
Fine-Grained Neural Network Abstraction for Efficient Formal Verification

Zhaosen Wen1, Weikai Miao1,2, Min Zhang1,2

1 Shanghai Key Laboratory for Trustworthy Computing, East China Normal University
2 Shanghai Institute of Intelligent Science and Technology, Tongji University

51184501057@stu.ecnu.edu.cn, {wkmiao,zhangmin}@sei.ecnu.edu.cn

Abstract

The advance of deep learning makes it possible to empower
safety-critical systems with intelligent capabilities. How-
ever, its intelligent component, i.e., deep neural network,
is difficult to formally verify due to the large scale and in-
trinsic complexity of the verification problem. Abstraction
has been proved to be an effective way of improving the
scalability. A challenging problem in abstraction is that it
is difficult to achieve a balance between the size reduced
and output overestimation caused by abstraction. In this
work, we propose an effective fine-grained approach to
abstract neural networks. Our approach is fine-grained
in that we identify four cases that should be abstracted
independently under a certain neuron prioritization strat-
egy. This allows us to merge more neurons in networks and
meanwhile maintain a relatively low output overestimation.
Experimental results show that our approach outperforms
other existing abstraction approaches by significantly
reducing the scale of target deep neural networks with
small overestimation.

1 Introduction
In recent years, Deep Neural Networks (DNNs) have

been achieving remarkable performance in many complex
tasks and are increasingly deployed in safety-critical sys-
tems, such as autonomous vehicle [2], face recognition [3],
airborne collision avoidance system [11]. However, it is
well known that DNNs are vulnerable to slight perturba-
tions, i.e., adding imperceptible perturbations to inputs may
cause DNN to make mistakes [17, 18, 8, 5]. Statistical re-
sults show that the accident frequency of autonomous vehi-
cles is much higher than that of conventional vehicles [7].
As safety-critical systems require strict safety and reliability
guarantees, it raises a new problem of certifying the trust-
worthiness of the intelligent components, i.e., DNNs.

Formal methods have been proved their effectiveness in
certifying DNNs. For rigorousness, formal methods guar-
antee a DNN satisfies a property if the property is proved

DOI reference number: 10.18293/SEKE2021-071

to be true, and otherwise counterexamples are computed as
witnesses to the violation. In the context of neural network
verification, a counterexample is called an adversarial ex-
ample that causes misclassification to DNN. The literature
on formal verification of neural network is booming in the
past several years. Details can be referred to the survey [10].

Most of the existing neural network verification ap-
proaches suffer from bad scalability issue due to the in-
trinsic complexity of neural networks. Katz et al. [12]
showed that the verification problem of even simple fully
connected feedforward neural networks taking ReLU ac-
tivation function is NP-complete. Abstraction is one of
the effective approaches to scale up verification algorithms.
The basic idea of abstraction is to tune concrete constraints
into abstract ones which can be solved more efficiently
[9, 15, 8, 1, 6, 13]. Abstraction must preserve soundness,
i.e., a property proved in the abstract system implies the
concrete system satisfies that property.

One promising abstraction technique for neural network
verification is to construct Interval Neural Networks (INNs)
[13] to abstract ordinary deep neural networks. Intuitively,
an INN takes intervals as inputs, unlike DNN whose inputs
are concrete values. An INN can be constructed by merg-
ing neurons in the same hidden layer [13]. The decrease
of neurons makes it faster to verify an INN than to verify
its corresponding DNN. There are two criteria for evaluat-
ing an abstraction approach, i.e., the number of neurons that
are merged, and the overestimation of output interval. An
approach that can merge more neurons with lower overes-
timation is more preferred than the one that merges fewer
neurons with larger overestimation.

In this paper, we propose a novel fine-grained abstrac-
tion approach to abstract feedforward neural networks that
take ReLU as activation function into INNs for the purpose
of improving the efficiency of their formal verification. In
our approach, we classify the merging of neurons into four
cases according to the signs of weights, and propose the
corresponding merging rules for each case. We also de-
vise a strategy for determining the priority of neurons to
be merged. Before the abstraction of neural network, we
compute an indicator for each pair of neurons and priori-



tize neurons according to the indicator. We prove that our
abstraction approach is sound. We implement the approach
into a tool called NNZipper, and evaluate it on the bench-
mark of neural networks trained on MNIST [16] and ACAS
Xu [11]. Experimental results show that our approach can
significantly reduce the scale of a neural network with low
overestimation induced, compared with the pioneering ab-
straction approach in [13].

