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Abstract—Triangle counting is a fundamental graph mining
problem, widely used in many real-world application scenarios.
Due to the large scale of graph streams and limited memory
space, it is appropriate to achieve the estimation of global and
local triangles by sampling. Existing streaming algorithms for
triangle counting can be generalized into two categories. One
is Reservoir-based methods employing a fixed memory budget,
whose size is difficult to set for accurate estimation without any
prior knowledge about graph streams. The other is Bernoulli-
based methods, which sample edges by a given probability with
uncontrollable memory budget. In this work, we propose a
novel and bounded-sampling-ratio method, called BSR-Sample,
by adaptively resizing memory budget upwards over evolving
graph streams. BSR-Sample can keep the sampling ratio always
greater than or equal to a specified threshold with available
memory space. Then, we design BSR-TC, a single-pass streaming
algorithm for both global and local triangle counting, based on
BSR-Sample. Experimental results show that BSR-TC achieves
accuracy of at least 99.8% for global triangles, when the ratio
of initial memory budget to whole graph streams ≥ 0.002%
and given threshold = 20%. And our proposed BSR-TC can
gain more advantage than the state-of-the-art algorithms over
the continuous growth of graph streams.

Index Terms—Evolving Graph Streams, Triangle Counting,
Bounded Sampling Ratio

I. INTRODUCTION

There has been a burst interest in graph streams in recent
decades, covering lots of real-world application scenarios,
such as social networks, E-commerce, traffic networks [1],
[2]. Graph streams are a continuous sequence of data items,
often abstracted as edge streams, expressing entities and the
relationships between these entities [3]. Triangle counting has
many important applications and is widely used in graph data
mining. For instance, the number of triangles can be used
to detect communities [4], study clustering coefficient and
connectivity [5] of social networks to improve user experience,
discovery spam emails [6] to ensure the safety of customer
services, etc.

Due to the large scale of graph streams and limited memory
space, it is almost infeasible to calculate the real number
of triangles by storing the entire graph streams. On the one
hand, it will consume much more time on the communications
between memory and secondary storage by storing the graph
streams data into secondary memory. On the other hand,
the fully dynamic characteristics of evolving graph streams
also induces the difficulties of accurately counting global and

local triangles within limited memory space. In the past few
decades, there have been plenty of research [7]–[11] on stream
sampling methods, which sample a small population of graph
streams to compute the number of triangles as accurate as
possible.

According to whether memory budget consumed by various
sampling methods is fixed or not, we can classify the sampling
methods into two categories: Reservoir-based sample and
Bernoulli-based sample. The former will initially set a fixed
memory budget, which stores the uniform sample chosen
from graph streams. However, its sampling ratio monotonously
decreases along the growing graph streams after the number
of input edges exceeds memory budget. On the contrary, each
member of the population has the same probability to be
chosen and the inclusion variables are jointly independent in
the Bernoulli-based sample. Thus, the memory budget used
by Bernoulli-based sampling can vary in principle from 0 to
the entire population size, which may exceed the available
memory space and cannot be bounded to an expected value.

So far, existing streaming algorithms for triangle counting
either fail to maintain a stable sampling ratio or controllable
memory budget with the growth of graph streams. Taking
full advantage of the characteristics of bounded sampling
ratio and efficient utilization of memory budget, we propose
a novel sampling method, called bounded-sampling-ratio
sample (BSR-Sample), to maintain the sampling ratio greater
than or equal to a specified threshold, when there is enough
memory budget. The main contributions of this paper are as
follows:

• Propose a novel and general sampling method, BSR-
Sample, to keep the sampling-ratio great than or equal
to a specified sampling ratio threshold, when available
memory is enough large. To the best of our knowledge,
BSR-Sample is the first attempt to adaptively increment
memory budget with the continuous growth of graph
streams. The highlight of this method is that we are able
to maintain a bounded-sampling-ratio, without requiring
any prior knowledge about the scale of graph streams.

• BSR-TC, a streaming algorithm for both global and
local triangle counting over evolving graph streams, is
proposed based on BSR-Sample. Compared with previous
work for triangle counting, it is capable of discovering
more triangles and attain higher accuracy by adaptively



resizing memory budget upwards.
• Experimental results performed on real-world datasets

show that BSR-TC can obtain more accurate estima-
tion than the state-of-the-art sampling methods, with
the growth of graph streams. Meantime, BSR-TC can
keep stable results for both global and local triangle
counting with the same specified threshold, regardless of
differently initial memory budget.

