
An Empirical Investigation on the Relationship

Between Bug Severity and Bug Fixing Change

Complexity

Zengyang Li1, Dengwei Li1, Peng Liang2,*, Ran Mo1
1 School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,

Central China Normal University, Wuhan, China
2 School of Computer Science, Wuhan University, Wuhan, China

zengyangli@mail.ccnu.edu.cn, 762396001@qq.com, liangp@whu.edu.cn, moran@mail.ccnu.edu.cn

Abstract 1—Fixing bugs requires changing source code in most

cases. The complexity of code changes for fixing bugs has an

important impact on release planning. This work intends to

investigate whether there are significant differences between bugs

with different severity levels with respect to the complexity of

code changes for fixing the bugs. We performed a case study on

13 Apache open source software (OSS) projects using commit

records and bug reports. The study results show that (1) for bugs

of high severity levels, there is no significant difference on the

complexity of code change for fixing bugs of different severity

levels for most projects, while (2) for bugs of low severity levels,

fixing bugs of a higher severity level needs significantly more

complex code change than fixing bugs of a lower severity level for

most projects. These findings provide useful insights for effort

estimation and release planning of OSS development.

Keywords-bug severity; code change complexity; commit

records

I. INTRODUCTION

Bugs of a software project are managed in an issue tracking
system, in which the severity of a bug can be indicated by the
development team members or external reporters. In practice,
developers use severity levels, such as Blocker, Critical, Major,
Minor, and Trivial in JIRA, to prioritize the urgency of bugs
and to estimate influence and impact of bugs [1]. The bug
severity data play an important role in release planning and task
assignment [2, 3].

The complexity of required code change for fixing a bug
also influences release planning in terms of effort estimation
[3]. More complex code change is required for fixing a bug
means more effort is needed for this bug fixing task. Effort
estimation for tasks is a key aspect in release planning [3].

Both the severity of a bug and required effort for fixing the
bug should be taken into consideration during release planning
of a project. A natural question arises: is bug severity in line
with actual code change complexity? The answer to this
question will provide meaningful insights for effort estimation
of project development.

* Corresponding author.

DOI reference number: 10.18293/SEKE2020-160

 To investigate whether bug severity is in line with
complexity of actual code change, we performed a case study
on 13 non-trivial Apache open source software (OSS) projects.
Data on bugs were exported from JIRA – an issue tracking
system deployed by Apache Software Foundation. Data on the
complexity of code change for fixing bugs can be obtained by
analyzing the commit records extracted from the code
repositories of the OSS projects.

Our main findings are as follows: (1) There is no significant
difference on the complexity of code change for fixing Blocker
and Critical bugs for most projects. The situation is similar for
Critical and Major bugs. (2) Code change for fixing Major bugs
has a significantly higher complexity than fixing Minor bugs
for most selected projects. The situation is similar for Minor
and Trivial bugs.

The rest of this paper is organized as follows. Section II
reports related work to this study. Section III describes the
design of the case study. Section IV presents the results of the
case study. Section V discusses the results of the case study and
Section VI presents the threats to validity of the results. Section
VI concludes this work with future directions.

II. BACKGROUND AND RELATED WORK

This section presents background of this study and related
work on bug severity and required code change for fixing bugs.

A. Background

In the JIRA issue tracking platform, issues are classified in
multiple types, including Bug, Improvement, New Feature,
Task, Sub-task, Test, and Wish. In particular, according to its
severity (i.e., priority to be fixed), a bug can be labeled a level,
from high to low severity, as Blocker, Critical, Major, Minor,
or Trivial. These severity levels are defined as follows,
according to JIRA [4].

 Level 5 – Blocker: a time-sensitive issue that is
hindering a basic function of a project.

 Level 4 – Critical: a time-sensitive issue that is
disrupting the project, but does not hinder basic
functions.

 Level 3 – Major: this issue needs attention soon, but
is not hindering basic functions. Most requests for new
resources fall into this category.

 Level 2 – Minor: this issue needs attention, but is not
time-sensitive and does not hinder basic functions.

 Level 1 – Trivial: this issue is minimal and has no
time constraints.

