
Unit Testing Effort Prioritization Using Combined

Datasets and Deep Learning: A Cross-Systems

Validation

Fadel TOURE

Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,

 Trois-Rivières, Québec, Canada.

Fadel.Toure@uqtr.ca

Mourad BADRI

Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,

 Trois-Rivières, Québec, Canada.

Mourad.Badri@uqtr.ca

Abstract— Unit testing plays a crucial role in object-oriented

software quality assurance. Software testing is often conducted

under tight time and resource constraints. Hence, testers do not

usually cover all software classes. Testing needs to be prioritized

and testing effort to be focused on critical components. The

research we present in this paper is part of the development of

a collaborative decision support tool allowing the developers’

community to pool their unit testing experiences when selecting

the candidate classes for unit tests. To achieve this, we proposed

in our previous work a unit tests prioritization approach based

on software information histories and software metrics. The

goal is to suggest classes to be tested by building a classifier that

matches the testers selection. Several machine learning

classifiers have been previously considered. The current paper

explores the deep neural network models with more software

source code metrics including explicitly and implicitly tested

classes. The training datasets that have been combined are from

different systems. So, we considered metrics ranks. Using a

cross systems validation technique, obtained results strongly

suggest that deep neural network-based classifiers correctly

reflect the tester’s selections and could thus help in decision

support during the selection of candidate classes for unit tests.

Key words— Tests Prioritization; Unit Tests; Source Code

Metrics; Deep Neural Network; Deep Learning; Machine

Learning Classifiers.

I. INTRODUCTION

Software testing plays a crucial role in software quality
assurance. Unit testing is one of the main phases of the testing
process where each software class is individually tested using
dedicated test cases. In object-oriented (OO) software
systems, units are software classes and testers usually write a
dedicated unit test class for each software class they decided
to test. The unit tests aim at early reveal faults in software
classes. In the case of large-scale OO software systems,
because of resource limitations and tight time constraints, the
unit testing efforts are often focused. Testers usually select a
limited set of software classes for which they write dedicated
unit test classes. Knowing that it is often not realistic to
equally test all software classes, it becomes important for
testers to target the most critical and fault-prone classes.
However, the task is not obvious and requires a deep analysis
of software. These issues belong to the family of tests
prioritization topics. Several existing approaches try to

prioritize test suites execution in order to discover the
maximum of faults quickly, while others try upstream to
focus the developer efforts on suitable classes to be tested.
This paper focus on how to automatically target suitable
candidate classes for unit tests. The long-term goal is to build
a collaborative tool for the developers’ community. That tool
will collect source code metrics and classes unit test
information from different projects in order to improve a
unique cloud-hosted classifier performance to match the
testers’ selection of unit tests candidate classes. For new
systems under development, the tool could suggest, after
collecting some specific source code metrics, a set of
candidate classes for unit tests. Due to the large source code
diversity and increasing amount of data that the tool will face,
we considered using deep neural network models trained on
combined systems’ datasets to explore how accurate the
classifiers could match the testers’ selection.

Many OO metrics, related to internal software class
attributes have been proposed in literature [1, 2]. Some of
them have already been recently used to predict unit
testability of classes in OO software systems [3-10] by
analyzing various existing open source Java software systems
for which Junit [11] test cases were developed and are
accessible in public repositories. For all systems, authors [3-
10] found that only a subset of classes have dedicated unit
test classes written by developers. In previous work [9, 12],
we focused on how the selection of the candidate classes for
unit tests was made by testers. Multivariate Logistic
Regression, Naive Bayes, Random Forest and K-Nearest
Neighbours classifiers have been used to automate the
selection of candidate classes for unit tests. They have been
validated within systems and between systems using Cross
Systems Validation (CSV) and Leave One System Out
Validation (LOSOV). The latter validation technique implied
the use of combined datasets extracted from different
systems.

Based on deep neural network models [13], the current
work includes more source code metrics to capture various
characteristics that we believe are determinative for a
software class to be considered as a good candidate for unit
tests from testers’ point of view. We also included two ways
of labelling tested classes according to the existence of
dedicated unit test classes and to the actual unit testing
coverage.