2 Preliminaries
2.1 Deep Neural Network (DNN)

A deep neural network is a model consisting of an input
layer, several hidden layers and an output layer. Except for
input layer, each layer contains some neurons, which are
connected to the neurons in the preceding layer. Each edge
has a weight. The neurons in input layer receive input data,
and the neurons in the next layer get their values by comput-
ing a dot product of the values of preceding layer and edge
weights, with the addition of a bias, and then operated by
an activation function such as ReLU. After layer-by-layer
calculation, the output layer gives the result of DNN.

Definition 1 (DNN). An n-layer DNN is a triple
({S i}0≤i≤n, {Wi}1≤i≤n, {Bi}1≤i≤n), where

• S i is the set of neurons in the i-th layer. S 0 denotes the
input layer, S n denotes the output layer.

• Wi denotes the weight matrix between the i−1-th layer
and i-th layer.

• Bi denotes biases vector of the i-th layer.

2.2 Interval Neural Network (INN)

In an interval neural network (INN), the edge weights
and biases are not in value form but interval form.

Definition 2 (INN [13]). An n-layer INN is a triple
({S i}0≤i≤n, {W l

i ,W
u
i }1≤i≤n, {Bl

i, B
u
i }1≤i≤n), where

• S i is the set of neurons in the i-th layer. S 0 denotes the
input layer, S n denotes the output layer.

• W l
i ,W

u
i denote the lower weight matrix and upper

weight matrix respectively between the i − 1-th layer
and i-th layer, which satisfy W l

i ≤ Wu
i

1.

• Bl
i, B

u
i denote the lower biases vector and upper biases

vector respectively of the i-th layer, Bl
i ≤ Bu

i .

The input of INN is a set of intervals, as well as the
output. The output is computed by solving several maxi-
mization and minimization problems built on the lower and
upper weights and biases. It is proved that a DNN can be
abstracted to an INN with smaller size [13]. For an identical
input region, the output of the INN is an over-approximation
of the output range of the original DNN.

1For matrix A and B of the same size, A ≤ B means ∀i, j, ai, j ≤ bi, j.
Similarly for vector.)

1
𝑠0,1

𝑠0,2

𝑠1,1 𝑠2,1

𝑠1,2
-2

1

𝑠2,2
-2

𝑠0,1

𝑠0,2

𝑠2,1

𝑠2,2

𝑠1,1
′

Figure 1: A simple example for abstracting DNN into INN.

2.3 Neural Network Abstraction

Neural network abstraction is a technique for compress-
ing a neural network into a smaller one. Despite the loss
of some precision, a smaller network is usually preferred to
deploy on edge devices and to formally verify. To abstract
a DNN into a smaller INN, several neurons in the same hid-
den layer are merged with their weights and biases merged
into intervals. The state-of-the-art approach takes the con-
vex hull of the original weights as the weight interval for
the neuron abstracted from original neurons [13], which is
valid and fast but induces considerable imprecision in out-
put range computation.

Figure 1 gives a simple example of abstracting a DNN
into an INN by merging neurons and weights. When merg-
ing outgoing weights, the convex hull of original weights
needs to be multiplied by 2 (equal to the number of neurons
merged) to guarantee validity.

3 Fine-Grained Abstraction
In this section, we present our fine-grained abstraction

approach to transforming a DNN into an INN, and mean-
while guarantee that a constructed INN is an overapproxi-
mation of its original DNN. The property of the abstraction
guarantees the soundness of verifying abstracted INNs.

3.1 Abstracting DNN into INN

The complexity of the output range computation of a
DNN is strongly related to its size, i.e., the number of
all the neurons in the DNN. Our abstraction method aims
to decrease the size of the network, and get an over-
approximation of the network’s output range by comput-
ing the abstract network’s output range. To accomplish
this, several pairs of neurons in the same hidden layer are
merged into a single neuron with their weights and biases
also merged. The new neuron’s weights and bias are not val-
ues but intervals, which are calculated based on the weights
and biases of original neurons. Note that DNN can be re-
garded as a special kind of INN whose weights and biases
are degenerate intervals, i.e., the lower bound and upper
bound of the interval are the same. Hence we will describe
the details of the abstraction based on the semantics of INN.