The rest of this paper is organized as follows. In Section II,
we review the related works. Then, we discuss the motivation
of our work in Section III. In Section IV, BSR-Sample and
BSR-TC are proposed and introduced in detail. In Section V,
experiments are conducted using real-world datasets. In Sec-
tion VI, we conclude our work.

II. RELATED WORK

In this section, we mainly introduce two categories of
sampling methods, Bernoulli-based sample, and Reservoir-
based sample, for triangle counting over graph streams. They
are distinguished by whether consumed memory budget is
fixed or not, as illustrated in Table I.

A. Reservoir-based sample

These sampling methods set a fixed memory budget, which
is of importance considering the limited memory space. Vitter
discussed optimized sampling algorithms in details based on
the naive reservoir sampling method, and these optimizations
improved the speed by an order of magnitude [12]. The main
idea is to skip over a number of records rather than process
all the records, reducing the called number of random number
generators. However, the optimized Reservoir-based sampling
methods are not suited for triangle counting, because they fail
to update the estimations for every edge. Gemulla et al. further
proposed a novel sampling method based the naive reservoir
sampling, called Random Pairing (RP), which handled both
edge insertions and deletions for graph streams by the strategy
of using future inserted edges to compensate for previous
deletions [13]. [14] utilized temporal locality, where future
edges were more likely to form triangles with recent edges
than older ones, to improve the estimation accuracy. TRI-
EST was the first one to estimate triangles in fully-dynamic
graph streams, involving both edge insertions and deletions
by Reservoir-based sampling methods and its variants [15].
[16] proposed a family of algorithms for global and local
triangle counting, called ThinkD, to further improve TRIEST
by leveraging unsampled edges to update the estimations of
triangles.

B. Bernoulli-based sample

The Bernoulli-based sampling method is relatively simple
and efficient for it just needs an initial sampling probability to
sample edges over graph streams. Therefore, this sampling
method attracts considerable attention to count triangles in
evolving graph streams. Ahmed et al. proposed a general
sampling framework called graph sample and hold (gSH) for
big-graph analytics by one single pass [17]. The gSH utilizes

TABLE I: Comparison of sampling methods. Note that the
number of current edges is more than initial reservoir size
and available memory space is enough large for the sake of
simplicity.

Sampling Method Sampling Ratio Memory Budget

BSR-Sample (Proposed) ≥Threshold Adaptive
Reservoir-based sample Decreased F ixed
Bernoulli-based sample Fixed Increased

different sampling probabilities based on the graph properties
of interest, e.g. gSH(p, q) samples the current arriving edge
with probability p when it depends on previously sampled
edges, otherwise holds the edge with probability q. Later
Ahmed et al. proposed a new framework called graph priority
sampling (GPS) for sequentially sampling over evolving graph
streams [18]. Two estimation approaches are proposed to attain
unbiased estimation of various graph properties, which are
post-stream estimation and in-stream estimation. Lim et al.
proposed a memory-efficient and accurate method for local
triangle estimation over graph streams, called MASCOT [19].
It achieves best performance of both accuracy and memory
efficiency of local triangle counting, by the means of “uncon-
ditional counting before sampling”.

III. MOTIVATION

The sampling ratio of Reservoir-based sample will mono-
tonically decrease after the size of arriving edges exceeds the
capacity of memory budget, which inevitably affect the esti-
mation results, as shown by Figure 1. The memory budget of
Bernoulli-based sample is not fixed or monotonically increases
over the evolving datasets. Figure 2 shows that the sample size
of Bernoulli-based sample fluctuates around the real value.
Therefore, for the Bernoulli-based sample, it is difficult to
allocate appropriate memory space for triangle counting over
evolving graph streams.

Considering the characteristics of graph streams, we obtain
observations which pose huge challenge for accurate triangle
counting.

Observations:
• In real application scenarios, the scale of graph streams

is unknown in advance.
• The evolving graph streams usually grow upwards as a

whole.
• Memory space is limited to store all edges of graph

streams.
These observations above lead to new challenges for global

and local triangle counting over evolving graph streams, as
described below.

Proposed problems:
• How to maintain an appropriate sampling ratio and how

much memory space to allocate for accurate global and local
triangle counting, without knowing any prior knowledge of
evolving graph streams?