Besides, in JIRA, the status of a bug can be one of the
following: Open, In Progress, Reopen, Resolved, and Closed.

B. Related Work

Many studies proposed various methods to predict bug
severity automatically. For instance, Roy et al. used text
mining and machine learning techniques to improve bug
severity classification [5]. Lamkanfi et al. applied text mining
algorithms to analyze descriptions of bug reports for predicting
bug severity [6]. Menzies et al. proposed to use standard text
mining and machine learning techniques to automate severity
assessment based on software defect reports [7]. Tian et al.
used multi-factor analysis to automatically predict bug priority
[8]. However, our work is not aimed to predict severity levels
of bugs, but to investigate whether bugs of a higher severity
level require more complex code change to fix.

A number of studies looked into the delay of bug fixing
from the perspective of bug severity and required code change.
Zhang et al. found that a larger total lines of changed code can
delay bug fixing, and bugs of a high severity level were fixed
earlier than bugs of a low severity level [9]. Saha et al. revealed
that bug priority (i.e., severity) has significant impact on the
delay of bug fixing [10]. However, the relationship between
bug severity and complexity of changed code was not
discussed in these study.

Some works on effort estimation took bug severity into
consideration. For instance, Weiss et al. took the average time
and effort of previous bugs with similar severity as an early
estimation of required effort for new bugs [11].

III. STUDY DESIGN

In order to investigate the relationship between bug severity
and code change complexity, we performed a case study on
fifteen Apache OSS projects written in Java. In this section we
describe the case study, which was designed and reported
according to the guidelines proposed by Runeson and Höst [12].

A. Objective and Research Questions

The goal of this case study is to investigate: whether there
is a significant difference on the complexity of changed source
code for fixing the bugs with different bug severity levels.

In this study, the complexity of changed source code is
measured in three dimensions: (i) number of modified lines of
code, (ii) number of modified source files, and (iii) number of
modified packages. It is convenient to extract such information
on a bug by analyzing commit records and bug reports.

Based on the abovementioned goal and considering the
three dimensions of the complexity of changed source code, we
formulated the following three research questions (RQs):

 RQ1: Is there a significant difference between the
numbers of lines of modified code for fixing bugs
with different severity levels?

 RQ2: Is there a significant difference between the
numbers of modified source files for fixing bugs with
different severity levels?

 RQ3: Is there a significant difference between the
numbers of modified packages for fixing bugs with
different severity levels?

B. Case and Unit Analysis

According to [12], case studies can be characterized based
on the way they define their cases and units of analysis. This
study investigates multiple OSS projects, i.e., cases, and each
bug and changed source code for fixing it is a single unit of
analysis.

C. Case Selection

In this study, we only investigated Apache OSS projects
written in Java. For selecting each case (OSS project) included
in our study, we apply the following criteria:

(1) Over 70% of the source code of the project is written
in Java.

(2) The age of the project is over 5 years.
(3) The number of stars of the project on GitHub is over

500.
(4) The number of revisions of code repository of the

project is over 2,000.
(5) The number of bugs of the project is over 1,500.

These selection criteria were set to ensure that the selected
cases are non-trivial and the resulting dataset is big enough to
be statistically analyzed.

D. Data Collection

This section presents the data to be collected and the
process for collecting required data.

1) Data to be Collected
To answer the RQs formulated in Section III-A, we

collected the data items listed in TABLE I, which also provides
the mapping between the data items and the target RQ(s).

TABLE I. DATA ITEMS TO BE COLLECTED

Data Item Description Target RQ

D1 Severity label
of a bug

The priority of an issue in
JIRA (the issue tracking
system used by Apache),
i.e., Blocker, Critical,
Major, Minor, or Trivial.

RQ1, RQ2,
RQ3

D2 Number of
lines of
modified code
for fixing a
bug

The number of lines of
source code that is
changed to fix a bug.

RQ1

D3 Number of
modified
source files for
fixing a bug

The number of source files
that is changed to fix a
bug.

RQ2

D4 Number of
modified
packages for
fixing a bug

The number of packages
(for Java) that is changed
to fix a bug.

