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Abstract— Recently, it has become a trend for developers to 

build applications using the microservice architecture. The 

functionality of each application is divided into multiple 

independent microservices, which are interconnected to others. 

With the emergence of cloud-native technologies, such as Docker 

and Kubernetes, developers can achieve a consistent and scalable 

delivery for complex software applications. However, it is 

challenging to diagnose performance issues in microservices due 

to the complex runtime environments and the numerous metrics. 

In this paper, we propose a novel root cause analysis approach 

named AAMR. AAMR firstly constructs a service dependency 

graph based on real-time metrics. Next, it updates the anomaly 

weight of each microservice automatically. Finally, a PageRank-

based random walk is applied for further ranking root causes, i.e., 

ranking potential problematic services. Experiments conducted on 

Kubernetes clusters show that the proposed approach achieves a 

good analysis result, which outperforms several state-of-the-art 

methods. 
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I. INTRODUCTION  

Nowadays, microservice architectures (MSA) have become 
increasingly popular in large-scale software development 
following different computing paradigms like cloud computing, 
mobile computing, and edge computing. MSA-based software 
applications are decomposed into light-weighted, 
interconnected, independently deployed, and scalability-enabled 
microservices [1]. With the decomposition, the process of 
testing, deploying, and releasing becomes faster. However, as 
user requirements change, software code commits, and version 
updates become increasingly frequent. Many unexpected issues 
may arise, which have a significant impact on service quality 
and user experience. It is important for developers to figure out 
the root causes of system failures and mitigate them.  

Traditionally, system failures are usually pinpointed by 
checking the log and event tracking, and then the performance 
issues are analyzed based on monitoring tools [2]. With the 
increasing scale and complexity of software, service 
dependencies also become increasingly complex, making these 
tools hard to achieve the needs of troubleshooting and diagnosis. 
In general, when an anomaly occurs in microservice systems, 
the anomaly detected is merely a symptom, and the root cause 
often hides from a larger underlying issue. Particularly, if a 
microservice becomes abnormal, e.g., response time delay or 

interruption of work, most of the microservices collaborated 
with it will be implicated. Therefore, it is necessary to detect 
undesirable performance problems and pinpoint the underlying 
anomalous microservice (root cause).  

At present, the challenges of locating potential root causes 
are (i) Large volume of metrics: Communications between 
services are plenty and frequent, which cause a large volume of 
monitoring metrics (e.g., OpenStack exposes 17,608 metrics 
[3]). It is challenging to pinpoint the bottleneck from numerous 
and diverse metrics. (ii) Different failure sources: The failures 
might be caused by upstream or downstream tasks in the 
propagation direction. Besides, the wrong deployments and 
insufficient resource utilization can also cause failures. (iii) 
Highly dynamic in runtime: Due to the flexibility of 
microservices, the IP address of a microservice may 
dynamically change in creating a replica. The scalability of 
replicas further enlarges the service correlation and the 
complexity of locating anomalies. 

Many existing works on root cause analysis have been 
reported. Most of these works [4-8] localize the root cause by 
constructing a service dependency graph (SDG) [10] based on 
monitored metrics. With the SDG, the anomalous microservices 
are commonly ranked by the similarity between back-end 
services and front-end services. However, services that have 
little impact on front-end services are missing in the diagnosis. 
As for metrics, parts of these works [5, 6] only use application-
level metrics, which is insufficient for analysis. Some works [7, 
8] consider multiple metrics while missing the key metrics 
ranking. To address these limitations, we propose a novel 
approach to detect anomalies and locate the root cause in 
microservice systems. 

If there is an anomalous node in the service network, the 
nodes associated with it are likely affected. Inspired by the 
mRank [9] algorithm, we use adjacent nodes to represent the 
anomaly score of the target node. As for input, we collect 
multiple metrics, including system utilization and application-
level metrics. Our goal is to localize the root cause and highlight 
the key anomalous metric, which helps developers diagnose 
system failures. We evaluate our approach on Kubernetes 
clusters and inject several common failures that occur in cloud-
native systems. The results show that our approach outperforms 
several state-of-the-art methods in localizing accuracy. In 
summary, our contributions include: 

• We extend the mRank algorithm for root cause analysis in 
microservices. Our method can automatically update the 
anomaly weights in SDG. _______________________________________________________ 
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• We evaluate our method in a cloud-native environment. 
The experimental results show that our approach has 
higher accuracy and faster than other baseline methods on 
the benchmark. 

