
DOI reference number: 10.18293/SEKE2021-009 

 

Ride Hailing Service Demand Forecast by Integrating 

Convolutional and Recurrent Neural Networks 

Zinat Ara 

Department of Information Sciences and Technology 

George Mason University 

Fairfax, VA, USA 

zara@gmu.edu 

Mahdi Hashemi 

Department of Information Sciences and Technology  

George Mason University 

Fairfax, VA, USA 

mhashem2@gmu.edu, ORCID: 0000-0003-0212-0228 

 

 
Abstract—Ride hailing services, such as Uber, Lyft, and Grab have 

become a major transportation mode in the last decade. Current 

ride demand is one of the major factors in such services’ pricing 

algorithm. Therefore, forecasting future travel demand for such 

services is essential to both drivers and riders. This study 

constructs a deep learning based model for ride hailing demand 

forecast aiming to achieve high accuracies in solving similar 

problems. This study attempts to address a limitation in existing 

ride hailing demand prediction models, where the area is divided 

into a rectangular grid and all travel demand forecasts are made 

between rectangular cells, rather than city neighborhood zones. 

The proposed model forecasts travel demand between city 

neighborhood zones.  The forecast model integrates convolutional 

and recurrent neural networks and forecasts the demand for each 

pickup-destination pair for a particular hour, during the next day, 

by observing the demand over the past two weeks for that 

particular hour. Our experiments with a real-world hire vehicle 

dataset in New York City showed that the proposed model 

outperforms the CNN and LSTM models up to 18.41 % in RMSE 

and 22.65% in R2 values. 
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I.  INTRODUCTION 

Companies, such as Uber, Lyft, Juno, Gett, Grab that allow 
passengers to request rides from mobile applications are known 
as ride-hailing service companies. Online ride hailing services 
have rapidly grown in popularity in recent years. Receiving a 
correct approximation of travel demand at a certain time can help 
a passenger schedule their future trips more efficiently. On the 
other hand, drivers employed by the ride hailing services can 
choose to work at times with high demand to maximize their 
earnings. This paper proposes a deep learning method 
combining convolutional neural network and bidirectional long 
short term memory (biLSTM) for predicting travel demand of 
ride hailing services. 

Space and time are the two indispensable dimensions of 
urban ride-hailing demand prediction. For instance, urban ride-
hailing is always strongly linked between the public transport 
areas and the tourist regions, and between the residential and the 
industrial regions. In the peak hours of workdays morning and 
the peak hours of workdays evening, requests from residential 
and industrial regions increases significantly. In addition to the 
association between space and time, changes of urban ride-

hailing demand are also affected by many other factors including 
weather, holidays, and unforeseen incidents such as sport events 
or national occasions. There have been extensive studies in 
traffic data prediction, including traffic volume, taxi pick-ups, 
and traffic in/out flow volume. With the fast developing of 
machine learning models, prediction models based on neural 
network is getting more attention. Existing methods on traffic 
prediction have only considered spatial relation (e.g., using 
CNN) or temporal relation (e.g., using LSTM) independently 
and state-of-art results are achieved in the work compared with 
the traditional statistical learning methods. The main advantage 
of CNNs that make them suited to forecasting time series is the 
ability to use filters to compute dilations between each cell. 
Considering the spatial relation which is the size of the space 
between each cell, allows the neural network to better 
understand the relationships between the different observations 
in the time series. In this paper, we are combining bidirectional 
LSTM with CNN for predicting ride hailing demand. Our work 
is different from the existing ones [1, 2, 3] as we are not using 
longitude-latitude to create grids for defining the location and 
the method does not require any graphical representation or 
image data as input. A rectangular division of a map can result 
in grids which fall into two different regions or have a majority 
part of it outside the land area. In either of these cases the 
demand calculation can suffer a level of inaccuracy. The study 
divides the total space into regions using the NYC Taxi Zones 
dataset which creates partitions based on NYC department of 
city planning’s neighborhood tabulation areas. Pickup-
destination pairs are created according to their regions and 
multiple one-dimensional arrays considering time period fit to 
be the input for our CNN. Applying filters, we convolve these 
one-dimensional matrices and then run biLSTM for each of them 
to predict ride hailing demand. Most of the studies have applied 
unidirectional LSTM to handle similar problems but 
bidirectional will run the inputs in two ways and can understand 
the prediction context better [4]. 

