
DOI reference number: 10.18293/SEKE2021-007 

Spatial-Temporal Forecast of the probability 
distribution of Oceanic Nino Index for various lead 

times 
 

Jahnavi Jonnalagadda 
Department of Information Science and Technology 

George Mason University 
Fairfax, Virginia, USA 

jjonnala@gmu.edu 

Mahdi Hashemi 
Department of Information Science and Technology 

George Mason University  
Fairfax, Virginia, USA 

mhashem2@gmu.edu,  ORCID: 0000-0003-0212-0228
 
 

Abstract— El Nino-Southern Oscillation (ENSO) is an irregular 
periodic oscillation in easterly winds and sea surface temperature 
(SST) over the tropical Pacific Ocean. El Nino and La Nina are 
warm and cold phases of ENSO. Oceanic Nino Index (ONI) 
determines ENSO events by calculating the three-month running 
mean of SST anomalies over the Nino 3.4 region (5°N-5°S and 
120°W-170°W). El Nino refers to ONI greater than +0.5℃ and La 
Nina refers to ONI less than -0.5℃ for five consecutive months 
across the east-central equatorial Pacific. ENSO is one of the main 
drivers of Earth’s inter-annual climate variability, which causes 
climate anomalies in the form of tropical cyclones, severe storms, 
heavy rainfall, and droughts. ENSO not only impacts global 
climate and oceanic conditions but also impacts food production, 
human health, and economy. Therefore, forecasting ENSO is of 
great importance. The main contribution of this study is proposing 
a convolutional long-short term memory that can capture spatial 
and temporal relationships between ENSO and environmental 
variables, such as SST, sea level pressure, meridional wind, and 
zonal wind. This study not only reports forecast accuracy but also 
quantifies the uncertainty associated with the forecast. 
Experimental results show that the proposed model improves the 
forecast accuracy by 14.8%, 10.4%, 11.8%, and 22.2% for lead 
times of 3, 6, 9, and 12 months, respectively. 

Keywords- Spatial-temporal forecast, Bayesian method, 
Probabilistic forecast, ENSO events, Climate anomalies, Variational 
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I.  INTRODUCTION 
El Nino-Southern Oscillation (ENSO) is characterized by 

irregular periodic variation in easterly winds and sea surface 
temperature over the Central and Eastern Pacific Ocean. It is one 
of the main drivers of Earth’s interannual climate variability, 
which often causes a wide range of climate anomalies in the 
form of heavy rainfalls, severe droughts, heatwaves, unusual 
tropical storms, and other extreme weather conditions affecting 
both tropics and subtropics [1]. ENSO transitions between three 
phases: El Nino, neutral, and La Nina. Typical El Nino 
conditions in the east-central Pacific Ocean include a) above-
average sea surface temperatures b) weak easterly winds, and c) 
deep oceanic thermocline than average. Typical La Nina 
conditions in the east-central Pacific Ocean include a) below-
average sea surface temperature, b) strong easterly winds, and c) 

shallow oceanic thermocline than average. Oceanic Nino Index 
determines ENSO events by calculating the three-month running 
mean of sea surface temperature anomalies over the Nino 3.4 
region (5°N-5°S and 120°W-170°W). El Nino is observed in the 
Pacific Ocean if the ONI is greater than +0.5℃  for five 
consecutive months. La Nina is observed in the Pacific Ocean if 
the ONI is less than -0.5℃  for five consecutive months. 
Together, El Nino and La Nina can not only impact global 
weather, climate, and oceanic conditions but also food 
production, human health, economy, and water supply [1]. 
However, El Nino and La Nina differ from each other in terms 
of evolutionary patterns and impact on global climate. For 
instance, a prolonged El Nino or La Nina for more than two 
years has caused droughts in several regions of the United States, 
while the transition from El Nino to La Nina or La Nina to El 
Nino has caused flash floods in North-Eastern regions of Asia. 
Due to the impact of ENSO on the global climate, it is important 
to predict these events in advance. 