The paper is organized as follows. Section II presents
some related works. Section III addresses the OO software

DOI reference number: 10.18293/SEKE2020-150

mailto:Fadel.Toure@uqtr.ca

metrics we used for this study. Section IV describes the data
collection procedure and the considered systems. Section V
presents the empirical study we conducted and the results
obtained with the related discussions. Section VI reports the
main threats to validity relatively to our empirical
experimentations. Finally, Section VII concludes the paper,
summarizes the contributions of this work and outlines
several directions for future investigations.

II. RELATED WORK

Test case prioritization has been widely discussed in the
context of regression testing. Various techniques have been
proposed in the literature and used different leverages. We
can distinguish: (1) coverage rates based techniques, (2)
software history information based techniques, and (3) risk
analysis based techniques.

Fault detection techniques focus on targeting the most
fault prone components using, in practice, fault exposure
factors as a proxy. Factors are estimated using different ways
from the software artifacts. The results obtained by
Rothermel et al. [11] and Yu and Lau [12] indicated that this
approach improves the fault detection rates.

The coverage-based techniques run the test suites that
cover most modified software artefacts during regression
testing. Several machine learning algorithms (Naïve Bayes,
Genetic Algorithms) are used to derive a prioritization
approach. The investigations [14-16] results showed that
coverage-based techniques also lead to fault detection rate
improvement.

The history-based prioritization collects previous

regression testing assets and current changes information of

the same system in order to prioritize the new given test

suites. Thus, the technique is unsuitable for the first

regression testing of software. Kim and Porter [17] used the

historical execution data to prioritize test cases for regression

tests, while Lin et al. [18] investigated the weight of used

information between two versions of history-based

prioritization techniques. The results indicated that the

history-based prioritization provides a better fault detection

rate. Carlson et al. [19] mixed history and coverage-based

techniques using a clustering based prioritization technique.
Lachmann et al. [20] introduced a test case prioritization

technique for system-level regression testing based on
supervised machine learning. The approach considers black-
box metadata, such as test cases history, as well as natural
language test case descriptions for prioritizing. They used the
SVM Rank machine learning algorithms and evaluate their
approach on 2 subject systems. The results outperform a test
case order given by a test expert.

 Spieker et al. [21] proposed the Retecs approach, a
method for automatically learning test case selection and
prioritization in continuous integration with the goal to
minimize the round-trip time between code commits and
developer feedback on failed test cases. The approach uses
reinforcement learning. The Empirical study shows that
reinforcement learning enables fruitful automatic adaptive
test case selection and prioritization.

 The history and machine learning based techniques
prioritize test suites in a regression testing context. Some
other techniques allow, upstream, the prioritization of
components to be tested. They aim to optimize the testing
efforts distribution by targeting the most fault prone
components. Shihab et al. [22] explored the prioritization for
unit testing phase in the context of legacy systems. Our

previous papers [12] proposed machine learning approaches
that aim to suggest candidate classes for unit tests. We used
2 classifiers trained on the dataset formed by source code
metrics and labelled by tested/not tested, to build classifiers
that match the candidate classes for unit tests. After applying
cross systems validation techniques, our results indicated that
for a given system, the ability of a classifier, to correctly
suggest the candidate classes for unit tests (more than 70%
of accuracy). Furthermore, we considered more machine
learning algorithms and we focused on affinities between the
systems used as training and testing datasets during the cross
systems validation. We wanted to determine whether some
systems make better training sets for suggesting other
specific systems unit test candidate classes. The result
showed that the datasets of large systems could be only used
to suggest large systems unit test candidate classes, while
classifiers trained on small systems fail to suggest the
candidate classes for unit tests on large and small systems. In
the same study [12], we focused on the ability of combined
datasets to suggest candidate classes for unit tests. After
applying the leave one system out validation technique, the
result show that more than 70% of candidate classes selected
by testers were well predicted in the case of large size
systems.