II. RELATED WORK 

Machine learning (ML) and prediction models are used by 
researchers to make transportation systems more intelligent [5, 
6, 7, 8, 9, 10, 11, 12]. Lam and Liu [13] used the discrete choice 
model to analyze the correlation between dynamic pricing and 
waiting time in densely populated areas of New York. Gerte et 
al. [14] examined the demand for the ride hailing service using 



a panel based random effects model in order to capture both 
heteroscedasticity and autocorrelation effects. The major 
challenge of statistical approaches is a lack of predictive 
accuracy, particularly under a complex data environment with 
different data sources. 

Travel demand data has periodicity, so historical travel 
demand is used to predict future travel demand. Ma et al. [15] 
utilized CNN on images of traffic speed for the speed prediction 
problem. In these methods convolution network is applied on the 
entire city without any partitions and predictions were done 
based on all the regions. As a result, taking account of unrelated 
regions for the prediction of the target area may downgrade the 
performance. LSTM itself is widely used to process time series 
data and traffic prediction. Yu et al. [16] applied long short-term 
memory network and autoencoder to capture the temporal 
dependency for predicting the traffic volume particularly for 
peak-hour and post-accident scenarios. However, the spatial 
relation is not measured in these scenarios. 

 To capture both spatial and temporal dependences 
simultaneously in one end-to-end training model, researchers 
have made numerous attempts in recent years. Shi et al. [17] 
proposed the conv-LSTM network, which combined CNN and 
LSTM in one sequence to sequence learning framework and the 
results showed that the conv-LSTM outperformed fully-
connected LSTM on the basis of learning the complex spatio-
temporal features. A study by Ke et al. [18] applied the random 
forest framework to select the exogenic variables, ranking their 
significance. In addition, the image intensity was examined 
which was retrieved from the map sequences of travel time rates 
using CNN and LSTM tools for short time passenger demand 
forecasting. Rodrigues et al. [20] presented a deep learning 
architecture merging the text information with time-series data 
and applied the approach to the problem of taxi demand 
forecasting in event areas. 

Previous methods are mainly designed to predict the taxi 
demand in a specific region and ignore the importance of 
movement direction between different areas [21]. Rare works 
have been done on the prediction considering all combination 
including destination and inter-region demands. Liu et al. [22] 
aims at predicting the taxi demand between all region pairs in a 
future time interval. An approach contextualized spatial-
temporal network is proposed and proved to be effective in 
predicting taxi demands both in origin and destination. 
However, region partition is done by grid based method and the 
spatial and temporal information of taxi demands has not been 
fully taken into consideration in this case. Instead of using 
traditional matrix Chu et al. [23] developed and manipulated 
origin-destination (OD) based tensor to represent OD flows and 
applied convLSTM model to predict demand. Grid wise division 
is applied for measuring OD tensor. Guo [24] proposed an 
integrated CNN-BiLSTM-Attention based model to predict taxi 
demand. Pengfeng et al. [21] divided the urban area into H x W 
grids based on the longitude and latitude. While calculating 
travel demand, they have considered both pickup and destination 
location to create a demand matrix. All of these studies divide 
area’s latitude and longitude into n×n geographical rectangles to 
consider the regions. But a region’s map is not rectangular shape 
and dividing it as this can result in grids falling into two different 

regions or have a majority part of it outside the land area. In these 
cases, demand calculation will be inaccurate.  