Forecasting ENSO events in the literature can be classified 
into two types: a) dynamical and b) statistical models. 
Dynamical models use mathematical equations to describe 
physical laws governing interactions of atmosphere and ocean 
for forecasting ENSO. On other hand, statistical models learn 
patterns from historical data for forecasting ENSO. However, 
the latter models are often challenged by the complex and 
nonlinear nature of the ENSO. Machine learning models are 
statistical models that can extract salient features from high-
dimensional data. Linear models such as autoregressive moving 
average (ARMA) and autoregressive integrated moving average 
(ARIMA) are too simple to capture the nonlinear and time-
varying nature of the ENSO. To overcome the shortcomings of 
the linear models, artificial neural networks (ANN) were 
proposed in recent studies [2, 3]. Although ANNs can handle the 
nonlinearity in the data, they are not designed to explicitly 
handle the time-sequential dynamic interactions between 
variables.  On the other hand, recurrent neural networks have a 
mechanism for capturing both nonlinear and time-varying 
dynamics of multivariate systems. However, RNNs suffer from 
vanishing gradient problems while backpropagating the error. A 
variant of RNN, known as long-short term memory (LSTM) was 
developed to overcome the vanishing gradient problem by 



 

introducing several gates that would help the model decide what 
information to keep and what to forget.  

Often, climate data exhibits both spatial and temporal 
autocorrelation, which means data from nearby locations are 
more similar compared to data from remote locations. Therefore, 
another challenge of statistical models is how to map the 
historical data in a meaningful way such that the model can learn 
spatial and temporal relationships between observed data and 
ENSO events. A fully connected LSTM can only handle long-
term temporal dependencies between input variables, but they 
are not useful to capture spatial dependencies. Therefore, an 
extension of LSTM, which is convolutional long-short term 
memory (CLSTM) is introduced in [4] for precipitation 
forecasting. CLSTM replaces full connections in input and 
hidden layers of LSTM by convolution windows. In a recent 
study, ENSO is formulated as a spatial-temporal sequence 
forecasting problem, in which both input and output are sea 
surface temperature sequences [5]. However, their study only 
reported the forecast accuracy but did not quantify the 
uncertainty associated with the forecast. Estimating forecast 
uncertainty not only makes the forecasts reliable but also helps 
the decision-makers in the field to take appropriate actions. 

In this study, spatial and temporal features of ENSO are 
derived by embedding ENSO predictors into a grid space, which 
fully expresses the spatial and temporal relationships with 
ENSO. Then these spatial-temporal features are fed to CLSTM 
to forecast ENSO events at three-month intervals up to one year. 
This study not only reports the forecast accuracy but also 
quantifies the uncertainty of the forecast. 

II. LITERATURE REVIEW 
Different machine learning and statistical analyses have been 

applied in literature for predicting environmental and urban 
phenomena [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Forecasting ENSO 
in the literature is explored in this section under two categories: 
(a) deterministic methods and (b) probabilistic methods.  

A. Deterministic methods 
There have been many reviews done on ENSO predictability 

in recent years. Wu et al. [16] also used ANN and support vector 
regressor (SVR) to forecast sea surface temperature anomalies 
over the entire Tropical Pacific region with sea level pressure 
and sea surface temperature as predictors at a lead time 3-15 
months. Ham et al. [17] used transfer learning to train a CNN 
first on historical data and subsequently on reanalysis data from 
1871 to 1973. The forecasts were made for the years 1984 to 
2017 and the correlation skill of CNN during these years is 
superior to that of state-of-art dynamical forecast systems. In a 
recent review, Dijkstra et al. [18] detailed the application of 
machine learning algorithms and their role in improving the 
prediction skill of ENSO. 