Goals:
• Maintain a bounded-sampling-ratio to achieve accurate

and stable estimation of global and local triangle counting.
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(a) Dblp (b) Skitter (c) LiveJournal (d) Orkut

Fig. 1: The blue line represents the number of discovered trian-
gles, and the green line represents global error. For Reservoir-
based sampling methods, both the number of discovered
triangles and the accuracy of global triangles are positively
correlated with memory budget.
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Real Bernoulli

Fig. 2: The sample size of Bernoulli-based methods fluctuates
around the real one with sampling probability p=0.4.

• Control Consumed memory budget to improve the effi-
ciency of memory usage.
• Develop single-pass streaming algorithm to avoid multi-

repeated and redundant operations.
• And no need to access slower secondary storage.
In general, Reservoir-based sample may induce the sam-

pling ratio to monotonically decrease, which will damage
the accuracy of estimations over evolving graph streams.
Bernoulli-based sample cannot accurately calculate the size
of memory budget. Therefore, we propose a novel Reservoir-
based sample method, called BSR-Sample, which keeps a
bounded sampling ratio and takes advantage of both methods
above. BSR-Sample can maintain the sampling ratio greater
than or equal to a given threshold and enable the memory
budget to adaptively increase under control within available
memory space. The comparison of the three sampling methods
is illustrated in Table I.

IV. DESIGN AND ANALYSIS

In this section, we firstly introduce the overview of BSR-
Sample and BSR-TC. Then, we show the implementation of
these algorithms in detail.

A. Overview

Our proposed BSR-Sample always maintains the sampling
ratio greater than or equal to a specified sampling-ratio thresh-
old by leveraging multi-sets of Reservoir-based sample. Then,
we propose BSR-TC using BSR-Sample method for triangle
counting. As illustrated in Figure 3, BSR-Sample takes edges
from graph streams as input, and outputs a set of sampled
edges to BSR-TC for both global and local triangle counting.
• Estimation. BSR-TC firstly estimates the number of

global and local triangles for each arriving edge from the
evolving graph streams, rather than samples them. Here, we
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2. Sampling: Using reservoir-based 

sampling algorithms

3. Checking: Determining whether to 
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Checking
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Fig. 3: The framework of BSR-Sample & BSR-TC.

call this mechanism as “first counting, then sampling”, which
improves the estimation accuracy by leveraging more edges to
participate in statistics analysis.
• Sampling. The whole sampling set of BSR-Sample is di-

vided into two parts: the current sampling set and the sampling
pool. The former is used to maintain dynamically updated
edges, which are sampled based on the naive Reservoir-based
sample. The sampling ratio of the current sampling set is
always greater than the specified threshold. BSR-Sample will
remove the sampled edges into sampling pool once it equals
the threshold, and allocates new memory budget as the current
sampling set.
• Checking. In this procedure, BSR-Sample determines

whether to enable the current sampling set join into the sam-
pling pool. When the sampling ratio of the current sampling
set equals the specified sampling-ratio threshold, BSR-Sample
will remove the entire current sampling set into sampling pool,
and then create a new sampling set to substitute for current
sampling set. Through adaptively incrementing the current
sampling set, BSR-Sample is capable of keeping a bounded-
sample-ratio when the available memory is large enough.
And BSR-Sample can ensure the estimation accuracy without
requiring any prior knowledge about evolving graph streams.

B. Algorithm Description

Here, we first introduce the sampling method of proposed
BSR-Sample. Then, we analyze how to estimate global and
local triangles by BSR-TC over evolving graph streams. We
utilize the naive Reservoir-based sample for the current sam-
pling set to sample edges.

Here, Θ is the totally available memory space. Sc is the
current samping set. Sp is the samping pool, and S(i)p is the
ith single sampling set of Sp. S = Sc ∩ Sp, NS

u is the set of
neighbors of the node u in S.M is the initial memory budget.
R is a specified sampling-ratio threshold. Let M/R is T .
Note that, to simplify the description, we initialize the current
sampling set and each single sampling set in the sampling pool
to a same size.
• CountTriangle (Lines 8-20 of Algorithm 2). In this

function unit, CountTriangle first checks whether each node
of the arriving edge(u, v) is contained in S (lines 9-14),



Algorithm 1: Bounded-Sampling-Ratio Sample (BSR-
Sample)

Input: (1) {e(1), e(2), · · · }: a graph stream;
(2) M: initial memory budget;
(3) R: specified sampling ratio threshold.

Output: S: a set of sampled
edges.