Given an INN (n, {S i}0≤i≤n, {W l
i ,W

u
i }1≤i≤n, {Bl

i, B
u
i }1≤i≤n),

let si,p denote the p-th neuron in layer i, and wl
i,p,w

u
i,p denote

the lower weight vector and upper weight vector of neu-
ron si,p, and wl

i,p/q,w
u
i,p/q denote the lower weight and upper



𝑠𝑖-1,1 𝑠𝑖, α

𝑠𝑖, β

𝑠𝑖, γ

[-1, 1]

𝑠𝑖-1,2

𝑠𝑖-1,1

𝑠𝑖-1,2

[1, 1]

[-1, 1]

Figure 2: Example of merging biases and incoming edges

weight between the q-th neuron in layer i − 1 and the p-th
neuron in layer i. We use vi,p to denote the valuation inter-
val of the p-th neuron in layer i, and bl

i,p, b
u
i,p to denote the

lower bias and upper bias of the p-th neuron in layer i. The
problem of abstracting a DNN by an INN is merging two
neurons si,α and si,β into a new neuron si,γ (1 ≤ i ≤ n − 1).

Our first step is to merge the biases of si,α and si,β and
the edges between layer i − 1 and layer i. The requirement
of this step is guaranteeing the valuation interval of the new
neuron containing the valuation interval of the original neu-
rons, i.e., vi,α ⊆ vi,γ, vi,β ⊆ vi,γ. To reach this goal, the new
neuron’s bias interval is obtained by taking the convex hull
of the two original neurons’ bias intervals. Specifically, the
smaller of the original lower bounds will be the new lower
bound, and the greater of the original upper bounds will be
the new upper bound. The merging of the edge weights is
similar. For each new edge between layer i − 1 and layer i,
the new weight interval of the edge is obtained by taking the
convex hull of the corresponding original weight intervals.
Formally, we have the following equations:

Bias: bl
i,γ = min(bl

i,α, b
l
i,β), b

u
i,γ = max(bu

i,α, b
u
i,β);

Weights: ∀si−1,p ∈ S i−1,wl
i,γ/p = min(wl

i,α/p,w
l
i,β/p),

wu
i,γ/p = max(wu

i,α/p,w
u
i,β/p).

Figure 2 shows a simple example of the first step. After
the merging, the new weight interval [−1, 2] is the convex
hull of [−1,−1] and [1, 2], and the other new weight interval
[1, 3] is similar. The new bias interval [−1, 1] is also the
convex hull of the original bias intervals [1, 1] and [−1, 1].

Our second step is to merge the edges between layer i
and layer i + 1. The requirement of this step is guaran-
teeing the new valuation interval of each neuron in layer
i + 1 containing its original valuation interval, i.e., ∀si+1,q ∈

S i+1, v′i+1,q ⊇ vi+1,q. According to the sign of the weights
of original neurons, the merging in this step will follow dif-
ferent rules. Without loss of generality, we assume that the
lower bound of the weight interval for si,α is not greater than
that of si,β, i.e., wl

i+1,q/α ≤ wl
i+1,q/β. Then the merging can be

classified into four cases:

Case 1 We first consider the case when wl
i+1,q/α,w

l
i+1,q/β

have the same sign, and wu
i+1,q/α,w

u
i+1,q/β have the same sign.

The lower bound of the new weight interval is obtained by

𝑠𝑖+1,1

𝑠𝑖, α

𝑠𝑖, β

[-2, 3] 𝑠𝑖+1,1𝑠𝑖, γ

[-1, 1] [-1, 1]

(a) Case 1

𝑠𝑖+1,2

𝑠𝑖, α

𝑠𝑖, β

[-2, 2] 𝑠𝑖+1,2𝑠𝑖, γ

[-1, 1] [-1, 1]

(b) Case 2

𝑠𝑖+1,3

𝑠𝑖, α

𝑠𝑖, β

[-1, 3] 𝑠𝑖+1,3𝑠𝑖, γ

[-1, 1] [-1, 1]

(c) Case 3

𝑠𝑖+1,4

𝑠𝑖, α

𝑠𝑖, β

[-3, 1] 𝑠𝑖+1,4𝑠𝑖, γ

[-1, 1] [-1, 1]

(d) Case 4

Figure 3: Examples of merging outgoing edges in four cases

taking the sum of the two original lower bounds. The new
upper bound is computed likewise. Formally, we have

wl
i+1,q/γ = wl

i+1,q/α + wl
i+1,q/β, and

wu
i+1,q/γ = wu

i+1,q/α + wu
i+1,q/β.