B. Probabilistic methods 
Recent studies use hybrid models by combining 

autoregressive integrated moving average and an ANN to 
predict the [19].  For a lead time up to six months, their model 
performed slightly higher than CSFv2 [20]. Whereas, for lead 
times beyond six months the prediction results are similar to that 

of shorter lead times. Another example of the hybrid model for 
forecasting ENSO events can be found in [21]. A suite of 
statistical and dynamical models [20, 22, 23, 24] are combined 
using the Bayesian model averaging. The weights for the models 
are derived using the expectation-maximization algorithm. The 
dynamical models, for example, CFSv2 [20], provides a single 
model ensemble forecast. It can give an estimation of the 
predictive uncertainty by making an ensemble of forecasts. 
Recent studies estimate the predictive uncertainty of forecasts, 
using an ensemble of standard neural networks (SNNs), called a 
deep ensemble (DE) [25], which can provide the mean and 
standard deviation of a Gaussian distribution instead of point 
estimates. Another probabilistic approach based on the Bayesian 
neural network is proposed in [26], which can give an estimate 
of the predictive uncertainty.  However, the evaluation window 
for their model is very short (2015-2016).  Peter et al. [27]  
experimented with the gaussian density neural network and 
quantile regression neural network to quantify the uncertainty of 
the forecasted ENSO. For the test period 1982-2001, the forecast 
accuracy is above 0.7 for 12 months lead time but drops to 0.4 
for six months lead time for 2002-2017.  

In this study, we propose CLSTM that can capture spatial 
and temporal relationships between ENSO and ENSO predictors 
that contributes in forecasting ENSO. The main difference 
between our work and previous works is that we not only report 
forecast accuracy but also quantifies uncertainty associated with 
the forecast. 

 

Figure 1.  ONI variation from 1950 to 2019  

III. DATA DESCRIPTION 
ENSO events can be determined by forecasting ONI. The 

predictors used in this study are sea surface temperature (t: ℃) 
sea level pressure (p: Nm2), zonal wind speed (u: ms-1), and 
meridional wind speed (v: ms-1). The information about these 
variables is gathered from National Oceanic and Atmospheric 
Administration [28] and National Center for Environmental 
Prediction Reanalysis 1 [29]. The data are recorded at 500 
different locations extending from (5 °N-5 ° S and 120 °W-
170°W) from 1950-2019. The temporal resolution of the dataset 
is 1 month, and the spatial resolution of the dataset is 1° 
latitudinal and 1° longitudinal distance. Therefore, the dataset 
consists of a total of 420,000 records. Each record in the dataset 
represents the average of the three consecutive months. For 
example, the average sea surface temperature for three 
consecutive months (January, February, and March) is assigned 
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to January.  All features (predictors) are normalized using 
standard scalar within the range of [0,1].  

Figure 1 illustrates the variations of ONI from 1950-2019. 
The red and green lines are reference lines for El Nino and La 
Nina. Any value beyond the reference lines corresponds to El 
Nino or La Nina. From the figure, it is inferred that El Nino 
occurred more frequently than La Nina in the study period. The 
strongest El Nino recorded was in the year 2015, with a 
magnitude close to 3, and the strongest La Nina recorded was in 
the year 1973, with a magnitude close to -2. The data from 1950-
2013 is used for training, while the data from 2013-2019 is used 
for testing. 

IV. METHODOLOGY 
The presence or absence of ENSO events spans across the 

Pacific region, but not at a single point in the Pacific region. 
Relating this with the dataset used in this study, all the data 
points belonging to the same time have the same output 
irrespective of their geographical location. This also means that 
the data points from the same time should be fed as a single input 
to the prediction model rather than feeding them as different 
inputs to the prediction model. In this way, the number of 
samples in the dataset is 840 (70 years multiplied by 12 months). 
We position ENSO predictors that belong to the same time on 
spatial grids, where each grid is for each predictor. These spatial 
grids are arranged next to each other to form a spatial feature 
map, and this spatial feature map is fed to the prediction model 
to determine ONI. 

LSTMs are suitable for sequential prediction problems as 
they can remember the state of the previous time step with the 
help of memory gates. LSTM consists of three gates: input gate, 
forget gate, and output gate. With these gates, LSTM decides 
what information to store inside the memory unit and what 
information to throw away. More information about LSTM can 
be found in [30]. The flow of information through gates of 
LSTM is given by the following equations. 