RQ3

TABLE II. DEMOGRAPHIC INFORMATION OF SELECTED APACHE OSS PROJECTS

Name Age(year) Java% #(Star) #(Revision) #(Committer) #(Bug in JIRA)

P1 Accumulo 9 98.6 782 10,431 113 2,250

P2 Activemq 15 95.9 1,694 10,519 97 4,771

P3 Camel 13 98.6 3,129 43,282 626 4,729

P4 CXF 12 98.9 632 15,524 151 5,114

P5 Flink 10 76.7 12,254 20,738 573 5,797

P6 Hadoop 11 92.7 10,177 23,606 291 23,373

P7 Ignite 6 72.2 3,034 26,624 241 5,575

P8 Maven 17 99.5 2,041 10,639 89 3,230

P9 Nifi 6 86.6 1,930 5,675 296 3,136

P10 Pig 13 93.1 597 3,691 28 3,099

P11 Struts 14 91.2 990 5,836 72 2,894

P12 Wicket 16 88.2 505 20,796 89 4,066

P13 Zookeeper 13 73.7 7,730 2,102 94 1,910

TABLE III. AVERAGE NUMBER OF MODIFIED LINES OF CODE, SOURCE FILES, AND PACKAGES PER BUG

Project #(LOC)/Bug #(File)/Bug #(Package)/Bug

Blocker Critical Major Minor Trivial Blocker Critical Major Minor Trivial Blocker Critical Major Minor Trivial

P1 368.46 229.20 492.77 211.97 333.62 7.67 5.80 8.85 3.87 7.15 4.38 4.38 4.23 2.72 3.76

P2 398.41 178.21 199.16 109.92 49.39 6.03 3.74 4.02 2.35 1.79 2.97 2.40 2.56 1.81 1.45

P3 19.50 202.36 129.65 100.84 62.16 2.17 5.73 4.20 3.54 3.51 1.67 3.31 2.64 2.34 2.43

P4 185.07 85.05 90.98 85.20 124.47 4.37 3.39 3.48 3.59 3.97 3.15 2.39 2.47 2.53 2.67

P5 255.21 187.04 157.21 90.18 34.66 5.16 4.53 3.93 3.03 3.36 3.30 2.70 2.67 2.01 2.50

P6 145.68 122.66 106.65 49.24 23.99 4.44 3.58 3.14 2.50 1.79 3.15 2.66 2.27 1.86 1.50

P7 172.96 282.02 215.47 150.55 29.08 4.64 6.30 5.29 8.97 1.56 3.27 4.07 3.37 5.46 1.44

P8 197.69 97.94 97.08 86.76 42.75 4.14 3.06 3.03 3.48 1.83 3.00 2.48 2.25 2.43 1.67

P9 157.87 240.55 202.16 79.88 7.53 3.80 3.94 4.17 3.31 3.67 2.79 2.53 2.62 2.29 1.64

P10 78.25 53.71 152.08 79.70 30.29 2.75 2.12 3.98 2.52 2.00 2.25 1.86 2.40 1.91 1.32

P11 70.16 266.16 136.43 67.52 175.45 2.61 7.98 2.96 2.74 3.30 2.19 4.14 2.28 2.11 2.45

P12 64.36 84.70 97.46 68.39 27.10 2.27 2.88 2.87 2.59 1.39 1.91 2.10 2.14 1.85 1.24

P13 176.43 185.34 113.30 47.33 16.30 4.12 4.44 2.84 2.15 1.15 2.39 2.29 1.83 1.57 1.15

2) Data Collection Process
The process of collecting the data items (listed in TABLE I)

for an Apache OSS project includes the following four steps.

Step 1: Export commit records. Commit records of the
project were extracted from its Git repository. We developed a
simple tool to extract commit records and save them in a text
file.

Step 2: Export issues from JIRA. Many Apache OSS
projects adopt JIRA (https://issues.apache.org/jira) as their
issue tracking system. We manually exported all issues of the
project and stored them in a Microsoft Access file. Please note
that not all exported issues are bugs and we can get bugs by
choosing the issue type ‘Bug’.