1 for each new arriving edge et = (u, v) do
2 SampleEdge((u, v),Sc).
3 CheckRatio((u, v),Sc,Sp).
4 end
5 Function SampleEdge(et,Sc)
6 tc ← t %M
7 if tc ≤M then
8 Sc ← Sc + {(u, v)}
9 end

10 else if a generated random number (0, 1) ≤M/tc
then

11 choose a random edge (m,n) from Sc
12 Sc ← Sc − {(m,n)}
13 Sc ← Sc + {(u, v)}
14 end
15 End
16 Function CheckRatio(et,Sc,Sp)
17 tc ← t %M
18 if M/tc = R and Θ ≥M then
19 remove the current sampling set Sc into

sampling pool Sp
20 create a new Sc with size M
21 Θ← Θ−M
22 end
23 End

which is the output of BSR-Sample in Algorithm 1. Then,
we count the common neighbor NS

u,v of nodes u and v(line
15). For each node c in NS

u,v , we updates both global and
local triangle counting by 1/pcuv (lines 16-19). Note that
Sc and S(i)p in Sp are produced by the naive Reservoir-
based sample, respectively. Therefore, BSR-TC is unbiased
for triangle counting, where the expected value equals the
real number of triangles. To compute the probability pcuv that
BSR-TC discovers the triangle (c, u, v), we divide discovered
triangles into 4 types, depending on the positions (Sc or Sp)
of edges (u, c) and (v, c). When a new edge e(t+1) = (u, v)
arrives and forms a triangle with a node c, pcuv is calculated
by following formula (1).

pcuv =



min{1,M
tc
× M− 1

tc − 1
}, {(u, c), (v, c)} ∈ Sc

min{1,M
tc
} ×R, {(u, c), (v, c)} ∈ Sc ∪ S(i)

p

R×R, {(u, c), (v, c)} ∈ S(i)
p

R× M− 1

T − 1
, {(u, c), (v, c)} ∈ S(i)

p ∪ S(j)
p , ∀i 6= j

(1)

Algorithm 2: BSR-Sample for Triangle Counting
(BSR-TC)
Input: S: set of sampled edges.
Output: (1) ∆: global triangle counting;

(2) ∆u: local triangle counting for node u.
1 ∆ ← 0
2 for each new arriving edge et = (u, v) do
3 CountTriangle((u, v)).
4 SampleEdge((u, v),Sc).
5 CheckRatio((u, v),Sc,Sp).
6 end
7 Function CountTriangle((u, v))
8 if u /∈ V then
9 V ← V ∪ {u} and ∆u ← 0

10 end
11 if v /∈ V then
12 V ← V ∪ {v} and ∆v ← 0
13 end
14 NS

u,v ← NS
u ∩N S

v

15 for each c ∈ NS
u,v do

16 ∆← ∆ + 1/pcuv; ∆c ← ∆c + 1/pcuv;
17 ∆u ← ∆u + 1/pcuv; ∆v ← ∆v + 1/pcuv;
18 end
19 End

• SampleEdge (Lines 5-15 of Algorithm 1). This func-
tion determines whether to sample the arriving edges from
graph streams. We first calculate the order of edge streams
occurring in the current sampling set Sc (line 6). For Sc, we
adopt the naive Reservoir-based method to sample the arriving
edge with probability min{1,M/tc}.
• CheckRatio (Lines 16-23 of Algorithm 1). Once the

sampling ratio of Sc reaches a specified threshold R and there
is enough memory space, CheckRatio will remove Sc into Sp
(line 18-19). Meanwhile, new memory budget is allocated to
restart a new round Reservoir-based sampling from scratch.
Thus, BSR-Sample can keep the sampling ratio greater than
or equal to R without knowing any knowledge about evolving
graph streams.

V. EXPERIMENTS

We show that BSR-TC suffices to provide accurate estima-
tion for both global and local triangle counting, without requir-
ing any knowledge about graph streams. Compared with the
state-of-the-art streaming algorithms (ThinkDAcc, MASCOT
and WRS), BSR-TC always maintains a bounded sampling-
ratio to discover more triangles along with the continuous
growth of graph streams, and so as to obtains more accurate
results and efficient memory usage. Therefore, BSR-TC has
adaptive characteristics for triangle counting over evolving
graph streams.

A. Experimental Setup

We perform experiments on a server with Intel Xeon Gold
6148 processors and 64-bit Red Hat Linux OS. Each experi-



TABLE II: Summary of the real-world graph streams used in
our experiments.