The current paper investigates deep neural network
classifiers trained on combined datasets as predictor models
for unit tests candidate classes selection. Combining different
systems as a single training dataset presents several
advantages such as diversity of observations and their
amount. Indeed, our long-term objective is to build a
collaborative IDE plugin, based on unit tests information and
some specific metrics to support the unit tests prioritization.
Hence, the plugin will collect source code metrics and test
information from various software systems. Under such
conditions, the ability of learning from combined datasets is
of great importance. Combining training datasets may,
however, lead to metric dimensionality issues. Indeed, from
the tester point of view, a class with a given metric value may
be considered as a good candidate or not depending on the
metric values of the other classes of the system. The
following section presents the software metrics we used in
our study.

III. SOFTWARE METRICS

This section presents the considered OO source code
metrics. We expanded the previous dataset metrics used in [9,
12] by including more source code attributes. The selected
metrics are being adopted by practitioners. Several studies
have shown that the considered metrics are related to
testability [3-8], maintainability [23-26], and fault proneness
[27-29]. The set of metrics is related to inheritance, coupling,
complexity and size software attributes. We computed them
using the Borland Together (http://www.borland.com).

Depth of Inheritance Tree: DIT metric is the maximum

inheritance path from the given class to the root class.

Coupling Between Objects: The CBO metric counts for a

given class, the number of other classes to which it is coupled

and vice versa. Fan Out: The FOUT metric counts the

number of other classes referenced by a given class. Fan IN:

The FIN metric counts the number of other classes that

reference to a given class. Weighted Methods per Class: The

WMC metric gives the sum of the complexities of the

methods of a given class, where each method is weighted by

its cyclomatic complexity [27]. Only methods specified in the

class are considered. Response For Class: The RFC metric

measures the class’s complexity in terms of method

invocations. It sums the number of methods defined in a

given class and the number of distinct method invocation

made by that method. Lines of Code per Class: The SLOC

metric counts for a given class, its number of source lines of

code.

IV. DATA COLLECTION

A. Selected Systems

The source codes of 10 open source OO software systems
developed in Java have been extracted from public
repositories and described below. For each system, only a
subset of classes has been tested using JUnit framework.

IO 1 is a library of utilities for developing input/output
functionalities. It is developed by Apache Software
Foundation. MATH 1 is a library of lightweight, self-
contained mathematics and statistics components addressing
the most common problems not available in the Java
programming language. JODA 2 is the de facto standard
library for advanced date and time in Java. It provides a
quality replacement for the Java date and time classes. The
design supports multiple calendar systems, while still
providing a simple API.
DBU 3 (DbUnit) is a JUnit extension (also usable with Ant)
used in database-driven projects that, among others, put a
database into a known state between test runs. LOG4J 1 is a
fast and flexible framework for logging applications
debugging messages. JFC 4 (JFreeChart) is a free chart
library for Java platform. IVY 1 is an agile dependency
manager characterized by flexibility, simplicity and tight
integration with Apache Ant. LUCENE 1 is a high-
performance, full-featured text search engine library. It is a
suitable technology for applications requiring full-text
search. ANT 1 is a Java library and command-line tool that
drives processes described in build files as target and
extension points dependent upon each other. POI 1 is an APIs
for manipulating various file formats based upon the Office
Open XML standards and Microsoft's OLE2. It can read and
write MS Excel files using Java.

B. Unit Test Data Collection Procedure

The selected systems have been tested using the JUnit
framework. JUnit [11] is a framework for writing and running
automated unit tests for Java classes. JUnit gives testers some
support so that they can write the test cases more
conveniently. A typical usage of JUnit is to test each class Cs
of the software by means of a dedicated test class Ct. To
actually test a class Cs, we execute its test class Ct by calling
JUnit’s test runner tool. JUnit report how many of the test
methods in Ct succeeded, and how many failed.

In [12], we used the prefix/suffix linking approach, as
other authors [4, 10, 30], to link each software class to its
dedicated JUnit test class if exists. Linked classes are referred
as E-TESTED classes. Furthermore, we considered, the level
of JUnit Coverage (JUC) score computed by Borland
Together Tool to take transitively tested classes into account.
Indeed, in [8, 9, 12], we noted that some of software classes
were tested by transitive method invocations during unit tests.