Step 3: Parse commit records. If a commit is performed to
solve an issue, the committer would explicitly tell the issue ID
in the message of the commit record. The changed source files
and the changed lines of code can also be identified in the
commit record.

Step 4: Extract bugs and corresponding number of lines of
modified code, number of modified source files, and number of
modified packages. With issue IDs obtained in Step 3, we
picked up bugs, i.e., issues with issue type ‘Bug’. Then, we
calculated the number of lines of modified code, number of
modified source files, and number of modified packages for
each bug. Please note that, only resolved or closed bugs were
included in our dataset. We found that some bugs were
resolved in previous revisions but still with the status OPEN.
Such bugs actually are in the REOPEN status, which means
that these bugs had not been resolved completely and they may
involve more lines of source code, source files, and packages.

In this case study, we filtered out abnormal data points. By
an abnormal data point, we mean that a bug whose fixing
involves either more than 500 modified source files or over
20,000 lines of modified source code. The abnormal data points
can affect the validity of conclusions. For instance, in project
Accumulo, we found a few bugs each involving hundreds of
thousands of modified lines of source code which is generated

https://issues.apache.org/jira

automatically using the model-driven engineering techniques
[13]; if such bugs were not excluded, the average number of
modified lines of source code for bugs would increase greatly.

E. Data Analysis

To answer the RQs formulated in Section III-A, we need to
analyze the collected data on code change history and bug
severity. First, we calculated the average number of modified
lines of code, modified source files, and modified packages, for
each category of bugs (classified according to bug severity).
Second, in order to know whether there are significant
differences between categories of bugs with respect to the
number of modified lines of code, modified source files, and
modified packages, we performed Mann-Whitney U tests on
the data for each selected OSS project. The test is significant at
p-value < 0.05, which means that the tested groups have
significant difference.

IV. RESULTS

Following the study design, we performed the case study.
In this section, we first present the demographic information of
the selected cases, i.e., Apache OSS projects. Then, we report
the results regarding the research questions formulated in
Section III-A.

TABLE IV. DISTRIBUTION OF BUGS OVER DIFFERENT SEVERITY LEVELS

Project #(Blocker) #(Critical) #(Major) #(Minor) #(Trival) Total

P1 136 90 587 232 124 1,169

P2 34 121 1410 290 38 1,893

P3 6 59 2198 927 49 3,239

P4 46 98 1951 426 30 2,551

P5 325 299 856 249 50 1,779

P6 605 801 4174 1115 283 6,978

P7 137 286 1193 112 25 1,753

P8 58 48 569 84 12 771

P9 102 139 835 260 55 1,391

P10 12 42 1114 127 34 1,329

P11 31 49 432 176 20 708

P12 11 50 1323 475 82 1,941

P13 102 87 232 84 20 525

A. Selected Cases

Thirteen Apache OSS projects were selected for this case
study and their demographic information is shown in TABLE
II. The age of the projects is from 6 to 17 years, and 9 out of 13
projects are 10+ years old. All these projects are mainly written
in Java, and more than 90% source code of 8 (out of 13)
projects are written in Java. Eight out of 13 projects are starred
over 1,000 times, and project Flink with 12,254 stars is most
starred. Nine out of 13 projects have 10,000+ revisions,
demonstrating the vitality of these projects. Each of the
selected projects has experienced 2,000+ bugs, and the project
Hadoop has the most bugs (23,373).

The average number of modified lines of code, source files,
and packages over bugs with different severity levels are
presented in TABLE III. The distribution of bugs over different
severity levels for the 13 selected OSS project is shown in
TABLE IV. Please note that, the total number of bugs in
TABLE IV for each project is smaller than the number of bugs
in JIRA (as shown in TABLE II). This is because many bugs in
JIRA are not recorded in the commit messages of the master

branch of the project’s code repository, which is also the reason
why we selected projects with a relatively large number of bugs
(i.e., over 1500 bugs, described in Section III-C).