𝑖! = 	𝜎(𝑊"#𝑋! +𝑊$#𝐻!%& +𝑊'#°𝐶!%& + 𝑏#) (1) 

𝑓! = 	𝜎(𝑊"(𝑋! +𝑊$(𝐻!%& +𝑊'( ∘ 𝐶!%& + 𝑏() (2) 

𝐶! = 𝑓! ∘ 𝐶!%& + 𝑖! ∘ 	tanh	(𝑊")𝑋! +𝑊$)𝐻!%& + 𝑏)) (3) 

𝑜! = 	𝜎(𝑊"*𝑋! +𝑊$+𝐻!%& +𝑊'+ ∘ +𝑏*) (4) 

𝐻! =	𝑜! 	 ∘ 	tanh	(𝐶!)  (5) 

Here 𝑖!, 𝑓!, 𝑜! represents the input, forget, and output gates 
respectively, 𝑊  with any suffix represents weight matrices, 𝑏 
with any suffix represents bias vectors and ∘  represents 
Hadamard product. Though LSTM has shown promising 
performance in sequence prediction problems, the full 
connections in input and hidden layers of LSTM cannot encode 
spatial information and therefore underperforms for spatial-
temporal prediction problems. CNN has outperformed other 
neural network architectures in image processing and computer 
vision due to its ability to capture pixel dependencies in the 
image. Unlike LSTM, CNN does not have memory gates to 
remember the state of previous time steps and therefore 
underperforms for sequential data.  

A. CLSTM 
In a recent study, Shi et al. [4] introduced CLSTM for a 

spatial-temporal prediction problem.  CLSTM combines the 
advantages of CNN and LSTM by replacing the full connections 
in the input and hidden layers of LSTM with convolutional 
windows. With this architecture, CLSTM can capture both 
spatial and temporal dependencies between predictors and the 
target variable. Therefore, we employ CLSTM in this study to 
forecast ONI. The flow of information through the gates of 
CLSTM is as follows.   

𝑖! = 	𝜎(𝑊"# ∗ 𝑋! +𝑊$# ∗ 𝐻!%& +𝑊'#°𝐶!%& + 𝑏#) (6) 

𝑓! = 	𝜎(𝑊"( ∗ 𝑋! +𝑊$( ∗ 𝐻!%& +𝑊'(°𝐶!%& + 𝑏() (7) 

𝐶! = 𝑓!°	𝐶!%& + 𝑖!°	tanh	(𝑊") ∗ 𝑋! +𝑊$) ∗ 𝐻!%& + 𝑏)) (8) 

𝑜! = 	𝜎(𝑊"* ∗ 𝑋! +𝑊$+ ∗ 𝐻!%& +𝑊'+°𝐶!%& + 𝑏*) (9) 

𝐻! =	𝑜!	°	tanh	(𝐶!)  (10) 

Here * represents convolution operation and ∘  represents 
Hadamard product. The original CLSTM proposed in [4] 
follows encoding-forecasting structure for spatial-temporal 
sequence-to-sequence prediction. The dimensionality of the 
target is the same as the input. However, the encoding-
forecasting structure cannot be implemented in this study due to 
different input and target dimensions. The architecture of the 
CLSTM consists of a 2D-CLSTM layer, a dropout layer, and 
three fully connected dense layers. The CLSTM layer consists 
of 32 filters, each filter with a size of 5×5. The size of the filter 
and the number of filters is determined using hyperparameter 
tuning. A dropout value of 0.5 means, only 50% of the output 
from the CLSTM layer is used as an input to successive layers 
of the network. Dropout avoids overfitting of training data. The 
first two layers of the fully connected layers consist of 128 and 
64 neurons respectively, and the third layer (output layer) has as 
many neurons as the lead time. For example, the architecture for 
a lead time of 3 months has three neurons in its output layer.  

B. Optimizing Model Parameters using Variational Inference 
CLSTM provides the ENSO forecast when the model 

parameters 𝜔 are known. To quantify the uncertainty associated 
with the forecasts, we need to obtain the probability density 
function of ONI. This can be achieved when the true posterior 
distribution of model parameters given the observed data is 
known. Thus, the posterior distribution of model parameters 
according to the Bayesian rule is given as follows. 