The remainder of this paper is organized as follows. Related 
works are summarized in Section II. Section III formulates the 
problem. We elaborate on our proposed approach in Section IV. 
Experiments and evaluations are included in Section V. The 
conclusion and future work are given in Section VI. 

II. RELATED WORK 

Root cause analysis for distributed systems has been devoted 
in the industry and academia for years. Existing approaches in 
this area can be approximately classified into four types. 

Trace-based methods. Many tools and systems on end-to-
end tracing like Dapper [11], Pinpoint [12], and EagleEye [13] 
collect the trace information. These tools can accurately record 
the execution path of programs and then locate the failure by 
detecting the source code or binary code. However, a large-scale 
system is usually developed by many teams with different 
languages over the years, and the overhead of modifying its 
source code is often too high [14]. 

Log-based methods. The system log is an important clue for 
analysis [2]. By parsing patterns and extracting features from 
event logs, Xu et al. [15, 16] built anomaly detection and 
identification models from historical data and used these models 
to analyze root causes. However, as the application flexibility 
increases, these methods are less effective in analyzing the 
anomalies in real-time. 

Machine learning-based methods. Some researchers use 
the metrics collected as training data, instead of logs, to train 
models. Brandón et al. [17] constructed fault patterns from 
several fault injection methods. The anomalies are classified by 
comparing the similarity between the anomaly graph and fault 
patterns. Moreover, Du et al. [18] collected real-time 
performance data such as CPU, memory, response time, and 
package loss to build a model for anomaly detection. GRANO 
[19] created an anomaly analysis model and visualized the 
analysis result. But these approaches require collecting a large 
amount of data for model training, and these models cannot 
cover all anomalous patterns. 

Graph-based methods. Many graph-based approaches are 
also proposed based on real-time performance metrics. For 
example, CloudRanger [6] constructed an impact graph based 
on the dynamic causal relationship. Microscope [5] added 
anomalous nodes into a candidate group and then ranked the 
anomalous nodes in the candidate group based on the correlation 
coefficients between nodes. But only application-level metrics 
are included in their works, which is insufficient for analysis. To 
solve such problems, MicroCause [20] used multi-metric and 
captured the sequential relationship of time series data, and MS-
Rank [7] updated the weights of different metrics dynamically. 
These methods used forward, self, and backward random walk 
to heuristically locate root causes. Besides, Weng et al. [21] 
found that anomalies occur on both the service and physical 
level. MicroRCA [8] correlated anomalous performance 
symptoms with relevant resource utilization to represent service 
anomalies. However, MicroRCA cannot update the anomaly 
detection confidence (i.e., weights in SDG) automatically.  

Similar to graph-based approaches, we also use a graph 
model and rank the anomalies using a random walk algorithm. 
In our approach, we automatically update the anomaly weights 
in SDG and output a two-phase ranking list that contains the 
anomalous nodes and metrics. 

III. PROBLEM DEFINITION 

To generalize the problem, we treat the microservice system 
as a “black box” that requires no domain knowledge, and the 
root cause analysis process is running independently. Many 
reasons can cause abnormal events in microservices, such as 
sudden increases in throughput, errors in code logic, and 
insufficient allocation of host resources. We refer to the process 
of diagnosing those anomalous nodes and the metrics 
responsible for the abnormal events as root cause analysis. The 
identification of anomalous nodes is regarded as root cause 
localization. We monitor the metrics change of all microservices 
in the system by default. These metrics are collected as a matrix 
in time window T. We denote the matrix as M, and Mk stands for 
the metrics in column k. Our objective is to identify a set of root 
causes Vrc and rank the associated metrics for each root cause. 
The notations used in the paper are listed in Table I. 

