, which shows the advantage of our
method in detecting defects.

Furthermore, we also compare SolDetector with other tools
to demonstrate it’s efficiency. Tool’s efficiency is related to
the defect number that can be detected and the contract
size. Efficiency information are collected from corresponding
papers. SolDetector can detect more defects than Securify [10]
and SmartShield [13]. Moreover, Securify and SmartShield
cost 30s and 28s per contract, which shows that both of them
are inefficient. SmartCheck is suitable for more defects and
lager contract, whose average time is 1.66s per contract that
is longer than SolDetector’s average time. Thus, SolDetector
is the fastest tool, followed by SmartCheck, Securify and
SmartShield.

TABLE II
TIME CONSUMPTION OF SOLDETECTOR

Dataset1 Dataset2 Dataset3
Contract number 179 15623 8781
Average lines 178 lines per contract | 268 lines per contract | 594 lines per contract
Construction time 7s 571s 466s
Average construction time 0.04s per contract 0.04s per contract 0.05s per contract
Detection time 19s 2035s 1507s
Average detection time 0.11s per contract 0.13s per contract 0.18s per contract

VI. RELATED WORK

As a distributed public ledger technology in peer-to-peer
networks, blockchain is increasingly used in various fields.
However, there are still security issues in smart contracts,
which affects further promotion of blockchain technology.
It is necessary to fully analyze potential security threats to
avoid defects as much as possible. At present, the existing
smart contract defect detection methods focus on symbolic
execution, model checking, fuzzy testing and other methods.

Oyente [12] is the first tool to detect security problems of
Ethereum smart contract. It builds control flow graph from
bytecode to check whether there is any vulnerable pattern
in the contract. By analyzing dependency diagram of the
contract, Securify [10] deduces exact semantic information
from the code. It combines compliance patterns and violation
patterns constructed by semantic facts to localize contract de-
fects. ZEUS [3] combines abstract interpretation and symbolic
execution to model contract. While ZEUS does at LLVM
intermediate level and cannot determine the exact location.
SmartCheck [1] translates Solidity source code into an XML-
based intermediate representation and checks it against XPath
patterns. sFuzz [4] complements existing testing engines based
on symbolic execution like Oyente [12] and Teether [14].

SolDetector makes up the shortcomings of static analysis
and dynamic analysis. Knowledge graph construction for smart
contract can be easily modified according to detection needs
for any new code elements. Even though Solidity grammar
updates and new code element are added, it is easier to extract
information by generating AST with our customized Solidity
grammar. Moreover, new defect patterns and corresponding
inference rules can be flexibly expanded. A detection method
suitable for more known defects and can be extended flexibly
for new defects is significant.

VII. CONCLUSION

In this paper, we propose SolDetector, a tool for smart
contract defect detection. SolDetector fully integrates syntax
and semantic information of smart contracts to construct
knowledge graphs by a personalized pluggable information
extractors. Smart contract will be scanned for 16 kinds defect
by inference rules and corresponding SPARQL, which realizes
the defect localization efficiently.

Our method cannot analyze the contract execution state,
which leads to a high FNR for Reentrancy defect. Combining
static with dynamic analysis might be a potential way to

address the disadvantage. The method proposed in this paper
provides a sound basic for the combination of static and
dynamic analysis. In future work, we will track and analyze
the execution information to enrich the knowledge graph of
smart contracts.

REFERENCES

[1] S.Tikhomirov, E.Voskresenskaya, LIvanitskiy, R.Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in 2018 IEEE/ACM 1Ist International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9-16.

[2] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, 2019, pp.
8-15.

[3] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in Network and Distributed System Security
Symposium, 2018, pp. 18-33.

[4] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “Sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778-788.

[5] Mythril: An open-source security analysis tool for ethereum smart
contracts. [Online]. Available: https://github. com/trailofbits/manticore

[6] J. Chen, X. Xia, D. Lo, J. Grundy, and T. Chen, “Defining smart contract
defects on ethereum,” IEEE Transactions on Software Engineering,
2020.

[71 N. Guarino, “Formal ontology, conceptual analysis and knowledge rep-
resentation,” International Journal of Human-Computer Studies, vol. 43,
no. 5-6, pp. 625-640, 1995.

[8] M. Savic, G. Rakic, Z. Budimac, and M. Ivanovic, “A language-
independent approach to the extraction of dependencies between source
code entities,” Information and Software Technology, vol. 56, no. 10,
pp. 1268-1288, 2014.

[9] R. Xiong and B. Li, “Accurate design pattern detection based on

idiomatic implementation matching in java language context,” in 2079

IEEE 26th International Conference on Software Analysis, Evolution

and Reengineering, 2019, pp. 163-174.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and

M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, 2018, pp. 67-82.

R. M. Parizi, A. Dehghantanha, K. K. R. Choo, and A. Singh, “Empirical

vulnerability analysis of automated smart contracts security testing on

blockchains,” in Proceedings of the 28th Annual International Confer-

ence on Computer Science and Software Engineering, 2018, pp. 103—

113.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, 2016, pp. 254-269.

Y. Zhang, S. Ma, J. Li, K. Li, and D. Gu, “Smartshield: Automatic

smart contract protection made easy,” in 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering, 2020,

pp. 23-34.

J. Krupp and C. Rossow, “Teether: Gnawing at ethereum to automatically

exploit smart contracts,” in 27th USENIX Security Symposium, 2018, pp.

1317-1333.

(10]

(11]

[12]

[13]

[14]