B. Results on Modified Lines of Code (RQ1)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with
distinct severity levels with respect to the number of modified
lines of code. Results of the tests are shown in TABLE V,
where cells with p-value < 0.05 are filled in gray. Specifically,
a cell filled in gray and with a number in bold denotes that the
average number of modified lines of code for higher level bugs
is significantly smaller than low level bugs; the remaining cells
filled in gray mean that the average number of modified lines
of code for higher level bugs is significantly larger than low
level bugs.

(1) 3 out of 13 (23.1%) projects have a significant
difference (p-value < 0.05) between Blocker and
Critical bugs, and only in one project (i.e., P5) Blocker
bugs have a higher average number of modified lines
of code than Critical bugs.

(2) 5 out of 13 (38.5%) projects have a significant
difference between Critical and Major bugs, and in 4
out of 13 (30.8%) projects Critical bugs have a higher
average number of modified lines of code than Major
bugs.

(3) 12 out of 13 (92.3%) projects have a significant
difference between Major and Minor bugs, and in
all the 12 projects Major bugs have a higher
average number of modified lines of code than
Minor bugs.

(4) 10 out of 13 (76.9%) projects have a significant
difference between Minor and Trivial bugs, and in 9
out of 13 (69.2%) projects Minor bugs have a higher
average number of modified lines of code than Trivial
bugs.

TABLE V. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED LINES

OF CODE BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.113 0.006 0.010 0.002

P2 0.156 0.780 <0.001 0.002

P3 0.016 0.005 <0.001 <0.001

P4 0.406 0.801 <0.001 0.143

P5 <0.001 0.957 <0.001 0.001

P6 0.655 <0.001 <0.001 <0.001

P7 0.027 <0.001 <0.001 0.003

P8 0.052 0.162 0.722 0.249

P9 0.724 0.849 <0.001 <0.001

P10 0.617 0.315 0.005 0.001

P11 0.988 0.428 0.008 0.122

P12 0.807 0.224 0.001 <0.001

P13 0.671 <0.001 0.001 0.001

C. Results on Modified Source Files (RQ2)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with

distinct severity levels with respect to the number of modified
source files. Results of the tests are shown in TABLE VI,
where cells with p-value < 0.05 are filled in gray.

(1) 1 out of 13 (7.7%) project (i.e., P5) has a significant
difference between Blocker and Critical bugs, and in
this project Blocker bugs have a higher average
number of modified files than Critical bugs.

(2) 5 out of 13 (38.5%) projects have a significant
difference between Critical and Major bugs, and in 4
out of 13 (30.8%) projects Critical bugs have a higher
average number of modified files than Major bugs.

(3) 11 out of 13 (84.6%) projects have a significant
difference between Major and Minor bugs, and in
9 out of 13 (69.2%) projects Major bugs have a
higher average number of modified files than
Minor bugs.

(4) 8 out of 13 (61.5%) projects have a significant
difference between Minor and Trivial bugs, in 7 out of
13 (53.8%) projects Minor bugs have a higher average
number of modified files than Trivial bugs.

TABLE VI. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED FILES

BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.263 0.220 <0.001 0.587

P2 0.096 0.782 <0.001 0.008

P3 0.097 0.007 <0.001 0.009

P4 0.330 0.701 0.005 0.056

P5 <0.001 0.111 <0.001 0.954

P6 0.107 <0.001 <0.001 <0.001

P7 0.125 <0.001 0.001 0.003

P8 0.117 0.982 0.944 0.241

P9 0.865 0.995 0.001 <0.001

P10 0.676 0.016 <0.001 0.050

P11 0.898 0.365 0.131 0.315

P12 0.424 0.181 <0.001 <0.001

P13 0.765 0.001 0.011 0.003

D. Results on Modified Packages (RQ3)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with
distinct severity levels with respect to the number of modified
packages. Results of the tests are shown in TABLE VII, where
cells with p-value < 0.05 are filled in gray.

(1) 1 out of 13 (7.7%) project (i.e., P5) has a significant
difference between Blocker and Critical bugs, and in
this project Blocker bugs have a higher average
number of modified packages than Critical bugs.

(2) 6 out of 13 (46.2%) projects have a significant
difference between Critical and Major bugs, and in 5
out of 13 (38.5%) projects Critical bugs have a higher
average number of modified packages than Major
bugs.