This paper is considering pickup-destination pairs according 
to their regions and create multiple one-dimensional arrays for 
different time periods fit to be the input for our CNN. Then 
adding bidirectional LSTM layers for each of them to predict 
ride hailing demand which will run the inputs in two ways to 
better understand the prediction context.  

III. DATA DESCRIPTION 

One of our primary datasets is collected from NYC Open 
Data source which provides a wide range of traffic datasets in 
different formats. We have chosen 2018 (January-December) for 
hire vehicles trip data. These records are generated from the Ride 
Hailing Services (RHS) trip record submissions made by 
different commuter vehicles. The RHS trip records include fields 
capturing the pick-up date, time, and taxi zone location ID, 
which correspond with the NYC taxi zones open dataset. Each 
row represents a single trip in a hired vehicle service [25]. 
Secondly, NYC taxi zones data corresponds to the pickup and 
drop-off zones, or location IDs, included in the yellow, green, 
and RHS trip records (Uber, Lyft) published to Open Data. The 
taxi zones are based on NYC Department of City Planning’s 
Neighborhood Tabulation Areas (NTAs) and are meant to 
approximate neighborhoods, so one can visualize which 
neighborhood a passenger was picked up in, and which 
neighborhood they were dropped off in. This dataset provides 
the geolocations of neighborhoods where the output is multi 
polygons each representing different region with unique location 
ID.  

 

Figure 1 Pickup demand pattern in NYC in year 2018 

Figure 1 shows the number of requests along Y axis in 2018 
for RHS in New York city from January to February based on 
pickup datetimes (X axis). From the pattern of the distribution 
with respect to time it is certain that passenger requests are 
higher in weekdays and comparatively lower in weekends. The 
features which have been considered for training in this study 
are timestamp, hour, demand, and weekend. These features were 
chosen for their higher impact over demand prediction and 
availability.  



IV. METHODOLOGY 

A. Non-grid partition 

Most of the related studies have [21, 3, 22, 23, 24] used grid 

wise rectangular division method where they selected latitude 

and longitude value of a city and then divided into n×n 

geographical squares. For simplicity we define each square 

block unit as pixel. The overall travel demand about one city is 

reflected by each pixel’s demand. The grid wise division in 

geographical area is shown in Figure 2. But this method has few 

problems in following cases: 
1. First problem will be the resolution; a pixel may contain 

regions with high demand and regions with low demand 
so they will combine in the same pixel and that pixel 
will basically show their average demand. The larger 
the pixel gets this problem becomes more severe 
(Figure 2). 

2. A pixel may contain only regions with water, no land 
area. Demand will be zero in that pixel. These types of 
pixels cannot be disregarded in grid wise division 
method. 

3. If a pixel includes both land and water area, that pixel 
will not provide the actual demand of the region. There 
is a high chance that demand counts might decreased 
for considering non-regional areas into the same pixel.  

A geographical map is not a perfect geometric rectangular 
shaped object, so partitioning it based on grid is less realistic 
option. To avoid this problem geographic information of an area 
can be applied to define the boundaries where the area longitude 
latitude values are formatted as polygons. This represents each 
area boundary precisely and will be useful to solve this problem. 
We are utilizing the NYC taxi zones which is based on city 
planning’s neighborhood tabulation area and where each region 
is partitioned into polygon shape to its approximate 
neighborhoods. Instead of using grid based division, partitioning 
regions based on its actual geolocation information is more 
effective in terms of accuracy for demand calculation. Figure 3 
plots the map using geolocations which represents the taxi zones 
of NY city and each region has a unique identification number. 
In our dataset each trip information for RHS contains pickup and 
destination location ID which comes from the polygons. We are 
calculating pickup-destination pairs according to their regions 
and create multiple one-dimensional arrays considering time 
period fit to be the input for our CNN. The raw data is processed 
and features are extracted. Then transformed into a matrix as the 
format of input data of the prediction framework. 𝑟  is the 
number of inter area hire vehicle request from a pickup location 
𝑖 to destination 𝑗 during a time period 𝑡 which is represented by 