Figure 3a shows an example of the case. The new lower
bound -2 is the sum of original lower bounds -1 and -1, and
the new upper bound 3 is the sum of 2 and 1.

Case 2 In the second case, we consider that wl
i+1,q/α < 0,

wu
i+1,q/α < 0, wl

i+1,q/β ≥ 0, and wu
i+1,q/β ≥ 0. In this case, the

lower bound of the new weight interval is equal to the lower
bound of the original weight interval for si,α. The upper
bound of the new weight interval is equal to the original
upper bound for si,β. Formally, they are defined as follows:

wl
i+1,q/γ = wl

i+1,q/α, and

wu
i+1,q/γ = wu

i+1,q/β

Figure 3b shows an example of this case. The new lower
bound -2 is derived from the lower bound of the weight in-
terval [-2,-1], and the new upper bound 2 is derived from
the upper bound of the weight interval [1,2].

Case 3 The third case considers wl
i+1,q/α < 0, wu

i+1,q/α ≥ 0,
wl

i+1,q/β ≥ 0, and wu
i+1,q/β ≥ 0. In this case, the lower bound

of the weight interval after merging is equal to the lower
bound of the original weight interval for si,α. The upper
bound of the new weight interval is set the sum of the two
original upper bounds. Formally, we have

wl
i+1,q/γ = wl

i+1,q/α, and

wu
i+1,q/γ = wu

i+1,q/α + wu
i+1,q/β.

Figure 3c shows an example of the case. The new lower
bound -1 is derived from the lower bound of the weight in-
terval [-1,1], and the new upper bound 3 is the sum of orig-
inal upper bounds 2 and 1.

Case 4 The last case is that wl
i+1,q/α < 0, wu

i+1,q/α < 0,
wl

i+1,q/β < 0, and wu
i+1,q/β ≥ 0. In this case, the lower bound

of the new weight interval takes the sum of the two original
lower bounds. And the upper bound of the new weight in-



𝑠0,1

𝑠0,2

𝑠1,1

𝑠1,3

𝑠2,1

𝑠3,1

𝑠3,2

𝑠1,2

𝑠2,3

-1

1

7

𝑠2,2

-1

1

2

-1

1

1

2

-1

(a) Original DNN

[-1,1]

7

𝑠0,1

𝑠0,2

𝑠1,1

𝑠1,2

𝑠1,3

𝑠2,1
′

𝑠2,2
′

𝑠3,1

𝑠3,2

[-1,1]

2

1

2

-1

-1

1

(b) The INN after merging s2,1 and s2,2

[-1,4]

7

𝑠0,1

𝑠0,2

𝑠1,1
′

𝑠1,2
′

𝑠2,1
′

𝑠2,2
′

𝑠3,2

𝑠3,1

[-1,1]

2

[1,2]

-1

-1

1

(c) Final INN

Figure 4: The process of merging two pairs of neurons for a small neural network

terval is equal to the original upper bound for si,β. Formally,
they are defined by the following equations:

wl
i+1,q/γ = wl

i+1,q/α + wl
i+1,q/β

wu
i+1,q/γ = wu

i+1,q/β

Figure 3d shows an example of the last case. The new
lower bound is -3, i.e., the sum of original lower bounds -2
and -1. The new upper bound is 1, which is derived from the
upper bound of the weight interval [-1,1] by the definition.

Example 1. Let us consider the neural network in Fig-
ure 4a. We want to merge s2,1 and s2,2, and then s1,1 and
s1,2. For both mergings, the new weight intervals of the pre-
ceding edges are obtained by taking the convex hull of the
corresponding original weights. We focus on the merging of
succeeding edges. In the merging of s2,1 and s2,2, because
1 > 0,−1 < 0, the weight interval [−1, 1] between s′2,1 and
s3,1 is obtained by applying the rules of case 2. And the
weight −5 between s′2,1 and s3,2 is obtained by applying the
rules of case 1 because −2 and −3 are both negative. Then
in the merging of s1,1 and s1,2, the weight interval [−1, 4] is
obtained by applying the rules of case 3, and the weight 4
by applying the rules of case 1.