𝑃(𝜔|𝑋, 𝑌) = 	 ,(.,0|2),(2)	
∫,6𝑋, 𝑌	7𝜔8	,(2)	92 (11) 

Here 𝑃(𝜔) is the prior of model parameters, 𝑃(𝜔|𝑋, 𝑌) is 
the true posterior distribution of model parameters given 
observed data, 𝑃(𝑋, 𝑌|𝜔) is the likelihood of observed data.  
However true posterior is generally intractable due to the 
multidimensional integrals in the denominator of (11). 
Variational inference (VI) is a technique used to approximate the 
posterior of model parameters P(𝜔|𝑋, 𝑌)  by minimizing the 
distance between variational distribution 𝑞:(𝜔)  and true 
posterior. This is achieved by minimizing the Kullback-Leibler 
divergence (KL-divergence) between the variational distribution 
and the true posterior. Minimizing KL-divergence is the same as 



 

maximizing the evidence lower bound (ELBO) concerning the 
variational parameters. Therefore, the final objective is to obtain 
the optimal distribution of model parameters by maximizing 
ELBO. The same can be formulated as follows. 

𝐸𝐿𝐵𝑂 = 𝐿(𝑞) − 𝐾𝐿D𝑞:(𝜔)||𝑃(𝜔)E (12) 

Here the first term L(q) is called expected log-likelihood and 
the second term is the KL distance between a variational 
distribution and true distribution of model parameters. 
Maximizing the first term would result in variational distribution 
𝑞:(𝜔) that explains the distribution of data well. Maximizing 
the second term would help the model from overfitting. The 
variational distribution 𝑞:(𝜔) is assumed to be Gaussian with a 
predefined probability 𝜌 and the standard deviation 𝜎. The first 
term in (12) can be approximated by a Monte Carlo estimate 
using the mini-batches chosen randomly from the full dataset [X, 
Y] as follows.  

𝐸𝐿𝐵𝑂~ − ;
<
∑ ||𝑌= − 𝑓02> (𝑋=)||?<
=@&                                 (13) 

−𝐾𝐿(𝑞:(𝜔)||𝑃(𝜔))  

It is also assumed that prior follows a normal distribution 
with zero mean and unit variance Ν(0, 𝐼). Therefore, the KL-
divergence can be approximated as L2 regularization over the 
variational parameters θ. Once the optimal value of the 
variational distribution is obtained, the same can be used to 
approximate the true posterior. Now, given a test sample x*, the 
probability of forecasting its output y* is given by (14). 

𝑃(𝑦∗|𝑥∗, 𝑋, 𝑌) = 	∫𝑃(𝑦∗| 𝑓B∗
2> (𝑥∗))	𝑞:(𝜔)	𝑑𝜔                     (14) 

To verify the performance of CLSTM, machine learning 
models, such as SNN, LSTM, CNN, and gaussian process 
regressor (GPR) are employed as baselines. The network 
settings used for baselines are as follows. The structure of SNN 
consists of three fully connected layers. The first two layers of 
SNN have 100 nodes each, followed by a third layer with as 
many neurons as the lead time. Similar to SNN, the structure of 
LSTM consists of three fully connected layers. The first two 
fully connected layers consist of 128 and 64 neurons 
respectively.  The third fully connected layer has as many nodes 
as the lead time. Unlike CLSTM, where a sample is spatial maps 
of ENSO predictors of the same time, a sample in SNN and 
LSTM is ENSO predictors of a single geographical coordinate. 
Therefore, we need to train multiple LSTMs for data points 
recorded at the same time. The structure of CNN consists of two 
convolutional layers followed by a max-pooling layer after each 
convolutional layer and three fully connected dense layers. The 
first convolutional layer has 64 filters, each filter of size 5×5. 
The second convolutional layer has 32 filters, each filter of size 
3×3. The first two fully connected layers have 100 nodes each, 
followed by a third layer with as many neurons as the lead time. 
For all neural network-based baselines, Relu is the activation 
function used in the hidden layers. GPR is a probabilistic method 
based on Bayesian theory. Multiple GPR models are trained for 
data points recorded at the same time. Each model corresponds 
to each geographical coordinate. In all baselines, mean squared 
error (MSE) is the loss function employed for error 
backpropagation. 