𝑟𝑖𝑗
𝑡  . Similarly, for each pickup-destination pair, we will calculate 

the corresponding 𝑟 at time 𝑡 . Finally, the total number of 
requests in the city 𝑅𝑡 at period 𝑡 which will consider each pair 
count and can be represented in form a matrix: 

𝑅𝑡 =  [
𝑟11

𝑡 ⋯ 𝑟𝑛1
𝑡

⋮ ⋱ ⋮
𝑟𝑛1

𝑡 ⋯ 𝑟𝑛𝑛
𝑡

] 

where n is the number of total area polygons or regions. The 
demand prediction problem aims to predict the demand at time  
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Figure 2 Grid based partitioning and problems associated thereof 

interval 𝑡 + 𝑘, where 𝑡 is current timestamp and k is the lag size. 
In addition to historical demand data, we also incorporated 
influential features such as time of day, day of week, holiday, 
weekend and areas of pickup and destination. 

 

 
 

Figure 3 Partitions using New York city neighborhood zone 

Following are the primary steps of our approach for demand 
prediction: 

1. Extract pair-wise demand for region based pickup-
destination locations. 

2. Create 2D matrix for each time interval's RHS demand 
so that each matrix is a temporal snapshot of demand for 
all pairs. 

3. Each temporal snapshot will be given input to 1D 
multivariate CNN model. 

4. Compute feature information using CNN, store feature 
output in each subsequent array. 



5. Use each subsequence with feature information from 
CNN as a new feature for biLSTM, memorize long-
sequence features from each subsequence, use to predict 
the RHS demand for input pairs in future time interval. 

B. One dimensional convolution network 

A modified version of 2D CNNs called 1D Convolutional 

Neural Networks (1D CNNs) has recently been developed [3, 

21]. Rather than matrix operations, forward and backward 

propagation in 1D CNNs require simple array operations. For 

this reason, the computational complexity of 1D CNNs is 

significantly lower than 2D CNNs. 1D CNNs with relatively 

shallow architectures (i.e., small number of hidden layers and 

neurons) are able to learn challenging tasks faster.  

Main components of 1D CNN model used in this study are 

1) convolution layers where both 1 dimension convolutions and 

sub sampling or pooling occur, and 2) fully connected layers 

that are indistinguishable to the layers of a typical Multi-layer 

Perceptron (MLP). CNN layer first performs a series of 

convolutions, the sum of this operation is passed through the 

activation function, 𝑓, followed by the pooling operation. This 

is the main difference between 1D and 2D CNNs, where 1D 

arrays replace 2D matrices for both kernels and feature maps. 

As a next step, the CNN layers process the raw 1D data and 

learn to extract such features which are used in the prediction 

task performed by the MLP-layers. The detailed explanation 

about the forward and backward propagation functions can be 

found in [26].   

C. Bidirectional LSTM 

Bidirectional LSTM, or biLSTM, is a sequence processing 

model that consists of two LSTMs: one taking the input in a 

forward direction and the other in a backwards direction. 

biLSTMs effectively increase the amount of information 

available to the network, improving the context available to the 

algorithm. The model we are using in the experiment consists 

of an output layer, a dense layer and a biLSTM layers. The input 

of the model requires a fixed-length vector. The dense layer is 

used to compress the dimension of the output vector of the 

biLSTM layer. The output layer collects the vector from the 

dense layer and outputs the desired regression value. 