TABLE I.  NOTATIONS 

Notation Definitions 

G(V, E, W) Service dependency graph with weight matrix W 

M, Mk Metrics collected in T and metrics in column k 

Vi, hi Microservice node i and the host node of Vi  

P, pij 

 

 

[P]ij = pij, transition probability from Vi to Vj 

RTi Response time series of Vi in T 

∆t, T Time unit for metric collection and the time window 

 Vfe, Vrc Front-end service and root cause services 

ADs, AS The clustering result of RTi and the anomaly score 

 

IV. APPROACH DESIGN 

This section introduces the detail of the proposed root cause 
analysis approach. 

A.  Overall Framework 

To address the above issues, we propose a novel root cause 
analysis approach named AAMR (short for Automated 
Anomalous Microservice Ranking). Fig. 1 shows the overall 
framework of AAMR, which consists of five stages: 

S1: Collect system and application-level metrics as the input;  
S2: Detect anomalies;  
S3: Construct the service dependency graph; 
S4: Update the anomaly weights in SDG; 
S5: Rank the anomalous nodes and metrics. 
S1 and S2 run continuously by default. Once anomalies are 

detected, the following stages are triggered. We discuss the 
components of AAMR in detail in the following parts. 

B. Data Collection 

Root cause analysis is based on performance metrics 
obtained by monitoring applications. Since a single metric is 
insufficient to reflect the anomalous degree [7], similar to [4, 5, 



 

8], we collect metrics at different levels: (i) System-level 
Metrics. These metrics are resource utilization metrics 
monitored at the physical server or virtual machine layer (e.g., 
CPU, memory, and network utilization of the host node). (ii) 
Application-level Metrics. Application-level metrics include 
performance metrics observed at the application layer, such as 
response time, workload, and network connection.  

 

Figure 2. An example of AANs and NHANs 

C. Anomaly Detection 

 Anomaly detection is the beginning of root cause analysis. 
We use the BIRCH [22] clustering algorithm for anomaly 
detection, which is simple but effective. We continually monitor 
the response time of each microservice by default. BIRCH takes 
the RTi collected of each microservice in T as input. As a result, 
the RTi is divided into n clusters without predefined. It is noticed 
that the response time of different microservices varies with 
different business processes. For example, if Va handles a single 
business process and Vb handles compound business processes. 
The response time of Va is shorter than Vb in most cases. So we 
cluster RTi for each microservice instead of overall 
microservices. If the cluster result ADs of a microservice 
exceeds 1, it indicates this node is anomalous. Instead of simply 
detecting anomalies [8], we further define the anomaly score (AS) 
of this node as ADs-1 to represent the basic anomalous degree 
of each microservice. 

D. Service Dependency Graph Construction  

We construct a service dependency graph based on the 
network connection between services to represent the anomaly 
propagation. If service Va sends a connection request to service 
Vb, we add a directed edge from Va to Vb. As for duplicate edges, 
only one connection is counted to avoid redundancy. By 

integrating all network connections, we end up with a service 
dependency graph G(V, E, W). It is a weighted DAG (Directed 
Acyclic Graph) that describes the dependency between services. 
Here V, E, W indicate microservice nodes, SDG edges, and the 
anomaly weights, respectively. Considering that some 
microservice connections may fail due to anomalies at the 
current moment, we choose the network connection details from 
the moment before time window T for the SDG construction. 

E. Automated Anomaly Weight Updating 

Once the SDG is constructed, the following processes start 
to locate the root cause. According to the mRank algorithm [9], 
if there is an anomalous node in the service network, then the 
nodes associated with the anomalous node are likely affected. 
However, it is also possible that other nodes cause the anomalies 
of these nodes. Therefore, to infer the possibility of a node being 
abnormal, we need to consider the nodes related to its neighbors. 
We define AAN(Vi) as the anomalous-adjacent nodes of node Vi. 
Further, we define NHAN(Vi) as the next-hop-anomalous nodes 
of node Vi, that is, the anomalous nodes that directly connect to 
AAN(Vi). For example, for node A in Fig. 2, AAN(A) consists of 
B, D, E, and F. And NHAN(A) includes all the anomalous nodes 
that are connected to B, D, E, and F. Then we define two 
measurements to quantify the anomaly of a node in the 
following. 