Our method can abstract a DNN into an INN with arbi-
trary size. However, merging too many neurons will lead
to an excessive output range. We need to make a trade-off

between the abstraction scale and output overestimation.

3.2 Neuron Prioritization Strategy

The abstraction method above can merge any pair of neu-
rons in hidden layers. The inaccuracy induced by a merging
operation depends on the differences of the weights and bi-
ases of the original neurons. To get an overapproximation
with lower inaccuracy, we present a heuristic strategy for
prioritizing the pairs of neurons to merge.

Algorithm 1 sketches the overall process. For each pair
of neurons in hidden layers, we compute a value m, which
takes the sum of the absolute values of the differences of
corresponding incoming weights, with the addition of the
absolute value of the difference between the two biases.
Then we take m as the indicator and construct a min pri-

Algorithm 1 Neuron Prioritization

Require: a DNN D
Ensure: a min priority queue Q

1: Q← ⊥
2: for every pair of hidden neurons si,α,si,β do
3: m←

∣∣∣bi,α − bi,β

∣∣∣
4: for every neuron si−1,p do
5: m+ =

∣∣∣wi,α/p − wi,β/p

∣∣∣
6: end for
7: Add (m, si,α,si,β) to Q
8: end for

ority queue Q to guide the abstraction. When performing
the abstraction, We repeatedly pop the priority queue and
merge the corresponding pair of neurons in the network.

3.3 Overapproximation

We show an INN abstracted in our approach is an over-
approximation of its original DNN. It implies the soundness
of verifying the DNN by verifying the INN instead.

Definition 3 (Overapproxiamtion). Given an INN A and a
DNN D, A is an overappximation of D if and only if for any
input interval I, there is D(I, `) ⊆ A(I, `) for any label `.

According to the definition, it is apparent that overap-
proximation is transitive for the transitivity of ⊆.

Lemma 1 (One-step overapproximation). Given an INN A,
let Â be the INN abstracted from A by merging a pair of
neurons. Â is an overapproximation of A.

Proof. Consider merging si,1 and si,2 into ŝi,1. Let Vi de-
note the valuation vector of layer i, vi,q denote the valuation
interval of the q-th neuron in layer i, vl

i,q denote the lower
bound and vu

i,q denote the upper bound.
First we prove the correctness of the first step of merg-

ing. Initially, we have vl
i,1 = ReLU(wl

i,1Vi−1 + bl
i,1), vl

i,2 =

ReLU(wl
i,2Vi−1+bl

i,2). After merging, v̂l
i,1 = ReLU(ŵl

i,1Vi−1+

b̂l
i,1), ŵl

i,1 = min(wl
i,1,w

l
i,2), b̂l

i,1 = min(bl
i,1, b

l
i,2). Because

Vi−1 is non-negative and ReLU is monotonic, there are v̂l
i,1 ≤

vl
i,1 and v̂l

i,1 ≤ vl
i,2. Likewise, we have v̂u

i,1 ≥ vu
i,1, v̂

u
i,1 ≥ vu

i,2.
Consequently, vi,1 ⊆ v̂i,1, vi,2 ⊆ v̂i,1.



Then we prove the correctness of the second step. We
first consider Case 1, for an arbitrary neuron si+1,q, we use
ci+1,q and ĉi+1,q to denote the merged neurons’ contribu-
tion to its valuation interval, i.e., cl

i+1,q = ReLU(wl
i,q/1vl

i,1 +

wl
i,q/2vl

i,2 + bl
i+1,q). After merging, ĉl

i+1,q = ReLU((wl
i,q/1 +

wl
i,q/2)v̂l

i,1 + bl
i+1,q). Because v̂l

i,1 ≤ vl
i,1, v̂

l
i,1 ≤ vl

i,2 and the
monotonicity of ReLU, we have ĉl

i+1,q ≤ cl
i+1,q. Similarly,

ĉu
i+1,q ≥ cu

i+1,q. Thus, ci+1,q ⊆ ĉi+1,q. Because other neurons
connected to si+1,q are not altered, we have vi+1,q ⊆ v̂i+1,q.

We can prove that vi+1,q ⊆ v̂i+1,q holds in other three cases
likewise. Consequently, we have A(I, `) ⊆ Â(I, `) for any
label ` of A. Thus, Â is an overapproximation of A.