1 https://apache.org/

2 http://joda-time.sourceforge.net/

Table 1: Percent of tested classes
 MATH IO JODA DBU LOG4J
% I-TESTED 84.04% 81% 76.62% 46.70% 40.26%
% E-TESTED 61.7% 66% 37.81% 40.1% 19.5%
 JFC IVY LUCENE ANT POI
% I-TESTED 66.26% 61.68% 52.52% 16.89% 67.73%
% E-TESTED 55.50% 15.62% 18.54% 16.89% 28,00%

The JUC score is based on unit test class invocation,
representing for each class the percent of software lines of
code covered by the set of unit test classes. Classes with a
JUC score greater than 0 are referred as I-TESTED classes.
Table 1 summarizes the distribution of E-TESTED and I-
TESTED classes.

Descriptive Statistics

Table 2 summarizes the statistics of selected metrics for
the 10 systems ordered by increasing sizes in terms of the
number of classes.

Table 2 Descriptive statistics
Syst Obs Stat FIN CBO DIT LOC RFC FOU

T
WMC

MATH 94

Min. 0 0 1 2 13 0 0
Max
.

13 18 6 660 119 12 174
Sum 275 306 195 7779 3717 194 1824
µ 2.93 3.26 2.07 82.76 39.54 2.06 19.40
σ 2.47 3.72 1.11 97.60 18.64 2.46 25.12

IO 100

Min. 0 0 1 7 17 0 1
Max
.

14 39 5 968 202 21 250
Sum 323 405 214 7604 3782 254 1817
µ 3.23 4.05 2.14 76.04 37.82 2.54 18.17
σ 4.07 5.70 1.01 121.56 24.79 3.27 31.75

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

JODA 201

Min. 0 0 1 5 11 0 1
Max
.

106 36 6 1760 287 22 176
Sum 2116 1596 447 31339 17857 1089 6269
µ 10.53 7.94 2.22 155.92 88.84 5.42 31.19
σ 16.12 6.44 1.28 210.97 64.21 4.78 30.55

DBU 212

Min. 0 0 1 4 11 0 1
Max
.

28 24 6 488 95 19 61
Sum 517 1316 452 12187 6827 901 1989
µ 2.43 6.18 2.13 57.22 32.05 4.23 9.34
σ 3.44 5.32 1.22 60.55 14.54 3.94 9.45

LOG4J 231

Min. 0 0 1 5 11 0 1
Max
.

72 107 7 1103 632 47 207
Sum 966 1698 467 20150 15879 1088 3694
µ 4.18 7.35 2.02 87.23 68.74 4.71 15.99
σ 9.29 10.12 1.30 130.42 105.75 5.93 25.70

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

JFC 409

Min. 0 0 1 4 11 0 0
Max
.

55 101 7 2041 677 56 470
Sum 2583 4861 967 67481 50628 3253 13428
µ 6.28 11.83 2.36 164.19 123.18 7.91 32.67
σ 8.99 14.07 1.40 228.06 148.28 9.43 46.73

IVY 608

Min. 0 0 0 2 1 0 0
Max
.

103 92 6 1039 458 46 231
Sum 2239 5205 1037 50080 35274 3419 9664
µ 3.68 370.03 1.71 219.60 58.02 5.62 15.84
σ 7.89 11.74 1.31 141.80 61.67 7.33 27.38

LUCEN
E

615

Min. 0 0 1 1 11 0 0
Max
.

63 55 6 2644 433 46 557
Sum 2860 3793 1212 56108 23724 2872 10803
µ 4.65 6.17 1.97 91.23 38.58 4.67 17.57
σ 7.18 7.24 1.06 192.87 34.61 5.49 35.70

ANT 663

Min. 0 0 0 1 11 0 0
Max
.