(3) 11 out of 13 (84.6%) projects have a significant
difference between Major and Minor bugs, and in
10 out of 13 (76.9%) projects Major bugs have a

higher average number of modified packages than
Minor bugs.

(4) 9 out of 13 (69.2%) projects have a significant
difference between Minor and Trivial bugs, in 7 out of
13 (53.8%) projects Minor bugs have a higher average
number of modified packages than Trivial bugs.

TABLE VII. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED

PACKAGES BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.191 0.031 <0.001 0.388

P2 0.175 0.294 <0.001 0.006

P3 0.112 0.004 0.012 0.041

P4 0.275 0.419 0.114 0.024

P5 <0.001 0.084 <0.001 0.976

P6 0.191 <0.001 <0.001 <0.001

P7 0.124 <0.001 0.019 0.002

P8 0.215 0.408 0.762 0.479

P9 0.692 0.550 <0.001 <0.001

P10 0.569 0.070 0.001 0.003

P11 0.921 0.537 0.042 0.221

P12 0.611 0.268 <0.001 <0.001

P13 0.728 <0.001 0.010 0.026

E. Summary

According to the results presented above, there is no
significant difference on the complexity of code change for
fixing Blocker and Critical bugs in terms of the average
number of modified lines of code, source files, and packages
for most selected projects. The situation is similar for Critical
and Major bugs.

Code change for fixing Major bugs has a significantly
higher complexity than fixing Minor bugs in terms of the
average number of modified lines of code, source files, and
packages for most selected projects. The situation is similar for
Minor and Trivial bugs.

V. DISCUSSION

A. Interpretation of Study Results

The results have shown that there is no significant
difference on the complexity of code change for fixing Blocker
and Critical bugs in most selected OSS projects. As defined in
Section II-A, both Blocker and Critical bugs are time-sensitive
issues and of a high level of urgency, and they have a serious
impact on the projects. Thus, Blocker and Critical bugs may
have a similar level of change impact when fixing the bugs.

The results have also shown that code change for fixing
Major bugs has a significantly higher complexity than Minor
bugs in most selected OSS projects. There is a relatively clear
boundary between bugs of these two severity levels. The code
change impact on the software system for fixing Major bugs is
significantly higher than Minor bugs. The complexity of code
change for fixing Minor and Trivial bugs can be interpreted in
a similar way to Major and Minor bugs.

It is consistent in general for the results of the Mann-
Whitney U tests on the significant difference between code

change complexity in terms of modified lines of code, source
files, and packages, for fixing bugs with different severity
levels.

B. Implications

There is no significant difference of average number of
modified lines of code, source files, and packages between
Blocker and Critical bugs for most selected OSS projects. This
implies that Blocker and Critical bugs may have similar change
impact and difficulty when fixing them. Hence, when
estimating required effort for fixing Blocker and Critical bugs,
they can be put in the same category.

Major bugs need to modify a significantly higher average
number of lines of code, source files, and packages than Minor
bugs for most selected OSS projects. Also, fixing Minor bugs
involves code change of higher complexity than Trivial bugs.
Hence, for Major, Minor, and Trivial bugs, their severity levels
are in line with the complexity of code change for fixing such
bugs. Therefore, when estimating needed efforts for fixing
Major, Minor, and Trivial bugs, they should be placed in
different categories.

VI. THREATS TO VALIDITY

There are several threats to the validity of the study results.
We discuss these threats according to the guidelines in [12].
Please note that internal validity is not discussed, since we do
not study causal relationships.

Construct validity. Since a bug is closed or resolved, its
severity level (i.e., bug priority in JIRA) was confirmed by the
development team member of the project. Thus, we believe that
the severity levels of closed or resolved bugs can genuinely
reflect the actual severity of the bug. In the data collection
process, only the changed code written in Java were included.
In some cases, the changed code for fixing a bug may involve
source files in other programming languages than Java, which
threatens the construct validity. To reduce this threat, we
filtered out any bug whose fixing entails non-Java source code.