 Definition 4.1 (iScore). iScore of a microservice Vi in SDG 
is defined as: 

𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) =
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑖)
 , 𝑉𝑗 ∈ 𝐴𝐴𝑁 (𝑉𝑖), (1) 

where AS(Vi), Degree(Vi), and N denote the anomaly score of Vi, 
the degree of Vi, and the number of AAN(Vi), respectively. As 
for NHAN(Vi) we define: 

Definition 4.2 (xScore). xScore of a microservice Vi in SDG 
is defined as: 

𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑥(𝑉𝑖) −
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

∑  𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑗)𝑁
𝑗=1

, 𝑉𝑗 ∈ 𝑁𝐻𝐴𝑁( 𝑉𝑖), (2) 

where x denotes the average anomaly score of HNAN(Vi). Here 
iScore indicates the anomalous degree of AAN(Vi), and xScore 
reflects the normality of NHAN(Vi). We count the redundant 
AS(Vi) and Degree(Vi) only once. For example, in Fig. 2, 

 
Figure 1. The overall framework of AAMR 
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iScore(A), x(A), and xScore(A) are 1.5, 1.67, and 1, respectively. 
Then we define ixScore(Vi) as:  

𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) + 𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖). (3) 

Clearly, ixScore(Vi) is used to combine the multiple pieces 
of evidence with node Vi itself and its neighbors. If most 
neighbors of node Vi are anomalous and most neighbors of its 
AAN(Vi) are normal, node Vi is more likely to be the root cause.  

In addition, as presented in [8], the resource utilization of 
host node hi and the response time of deployed microservices 
(e.g., Vi) on hi are correlated. For simplicity, we calculate the 
correlation between the response time metrics of Vfe (|M|fe) and 
system utilization metrics of hi (|M|i) as follows: 

𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖) =
∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)𝑇

𝑡=0 (|𝑀|𝑓𝑒 − |𝑀|𝑖)

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)
2

𝑇 
𝑡=0

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑖)
2

𝑇
𝑡=0

. (4) 

 This correlation function is the Pearson correlation 
coefficient between the metrics of Vfe and hi. The value falls in 
[0,1]. In normal cases, the correlation between Vfe and hi is closer 
to 0. Besides, the system utilization of hi such as CPU, memory, 
I/O, and network utilization are ranked as the second phase 
ranking. The max value of Corr(Vfe, hi) indicates the key 
anomalous metric. Finally, the anomaly weight w of Vi can be 
updated as:  

𝑤(𝑉𝑖) =  𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) × max 𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖). (5) 

Each time an anomaly is detected based on real-time metrics, 
the anomaly weight for each microservice in the SDG is 
recalculated for automatically updating. As shown in Fig. 3, the 
composition of w is the final anomaly weights W in the SDG. 
Then we normalize W for the random walk algorithm.  

 

Figure 3. Example of anomaly weights in the SDG 

F. Root Causes Ranking 

Some methods [5, 23] rank the anomalies by the nodes or 
traces similarity. However, the microservices on root cause 
embedded request trace would be treated as anomalous with 
these methods. Moreover, the updated ixScore is based on its 
neighbors, and it is limited in a small range. To solve the above 
problems, we surfer from the whole SDG for further ranking the 
anomalies with the Personalized PageRank (PPR) algorithm, 
which performs well in the previous works [8, 20]. In the PPR 
algorithm, we use Personalized PageRank vector v to represent 
the anomaly weight in the SDG. And we define the transition 
probability matrix as P. Those nodes with a higher AS would 
have a higher access probability.  

With PPR, we get the ranking list of root causes as the first 
phase ranking. Then we associate the root causes with the 
anomalous metrics ranking (the second phase) to get a two-
phase ranking list, which helps developers mitigate the 
microservice failures, as shown in Fig. 1(e). 

V. EXPERIMENTS 

In this section, we conducted experiments to compare our 
method with several state-of-the-art techniques. The 
experiments were designed to answer three research questions: 

• RQ1: Does the proposed method outperform the state-of-
the-art approaches in terms of different anomaly cases? 

• RQ2: Is our approach effective enough to locate the root 
cause with fast speed? 

• RQ3: Can our approach adapt to large-scale systems? 