Name # Nodes # Edges Summary

Dblp 317, 080 1, 049, 866 Collaboration network
Skitter 1, 696, 415 11, 095, 298 Internet topology graph

LiveJournal 3, 997, 962 34, 681, 189 Friendship network
Orkut 3, 072, 441 117, 185, 083 Online social network
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Fig. 4: Scalability. BSR-TC is always more accurate and
stable than ThinkDAcc and WRS. Here, We calculate the
global error rate every 500,000 edges for evolving graph
streams, based on the Orkut dataset.

ment entails 100 runs to guarantee the statistical stability of
assessment. All experiments are conducted on the real-world
graphs from [20], which are summarized in Table II. Suppose
that the scale of these datasets is unknown to simulate real
application scenarios.

B. Evaluation Metrics

We use the following metrics to evaluate the accuracy of
global and local triangle counting, respectively.
• Global Error. Let x̂ be the ground truth of the global

triangles, and x be the estimated value of x̂. Considering x̂
may be equal with 0, we add 1 to both x̂ and x. Let c denote
the number of runs for each experiment. Then, the global error
is

1

c

∑c

i=1

|x̂− x|
x̂+ 1

• Local Error. Let x̂u be the ground truth of the local
triangles for each node u ∈ V , and xu be the estimated value
of x̂u. Considering x̂u may equal 0, we add 1 to both x̂u and
xu. Then, the local error is

1

c

∑c

i=1

{
1

|V|
∑

u∈V

|x̂u − xu|
x̂u + 1

}
C. Performance

Since BSR-TC is a first exploration of triangle counting
by adaptively resizing memory budget over evolving graph
streams, there are no existing streaming algorithms for similar
comparisons. For the sake of illustration, we use ThinkDAcc,
MASCOT and WRS as the baselines, which are state-of-the-
art streaming algorithms for triangle counting. Here, we define
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Fig. 5: Accuracy. More triangles are discovered by BSR-TC,
when η < R.

the ratio of initial memory budget against whole graph streams
as η, and set the threshold R to 20%.
• Scalability (maintain accuracy over evolving streams).

In real application scenarios, it is challenging to set appropriate
parameters, such as memory budget, for triangle counting,
because the scale of graph streams is always increasing as
time flies. As shown in Figure 4, when initial memory budget
is 104 edges, the global errors of both ThinkDAcc and WRS
fluctuate between -0.15 and 0.2 as graph streams evolves,
while BSR-TC is almost always equal to zero. This is because
the memory budget of ThinkDAcc and WRS is fixed and is
difficult to set appropriately without any knowledge about
the scale of graph streams. Our proposed BSR-TC can keep
stable and high accuracy by the adaptively resampling method
over evolving graph streams.
• Accuracy (regardless of small η). Figure 5 shows BSR-

TC discovers more triangles than ThinkDAcc and MASCOT
by adaptively resampling method, when η is less than R. By
sampling the first edges in memory budget with probability 1,
ThinkDAcc always discovers more triangles than MASCOT.
Figure 6 depicts that BSR-TC achieves accuracy of at least
99.8% for global triangles and 60.0% for local triangles,
respectively, when η ≥ 0.002% and R = 20%. Under this
condition, BSR-TC gains accuracy of 100× for global trian-
gles than ThinkDAcc. Therefore, our proposed BSR-TC can
maintain high accuracy by adaptively incrementing memory
budget to maintain a bounded sampling ratio R over the
growth of graph streams, even though the initial η is small.

VI. CONCLUSIONS

We propose a single-pass and bounded-sampling-ratio
method, BSR-Sample, by adaptively resizing memory budget
under control without requiring any prior knowledge about
graph streams. BSR-Sample allocates new memory budget to
restart a new round of sampling based on standard reservoir
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Fig. 6: Accuracy. BSR-TC is more accurate than state-of-the-art streaming algorithms for global and local triangle counting.
Here, the X -axis denotes η.

sampling, when current sampling ratio is less than a given
threshold. Then, by the mechanism as “first counting, then
sampling”, we propose BSR-TC for global and local triangle
counting based on BSR-Sample. To the best of our knowledge,
BSR-TC is the first attempt to adaptively resize memory
budget over evolving graph streams. Compared to state-of-the-
art streaming algorithms, BSR-TC can obtain more accurate
and stable estimation of triangles over evolving graph streams.
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