External validity. Since we collected bugs whose fixing
requires changing Java code only, the conclusions of this case
study may not be generalized to projects not written in Java.
Only 13 projects were used in this case study, more projects are
needed to establish more solid conclusions.

Conclusion validity. Only descriptive statistics was used in
the calculation of the average number of modified lines of code,
source files, and packages. The Mann-Whitney U tests were
executed in SPSS, which is a widely-used and well-engineered
statistical tool. Thus, we believe that the threats to conclusion
validity are minimal.

VII. CONCLUSIONS

This work investigates whether there are significant
differences between bugs of different severity levels with
respect to the complexity of code changes for fixing the bugs.
We conducted a case study on 13 Apache OSS projects. Based
on the study results, we obtain the following findings:

 In most (>=10/13, 76.9%) projects Blocker (Level 5)
and Critical (Level 4) bugs have no significant
difference on complexity of code change.

 In most (>=7/13, 53.8%) projects Critical (Level 4)
and Major (Level 3) bugs have no significant
difference on complexity of code change.

 In most (>=10/13, 76.9%) projects Major (Level 3)
bugs have a significantly higher complexity of code
change than Minor (Level 2) bugs.

 In most (>=8/13, 61.5%) projects Minor (Level 2)
bugs have a significantly higher complexity of code
change than Trivial (Level 1) bugs.

Based on the findings of this work, in the next step, we plan
to include more software projects (from both commercial and
open source) to replicate the case study in this work, in order to
establish a more solid foundation for the findings in this work.

ACKNOWLEGMENTS

This work is supported by the National Natural Science
Foundation of China under the grant Nos. 61702377 and
61773175, the Fundamental Research Funds for the Central
Universities under the grant No. CCNU19TD003, and IBO
Technology (Shenzhen) Co., Ltd., China.

REFERENCES

[1] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, "On the unreliability of bug

severity data," Empirical Software Engineering, vol. 21, no. 6, pp.

2298-2323, 2016.
[2] Y. Tian, D. Lo, and C. Sun, "Information retrieval based nearest

neighbor classification for fine-grained bug severity prediction," in

Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE'12), 2012, pp. 215-224.

[3] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M.

U. Shafique, "A systematic review on strategic release planning
models," Information and Software Technology, vol. 52, no. 3, pp. 237-

248, 2010.

[4] Apache Software Foundation. Guidelines for creating a Jira ticket.
Available: https://infra.apache.org/pages/jira-guidelines.html, accessed

on Dec. 20, 2019.

[5] N. K. S. Roy and B. Rossi, "Towards an improvement of bug severity
classification," in Proceedings of the 40th EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA'14), 2014,
pp. 269-276.

[6] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, "Predicting the

severity of a reported bug," in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories (MSR'10), 2010, pp. 1-10.

[7] T. Menzies and A. Marcus, "Automated severity assessment of

software defect reports," in Proceedings of the 24th IEEE International
Conference on Software Maintenance (ICSM'08), 2008, pp. 346-355.

[8] Y. Tian, D. Lo, X. Xia, and C. Sun, "Automated prediction of bug

report priority using multi-factor analysis," Empirical Software
Engineering, vol. 20, no. 5, pp. 1354-1383, 2015.

[9] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, "An empirical study on

factors impacting bug fixing time," in Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE'12), 2012, pp. 225-234.

[10] R. K. Saha, S. Khurshid, and D. E. Perry, "An empirical study of long

lived bugs," in Proceedings of the 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and

Reverse Engineering (CSMR-WCRE'14), 2014, pp. 144-153.

[11] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, "How long will it
take to fix this bug?," in Proceedings of the 4th International Workshop

on Mining Software Repositories (MSR'07), 2007, pp. 1-8.

[12] P. Runeson and M. Höst, "Guidelines for conducting and reporting case
study research in software engineering," Empirical Software

Engineering, vol. 14, no. 2, pp. 131-164, 2009.

[13] X. He, P. Avgeriou, P. Liang, and Z. Li, "Technical debt in MDE: A
case study on GMF/EMF-based projects," in Proceedings of the

ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems (MODELS'16), 2016, pp. 162-172.

https://infra.apache.org/pages/jira-guidelines.html