V. RESULTS AND DISCUSSIONS 
The results of hyperparameters are discussed as follows. The 

size of the filter and the number of filters determine the spatial 
information captured by the model.  

 

Figure 2.  Coefficient of determination (R2)  in forecasting ONI by CLSTM for 
different number of filters 

An increase in filter size increases the model’s ability to 
capture multiple representations of the spatial dependencies. 
However, with more filters, the complexity of the model 
increases and they overfit training data quickly. Figure 2 
illustrates the performance of CLSTM for various filter sizes and 
lead times. From the figure, it is evident that the R2 value 
increases when the number of filters is changed from 16 to 32 
and decreases when the number of filters is changed from 32 to 
64. Since the performance of CLSTM with 32 filters is greater, 
the optimal choice for the number of filters is 32. 

 

Figure 3.  Coefficient of determination (R2) in forecasting ONI by CLSTM for 
different sizes of the filter 

As the filter size increases, CLSTM can capture a wide range 
of spatial dependencies between variables. Generally, odd-sized 
filters are used for modeling. The performance of CLSTM for 
various sizes of the filter is illustrated using Figure 3. A filter of 
size 1 × 1 means no spatial information is encoded for 
forecasting. For shorter lead times, filter size doesn’t seem to 
have much effect on the model performance. For lead time 
beyond 6-months, the filter size of 5 × 5 performs best.  From 
the results, we can conclude that for longer lead times, the model 
performs best when provided with larger amounts of spatial 
information. 

The forecasting skill of all the experiments conducted in this 
study is verified using three metrics: root mean squared error 
(RMSE), mean absolute error (MAE), and coefficient of 
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determination (R2). The metrics are defined by the following 
equations.  

𝑅𝑀𝑆𝐸 = S&
;
∑ (𝑦# − 𝑦CT)?;
#@& 	                                               (15) 

MAE = &
;
∑ (𝑦# − 𝑦CT);
#@&                                (16) 

R2 = 1 −	  ∑ (B"%B#E)
$
"%&

'

∑ (B"%B#FFF)$
"%&

'                                                           (17) 

Here,  𝑦# 	and 𝑦CT  denotes the actual and predicted values of 
the ith sample in the testing set, 𝑦V and N denotes the mean and 
total number of samples in the testing set. The smaller is the 
values of RMSE and MAE, the better is the model performance. 
R2 reaches its best at one and worst at zero.  
TABLE I.  ACCURACY OF REGRESSION MODELS IN FORECASTING ONI 

   Lead time in months 
Model Metric 1 3 6 9 12 
SNN RMSE 0.77 0.82 0.87 0.95 1.15 

MAE 0.83 0.87 1.17 1.23 1.45 
R! 0.66 0.58 0.45 0.32 0.28 

LSTM RMSE 0.45 0.51 0.53 0.76 0.97 
MAE 0.79 0.76 0.84 0.80 0.99 
R! 0.89 0.81 0.67 0.59 0.42 

CNN RMSE 0.52 0.58 0.73 0.67 0.95 
MAE 0.71 0.78 0.72 0.88 1.23 
R! 0.88 0.73 0.65 0.54 0.45 

GPR RMSE 2.38 3.21 4.78 5.02 7.87 
MAE 1.99 2.96 3.92 4.85 6.92 
R! 0.22 0.18 0.13 0.11 0.10 

CLSTM RMSE 0.23 0.62 0.70 0.69 0.82 
MAE 0.67 0.72 0.70 0.75 0.85 
R! 0.96 0.93 0.74 0.66 0.52 

 

Continuous rank probability score (CRPS) is the metric used 
to assess the performance of probabilistic forecasts. It is defined 
by the following equation. 

𝐶𝑅𝑃𝑆 =	∫ [𝑃(𝑥) − 𝐻(𝑥 − 𝑦+GH)]?I∞
%∞                                         (18)        

Here 𝑃(𝑥) is the cumulative distribution function (CDF) of 
the forecast, 𝑦+GH is the observed value, and H is the Heaviside 
function, whose value is zero if 𝑥 −	𝑦+GH < 0 and one if 𝑥 −
	𝑦+GH > 0 . The CRPS achieves a perfect score (zero) if the 
observed and forecast values are the same. 