D. Proposed Model: CNN-biLSTM 

The convolution layer in proposed model extracts the 
correlation between the input features and captures spatial 
dependency. Maximum pooling layer calculates the maximum 
value in each patch of each feature map. We flatten the output of 
the convolutional layers to create a single long feature vector. 
Next this tensor is passed through a bidirectional LSTM layer, 
which interprets the context from both directions. And it is 
connected to the final layer, which is known as dense layer. The 
network solves a regression task and final outcome of the model 
is number of demands for specific regions at different 
timestamps. Figure 5 illustrates the whole structure of the 
proposed model. As a desirable neural network to deal with the 
long-term dependencies in time series, LSTM is designed to 
overcome the vanishing gradients through a special gating 
mechanism [24]. LSTM avoids long term dependency problems  

  
 

Figure 5 CNN-biLSTM architecture 

by bringing the cell state, gate, and other schemes. The basic 
units of the LSTM network consist of three doors (input gate, 
output gate, and forget gate) and two memories (long-term 
memory and short-term memory). The input gate aims at 
selecting the needed new information and adds it to the cell state. 
The forget gate tends to remove the information that is no longer 
required by the memory cell, while the output gate decides what 
kind of necessary information in the cell should be output. 
Generally, the gating mechanisms can ensure the cells in LSTM 
network to store and update the essential information over long 
periods of time. 

 

Figure 6  An example of the temporal window structure 

Figure 6 describes the temporal window structure this paper 

uses for predicting the travel demand between a particular 

regional pair. Current time is noted by t. The training starts from 

2 weeks ago, which in hour count is 24*14=336. Therefore, the 

first node is labeled t-336 and the hour count is incremented by 

1 day or 24 hours for each consecutive node. The next training 



row starts by shifting the entire window by one hour which 

results in the prediction of the next hour. The diagram shows 

the prediction window starting from January 1, 12:00 AM 

leading up to predicting the demand for January 15, 12:00 AM 

horizontally and vertically shifting 1 hour from above row up 

to June 15 11:00 PM to predict demand for June 30 11:00 PM.  

The paper also implements some baseline models for 

comparison. A typical LSTM model and single one dimensional 

convolutional network consisting single CNN, max pool, flatten 

and dense layers. Another baseline model is combining CNN 

and LSTM models together. 
 

V. RESULTS AND DISCUSSION 

In order to compare our framework with the other baseline 
models, the experiments are conducted on a real dataset. No. of 
parameters for LSTM, CNN layers are 128, for dense layer 97. 
32 filters and kernel size 3 is set for convolution layers. New 
layer has been added step by step with its previous layer, 
parameters are tuned and result is observed with new mode. In 
order to evaluate the predicted performance, the root mean 
square error (RMSE) and coefficient of determination, or R2 are 
used. Root mean square error measures how much error there is 
between two data sets. The smaller an RMSE value, the closer 
predicted and observed values are: 

𝑌𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑋𝑝𝑟𝑒𝑑  (𝑖) − 𝑋𝑎𝑐𝑡(𝑖))2

𝑛

𝑖=1

 

 

(10) 

The coefficient of determination, or R2, is a measure that 
provides information about the goodness of fit of a model.  

𝑅2 = 1 −
∑(yi −ŷi)2

∑(yi −y̅i)2 (11) 

Table 3 demonstrates the comparison among all models for 
2018 NYC RHS dataset. Multiple pickup-destination pairs are 
compared and result for sample 5 pairs are shown. We 
considered same region based pair where pickup and destination 
ids are same and also different id based pairs. It is noted that 
CNN-biLSTM model outperforms the baseline models in terms 
of RMSE and R2 for any pair.  R2 scores vary for different pairs 
but it is always closer to 1 which indicates our model works as 
expected and is a good fit. The table shows that for some pairs 
sequential model LSTM achieved better result than standalone 
CNN model and vice versa, however combining them both 
always showing a better prediction. 