A. Setup 

1) Experiment Settings. We evaluated the prototype of 

AAMR on two physical servers. Each physical server has an 8-

core 2.40GHz CPU, 16GB of RAM, and Ubuntu 16.04 OS. And 

we installed Kubernetes 11.3.1, Istio1 1.4.5, Node Exporter2 1.41, 

and Prometheus3 6.3 on these servers for environment 

configuration. We used one server to run our system and another 

server to simulate the workload.  

2) Benchmark. The benchmark of experiments is an online 

shop microservice system named Online-boutique4, which 

contains 11 microservices. Particularly, since three 

microservices are mocked and a microservice is used for load 

generation, effects on these microservices are rather low, and 

we deployed them on the Kubernetes clusters but excluded 

them from the evaluation.   

TABLE II.  WORKLOAD GENERATION DETAIL 

MS cart payment currency checkout catalog frontend recommendation 

users 100 100 100 100 100 100 100 

rate(/s) 30 10 20 10 100 10 20 

 

3) Data Collection. The workload was generated by Locust5, 

a distributed load testing tool that simulates concurrent users in 

an application. Considering real user scenarios, we simulate 

different request rates for different microservices as shown in 

Table II. For system-level metrics, we used Node Exporter to 

collect CPU, memory, I/O, and network utilization metrics. And 

we used Prometheus, an open-source monitoring tool, to collect 

response time metrics. These metrics are collected at five-

second intervals, and T is set as 150 seconds.  

4) Fault Injection. To simulate real-world performance 

issues, we injected the following three types of failures: (i) 

Latency Delay. We used the feature of Istio to add a virtual 

service to instances, which has the effect of increasing the 
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response time of a specified instance to 300ms. (ii) CPU Hog. 

The performance issue may be caused by the insufficient CPU 

allocated to the host. We used stress-ng1 to stress the system 

CPU to 99% usage. As for container CPU usage, we limited the 

utilization of the injected instance by setting Kubernetes 

configurations. (iii) Container Pause: The “docker pause” 

command triggers a pause operation on the specified container. 

The container cannot be shut down directly because of the 

protection mechanism of Kubernetes.  

5) Evaluation Metrics. To quantify the performance of each 

algorithm, we adopt the same evaluation metrics defined in [6]:  

• Accuracy at top k (AC@k) indicates the probability that 
the top k on the ranking list hits the real root cause for all 
given anomaly cases. A higher AC@k score represents the 
algorithm identifying the root cause more accurately. In 
experiments, we choose k=1 and 3. Let R[i] be the rank of 
each cause and Vrc be the set of root causes. AC@k is 
defined on a set of anomalies A as: 

𝐴𝐶@𝑘 =  
1

𝐴
∑

∑ (𝑅[𝑖] ∈ 𝑉𝑟𝑐)𝑖<𝑘

(min(𝑘, |𝑉𝑟𝑐|))
𝑎∈𝐴

 (6) 

• Average accuracy at top k (Avg@k) quantifies the overall 
performance of an algorithm, where n is the number of 
microservices. It is defined as: 

𝐴𝑣𝑔@𝑘 =  
1

𝐴
∑ ∑ 𝐴𝐶@𝑘

1≤𝑘≤𝑛𝑎∈𝐴

 (7) 

6) Baseline Methods. To evaluate the performance of 

AAMR, we compared it to the following baseline methods:  

• Random Selection (RS): Random selection randomly 
selects the possible anomalous microservices among all 
nodes without any domain knowledge.  

• Microscope: Microscope [5] is a graph-based method to 
locate root causes. For Microscope implementation, we 
used the 3-sigma principle to detect anomalies and then 
added these anomalies into a candidate group. We 
collected the response time for calculating the similarity 
and ranking the anomalies in the candidate group. 

• MicroRCA: MicroRCA [8] extracts an anomalous 
subgraph based on the SDG. For root cause localization, 
MicroRCA uses a Personalized PageRank algorithm, 

which is extended in our approach. To implement 
MicroRCA, we clustered the RTi of microservices to 
extract the subgraph of anomalous nodes. 