For the transitivity of overapproximation, it is straight-
forward to obtain the following theorem from Lemma 1.

Theorem 1 (Overapproximation). Given a DNN D, let A
be the INN abstracted from D in our approach. A is an
overapproximation of D.

Theorem 1 can be proved directly using Lemma 1 based
on the fact that the abstraction is a finite-step process. We
omit the proof due to space limitation.

4 Implementation and Evaluation
We implement our framework in Python and use a state-

of-the-art MILP solver Gurobi to solve the minimization
and maximization problems.

Evaluation Datasets. We consider two benchmarks,
ACAS Xu networks [11] which consists of 6 hidden layers
with 50 neurons in each layer and a 5×100 network trained
on MNIST in [16]. We generate a set of random valid input
regions as the evaluation dataset for the ACAS Xu network.
For the MNIST network, we choose the first 100 images in
the MNIST test set. Each input image can be perturbed in
an l∞ norm form ball with a bound ε.

Experimental Setup. All the experiments were con-
ducted on a workstation with a 32-core 3.7 GHz AMD
Ryzen Threadripper 3970X CPU and 128GB RAM. We set
a timeout one hour for the verification of each input region.

Evaluation Result. Firstly, we compare the performance
of our fine-grained INN abstraction to the original INN ab-
straction. Neuron prioritization strategy is applied to both
methods to ensure they merge the same neurons. The ab-
stractions are parameterized by n×k, where k is the number
of reduced neurons in each layer and n is the number of
hidden layers except the first hidden layer. We show the
result of one of the ACAS Xu networks in Figure 5a and
the result of the MNIST network in Figure 5b. The results
of other benchmarks are similar. Our fine-grained INN has
a great improvement in the precision of computation. The
average output range computed by fine-grained INN is over

(a) ACAS Xu network (6x50) (b) MNIST network (5x100)

Figure 5: Comparison with the abstraction approach in [13]

(a) Prioritization versus random (b) Global versus layer-by-layer

Figure 6: Comparison of different strategies

two orders of magnitude smaller than the output range com-
puted by original INN. With the increase of reduced neu-
rons, the growth of the output range of fine-grained INN
is much lower than that of original INN. In the cases with
fewer reduced neurons, e.g., the 4×50 case for MNIST net-
work, the average running time of fine-grained INN (77s) is
several times longer than that of original INN (30s). How-
ever, with the increase of reduced neurons, due to the sharp
fall in computation complexity, the average running time of
the both become almost the same.

To show the effectiveness of neuron prioritization strat-
egy, we compare our strategy with a random one. Both of
them are based on fine-grained INN abstraction. Figure 6a
shows the result. The output range of prioritization strategy
is several times smaller than that of random strategy, which
demonstrates our neuron prioritization strategy is very ef-
fective to improve the performance of INN abstraction.

When using neuron prioritization strategy, we have two
sub-strategies to estimate the neurons. One is layer-by-
layer, where we give a fixed number k as the number of
reduced neurons for each layer, and select the best k pairs
of neurons in each layer to be merged. The other is global,
where we give a number j as the total number of reduced
neurons, then select the top j pairs from all hidden lay-
ers. Figure 6b depicts the comparison between layer-by-
layer strategy and global strategy, which are based on fine-
grained INN abstraction for ACAS Xu networks. In our ex-
periments, the global strategy usually performs better than
layer-by-layer strategy. We find that in these cases, the



global strategy mainly merges the neurons in layer 6, 5 and
4. In few cases where layer-by-layer strategy performs bet-
ter, we find the global strategy merges more neurons in layer
2 and 3 than layer-by-layer strategy. Thus we deduce that
merging neurons in the front layers has more influence on
the output range computation than merging neurons in the
latter layers. That is because the over-estimation induced
by merging is amplified layer by layer.

5 Related Work
Our work is inspired by many pioneering neural network

abstraction approaches. Our approach is in line with but
outperforms the abstraction approach in [13] in terms of
the induced overestimation and the size of reduced neurons.
Katz et al. [6] proposed an abstraction technique for merg-
ing neurons in neural networks to accelerate the verification
of ACAS Xu networks. The difference is that in their ap-
proach the weights after merging are still values, unlike in-
tervals in our approach. Another approach merges the neu-
rons with similar behaviors, i.e., the neurons’ values are al-
ways similar for a given set of inputs [1]. This approach
relies on concrete inputs of the neural networks to abstract,
while our approach is independent of inputs.