Table 1 shows the comparison of different models for 
various lead times. The following observations are drawn from 
the results displayed in the table. The proposed model, CLSTM, 
outperforms other models in terms of R2, RMSE, and MAE for 
various lead times. Particularly, R2 values are close to one for 
lead times up to three months.  Although the value of R2 

gradually drops for a lead time beyond six months, the proposed 
model is still superior when compared with others. CNN and 
LSTM almost performed equally in terms of R2 for lead time up 
to six months. The better performance of CNN is due to the 
ability to capture spatial relationships between ENSO predictors 
and ENSO. The better performance of LSTM is due to the ability 
to capture temporal relationships between ENSO predictors and 
ENSO. The performance of CNN and LSTM drops beyond six 
months. SNN performed moderately for a lead time of three 

months.  Beyond three months, the performance of SNN drops 
due to the lack of proper handling of spatial-temporal data. GPR 
achieved lower R2 and greater RMSE, and MAE scores. 
Experimental results demonstrate the ability of CLSTM in 
capturing both spatial and temporal relationships between ENSO 
predictors and ENSO. The results indicate the forecast accuracy 
is improved by 14.8%, 10.4%, 11.8%, and 22.2% for lead times 
of 3, 6, 9, and 12 months respectively. 

TABLE II.  ACCURACY OF MODELS IN FORECASTING PROBABILISTIC 
DENSITY OF ONI 

 Lead time in months 
Model 1 3 6 9 12 
GPR 0.739 0.858 1.29 1.87 2.25 
CLSTM 0.726 0.844 1.08 1.66 1.98 

 

The CRPS scores for GPR and CLSTM are reported in Table 
2. From the table, it is clear that CLSTM has the lowest CRPS 
score value for all lead times. The results conclude that the 
proposed model, CLSTM-BVI not only provides an accurate 
forecast but also a reliable probability density of the ONI. 

 

Figure 4.  Forecasted versus observed ONI 

To estimate the forecast uncertainty obtained by CLSTM, 
Figure 4 is plotted for forecasted ONI and observed ONI. The 
light blue shade represents the 95% prediction interval, the light 
gray shade represents the 70% prediction interval. The blue solid 
line represents the forecasted ONI, and the dashed red line 
represents the observed ONI. As shown in the figure, the 
forecasted ONI follows the observed ONI, demonstrating the 
accuracy of CLSTM. Also, the observed ONI falls within the 
95% prediction interval which means the proposed model is 95% 
confident that future values of ONI are contained within the 95% 
prediction interval. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
Experimental results demonstrate that CLSTM outperforms 

other models in terms of R2, RMSE, and MAE. The R2 value of 
CLSTM is close to one for shorter lead times (< 6 months), 
indicating the superiority of CLSTM in capturing spatial and 
temporal relationships between ENSO predictors and ENSO. 
However, the R2 value gradually drops to 0.52 for longer lead 
times (> 6 months). An overall improvement in the forecast 
accuracy of CLSTM is observed. Experimental results indicate 
that the forecast accuracy of the proposed model improves by 
14.8%, 10.4%, 11.8%, and 22.2% for lead times of 3, 6, 9, and 
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12 months respectively. The low CRPS value proves the 
superiority of the proposed model when compared with GPR. In 
addition to the forecast, the uncertainty associated with the 
forecast is also shown. The experimental results demonstrate 
that the CLSTM is 95% confident that the future values of ONI 
are contained within the 95% prediction interval. Therefore, the 
proposed model not only improves the forecast accuracy but also 
quantifies uncertainty associated with the forecast. 

In future work, other environmental variables, such as warm 
water volume, westerly wind bursts, and upper ocean heat 
content can be added as predictors for forecasting ENSO. A 
robust framework can be built by adding more layers to the 
CLSTM network. Advanced methods can be proposed by 
integrating the existing methods with numerical weather 
prediction models. 
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