B. RQ1: Performance Comparison 

We tested the performance of AAMR for different fault 
injection cases. Table III shows the performance in terms of 
AC@1, AC@3, and Avg@3 for all methods. We can observe that 
AAMR outperforms the baseline methods in most cases. In 10-
round experiments, AAMR achieves an accuracy of 91% for 
AC@1 and 94% for Avg@3 on average, which outperforms the 
state-of-the-art methods. The result shows that AAMR gets 
3.2% and 9.0% improvement than MicroRCA and Microscope 
for AC@3, respectively. It is also noticed that the experimental 
result of the CPU hog case is not as good as other cases because 
only computation-sensitive microservices are affected in the 
CPU hog case, e.g., the checkout service and recommendation 
service in Online-boutique. 

TABLE III.  PERFORMANCE COMPARISON 

Metric RS MicroRCA Microscope AAMR Improvement 

to MicroRCA 

Improvement 

to Microscope 

Overall 

AC@1 24% 90% 85% 91% +1.1% +7.0% 

AC@3 38% 94% 89% 97% +3.2% +9.0% 

Avg@3 31% 92% 90% 94% +2.2% +4.4% 

Latency Delay 

AC@1 22% 92% 87% 94% +2.2% +8.0% 

AC@3 43% 95% 90% 97% +2.1% +7.6% 

Avg@3 37% 92% 90% 95% +3.3% +5.5% 

CPU Hog 

AC@1 25% 49% 39% 48% -2.0% +23.1% 

AC@3 36% 68% 59% 70% +2.9% +18.6% 

Avg@3 35% 69% 61% 70% +1.5% +14.7% 

Container Pause 

AC@1 33% 92% 90% 95% +3.3% +5.6% 

AC@3 37% 100% 98% 100% 0% +2.0% 

Avg@3 41% 97% 94% 98% +1.0% +4.3% 
 

In Fig. 4, we compared the performance of each method on 
different microservices. The result shows that AAMR 
outperforms other methods in most fault injection cases. 
MicroRCA performs better in some CPU hog cases because it 
calculates the correlation between the anomalous node and the 
host node, which is more accurate but has a higher overhead. 
However, AAMR performs better on average. 

 
Figure 4. Performances of RS, MicroRCA, Microscope, and AAMR on different microservices 

——————————————————————— 
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C. RQ2: Localization Time Comparison 

Besides accuracy, developers expect to locate anomalies 
quickly. We set all methods running continuously, and only the 
top 1 ranking hits the root cause three times consecutively is 
considered successful. Table IV shows that the execution time 
of locating the root cause varies from methods, and AAMR takes 
less time to locate the root cause, i.e., 78% and 72% faster than 
Microscope and MicroRCA. Here the RS method is excluded in 
the comparison because of low accuracy. 

TABLE IV.  LOCALIZATION TIME COMPARISON 

MS cart payment currency checkout catalog frontend reco. Avg 

MicroRCA 15.2s 28.1s 33.5s 12.8s 9.4s 9.7s 26.3s 19.3s 

MicroScope 6.7s 39.4s 43.5s 8.8s 29.4s 11.9s 32.5s 24.6s 

AAMR 3.3s 2.1s 2.0s 7.3s 2.1s 6.4s 14.2s 5.4s 

 

D. RQ3: Scalability Comparison 

 Scalability is the main feature of microservice systems. It is 
noticed that scaling out service replicas will increase the size of 
the SDG and make it more complicated to locate the root cause. 
We evaluated the impact of scaling out replicas from 1 to 10 for 
each microservice in Online-boutique. Fig. 5 shows that AAMR 
consistently maintains an accuracy of 82-91% for AC@1, which 
is higher than the state-of-the-art methods.  

 

Figure 5. Comparison of scalability 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we design a root cause analysis approach 
named AAMR. We extend the mRank algorithm to measure the 
anomaly weight of a node based on its adjacent nodes. After 
detecting the anomalies by a simple but effective clustering 
method, we give a two-phase ranking, which helps developers 
quickly diagnose the system failures. Experiments show that 
AAMR has an accuracy of 91% and an average accuracy of 94%, 
which outperforms the state-of-the-art methods.  

In the future, we plan to cover more anomaly patterns by 
adding more metric types. Besides, we will try injecting more 
faults to test the performance of AAMR in case that multiple 
anomalies occur at the same time. 
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