TABLE 3 RMSE AND R2 VALUE COMPARISON AMONG ALL 

MODELS FOR 2018 NYC RHS DATA 

Regional 

pair 

Model R2 value RMSE value 

 

Pair 1 

LSTM 0.717 76.414 

CNN 0.713 45.646 

CNN-LSTM 0.718 33.837 

CNN-biLSTM 0.720 33.705 

 

Pair 2 

LSTM 0.722 17.838 

CNN 0.596 21.501 

CNN-LSTM 0.714 18.088 

CNN-biLSTM 0.731 17.542 

Pair 3 LSTM 0.834 10.957 

CNN 0.831 11.039 

CNN-LSTM 0.838 10.822 

CNN-biLSTM 0.840 10.744 

Pair 4 LSTM 0.674 24.916 

CNN 0.704 23.737 

CNN-LSTM 0.728 22.768 

CNN-biLSTM 0.729 22.706 

Pair 5 LSTM 0.736 20.095 

CNN 0.667 22.577 

CNN-LSTM 0.740 19.947 

CNN-biLSTM 0.742 19.866 

 

The proposed model CNN-biLSTM outperforms all models 
which indicates this model is able to capture spatial and temporal 
correlations successfully. 

 

Figure 7 Comparing travel demand in one day for a specific origin-

destination pair 

Figure 7 demonstrates the travel demand prediction curve for 
one day for a specific region pair in 2018. Prediction curves of 
all models are compared with the real value. From the 
illustration it is noted that CNN-LSTM and CNN-biLSTM 
models exhibit a trend similar to real data. Figure 8 depicts the 
percentage decrease in RMSE for out proposed model 
comparing to baseline models. This measurement is performed 
on 2018 RHS dataset. For pair 2 our model achieved the best 
accuracy which is 18.41% against the CNN model. Similarly, 
for this pair the proposed model achieved 22.65% improvement 
over the R2 value. Combining CNN and LSTM has achieved 
better performance than standalone CNN and LSTM models, 
applying bidirectional recurrent network (biLSTM) further 
improves the performance.  

Among the state of the art models for ride hail service 
demand prediction, Liu et al. [22] achieved an RMSE of 19.85 
in predicting only the origins and an RMSE of 1.32 in predicting 
demand between origin-destination pairs on NYC-TOD dataset. 
Chu et al. [23] achieved an RMSE of 1.015 in predicting taxi 
demand in NYC using a MultiConvLSTM. Shu et al. [21] 
applied CNN-LSTM model on historical data in Haikou (China) 
and obtained lower RMSE values than LSTM. The dataset 
applied in all these models is presented for grids and not 
neighborhood. On the other hand, the dataset used in our study 
is based on city neighborhood zones. There is no method to 
convert the data from grid format to neighborhood format, or 
vice versa, without making unrealistic assumptions and 
significantly lowering the data accuracy. Therefore, a 
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meaningful comparison between the accuracy of the grid-based 
versus neighborhood-based models would not be possible. 

 
Figure 8 Percentage-wise RMSE decrease (improvement) in the proposed 

model (CNN-biLSTM) versus LSTM, CNN and CNN-LSTM. 

VI. CONCLUSION AND FUTURE WORK 

    Travel demand modeling is an inherent part of smart 

transportation system. Forecasting travel demand can help us 

manage the hot spot of passenger demand in the next period, 

balance supply and demand and schedule vehicle resources for 

passengers. In this paper, a convolutional and recurrent network 

based deep learning model for ride hailing service demand 

prediction is proposed that takes advantage of both temporal 

and spatial properties on areal dataset. Proposed models’ 

performances are significantly beyond baseline models, 

confirming that it is better and more flexible for the travel 

demand prediction. In addition, we found that rectangular grid 

based partition method has several issues to calculate demand. 

Therefore, choosing a suitable partitioning method to predict 

travel demand is vital and has significant impact on increasing 

accuracies. In future, we will further improve the model and test 

with different pattern data sets. We want to extend the idea of 

utilizing the geojson information for partitioning method while 

demand calculation. For calculation, including data from 

adjacent cities can be used to verify model suitability. 
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