Another class of abstraction-based neural network verifi-
cation approaches rely on the abstraction of the constraints
transformed from original neural networks, but not the ab-
straction of neural networks. Representative approaches in-
clude abstraction interpretation [9, 14] and linear relaxation
and overapproximation [4, 19]. After abstraction, they re-
sort to efficient linear programming solvers such as SMT
and MILP solvers to check the satisfiability of abstracted
constraints. Like our approach, all these approaches are
sound, but refinement is needed to achieve completeness.

6 Conclusion and Future Work
We have presented a fine-grained approach to abstract

neural networks for efficient formal verification. We identi-
fied four cases of merging neurons in neural networks and
defined corresponding merging rules. We also introduced a
neuron prioritization strategy to reduce the overestimation
induced by the abstraction. Compared with the pioneering
merging approach in the work [13], our approach can sig-
nificantly reduce the scale of original neural networks while
cause a relatively low output overestimation.

As for future work, we are planning to apply our ap-
proach to the formal verification of real-world large-scale
neural networks. Further, we consider extending it to other
network architectures and non-ReLU activation functions.

Acknowledgments
This work is supported by National Key Research and

Development Program (2020AAA0107800), Joint Funding
and AI Project (20DZ1100300) of Shanghai Science and
Technology Committee, NSFC general projects (61872146,

61872144), and Open Project Fund from Shenzhen Institute
of Artificial Intelligence and Robotics for Society. Weikai
Miao and Min Zhang are the corresponding authors.

References
[1] Pranav Ashok, Vahid Hashemi, Jan Kretı́nský, and Stefanie Mohr.

Deepabstract: Neural network abstraction for accelerating verifica-
tion. In ATVA 2020, volume 12302, pages 92–107, 2020.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, et al. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[3] Naser Damer, Yaza Wainakh, Olaf Henniger, Christian Croll, Benoit
Berthe, et al. Deep learning-based face recognition and the robust-
ness to perspective distortion. In 24th ICPR, pages 3445–3450, 2018.

[4] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. Output range analysis for deep feedforward neural networks.
In NASA Formal Methods Symposium, pages 121–138, 2018.

[5] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip:
White-box adversarial examples for text classification. In ACL 2018,
pages 31–36, 2018.

[6] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. An
abstraction-based framework for neural network verification. In CAV
2020, pages 43–65, 2020.

[7] Francesca M. Favarò, Nazanin Nader, Sky O. Eurich, Michelle Tripp,
and Naresh Varadaraju. Examining accident reports involving au-
tonomous vehicles in california. Plos One, 12(9):e0184952, 2017.

[8] Samuel G. Finlayson, Isaac S. Kohane, and Andrew L. Beam. Ad-
versarial attacks against medical deep learning systems. CoRR,
abs/1804.05296, 2018.

[9] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and
robustness certification of neural networks with abstract interpreta-
tion. In (S&P’18), pages 3–18. IEEE, 2018.

[10] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp,
Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. A survey
of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev., 37:100270, 2020.

[11] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochen-
derfer. Policy compression for aircraft collision avoidance systems.
In IEEE/AIAA 35th DASC, pages 1–10, 2016.

[12] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient smt solver for verifying deep
neural networks. In CAV 2017, pages 97–117, 2017.

[13] Pavithra Prabhakar and Zahra Rahimi Afzal. Abstraction based out-
put range analysis for neural networks. In NeurIPS’19, 2019.

[14] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,
and Martin T. Vechev. Fast and effective robustness certification. In
NeurIPS 2018, pages 10825–10836, 2018.

[15] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
An abstract domain for certifying neural networks. POPL’19, 3:1–
30, 2019.

[16] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
Boosting robustness certification of neural networks. In ICLR’19,
2019.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing prop-
erties of neural networks. In 2nd ICLR, 2014.

[18] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta
Kwiatkowska. A game-based approximate verification of deep neural
networks with provable guarantees. Theoretical Computer Science,
807:298–329, 2020.

[19] Yiting Wu and Min Zhang. Tightening robustness verification of con-
volutional neural networks with fine-grained linear approximation.
In AAAI’21, 2021.