300 41 6 1252 550 30 245
Sum 3228 4613 1563 63548 36282 3294 12034
µ 4.87 6.96 2.36 95.85 54.72 4.97 18.15
σ 16.87 7.25 1.28 132.92 46.25 5.41 24.17

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

POI 1382

Min. 0 0 1 2 11 0 0

Max. 189 168 7 1686 642 62 374

Sum 5733 9660 2899 130185 66574 5924 23810

µ 4.15 6.99 2.10 94.20 48.17 4.29 17.23

σ 9.51 10.78 1.24 154.28 58.44 6.27 28.32

3 http://dbunit.sourceforge.net/

4 http://www.jfree.org/jfreechart/

The number of lines of code varies from 7,779 lines

spread over 94 software classes for MATH system, to more
than 130,185 lines of code over 1,382 software classes for
POI system. The number of classes and their cyclomatic
complexity follow the same trend. Following the descriptive
statistics, we grouped the systems into 4 categories relatively
to their size in order to better interpret the results: (1) the
small-size systems, about 100 software classes such as IO and
MATH, (2) the medium-size systems around 200 classes such
as LOG4J, DBU and JODA, (3) the large-size systems,
between 400 and just over 600 classes such as LUCENE,
IVY, ANT and JFC, and (4) the very large-size systems over
than 1,000 software classes such as POI.

The average cyclomatic complexity varies widely
between systems with similar sizes as for JODA and DBU
systems. Indeed, these systems present similar number of
classes (around 200) but quite a different average of
cyclomatic complexity (31.19 vs. 9.34). We made the same
observations for LUCENE and JFC systems.

The DIT metric varies from 1 to 7 in all systems when it
average is about 2 for the majority of systems. DIT has the
lowest variance values compared to other metrics. The
minimum average value of DIT is observed for IVY (1.71)
and the maximum average value for JFC and ANT (2.36). A
very deep inheritance tree may indicate a bad design while
shallow inheritance reflects the lack of code reusability.

JODA software has the highest average value of FIN
(10.53) while JFC got the highest average value of FOUT
(7.91) and RFC (123.18).

V. EMPIRICAL ANALYSIS

A. Research question

The machine learning models in [12] have been trained
on combined datasets formed by source code metrics and unit
tests information of different systems. With 70% of correct
classifications, the generated classifiers well suggested the
candidate classes for unit tests as long as the targeted systems
was large enough. That result has been mainly explained by
the probably missing of strategies when testing small
software systems. With more source code metrics, our current
work test different deep neural network topologies to
improve the results we observed previously. The main
research question is:

Can deep neural network-based classifier better fit the
candidate classes selected by testers for unit testing?

The main goal remains to use metric information in order
to support unit tests prioritization decisions. Our research
question allows to validate whether a deep neural network
model can produce good classifiers that fit the testers
selection of candidate classes for unit tests. The empirical
study we conducted is based on combined training datasets
from which the system under analysis has been excluded, a
technique we referred as Leave One System Out Validation.

B. Deep Neural Network

Deep neural network is a family of Artificial Neural
Network (ANN) that contains more than one hidden layer.
When well trained (Deep learning), it allows computational
models that are composed of multiple processing layers to
learn representations of data with multiple levels of
abstraction. These methods have dramatically improved the
state-of-the-art in speech recognition, visual object
recognition, object detection and many other domains such as

drug discovery and genomics. Deep learning discovers
intricate structure in large data sets by using the
backpropagation algorithm to indicate how ANN should
change its internal parameters that are used to compute the
representation in each layer, from the representation in the

previous layer [13].
In deep neural network models, the layers configuration

may strongly impact the performances of classifiers.
Unfortunately, there is no systematic approach that may
determine the right layers topology for a given dataset.
Hence, we adopted the try and error strategy to find the
suitable architecture for our datasets.

C. Leave One System Out Validation LOSOV

The LOSOV consists of combining the datasets of

different Si systems excluding Sj to form a unique training

dataset for the neural network model. The generated classifier

is tested on the remaining Sj system. After many tries,

following layers topology has been set for the deep neural

network model.
The input layer: We managed a dataset that contains 7

properties formed by the selected metrics which lead us to set
7 neurons on the entry layer.

The hidden layers: The hidden layers organization result
from multiple tries/error, and the best results was obtained
when setting 6 layers of 175 neurons each of them activated
with relu function. With fewer neurons, the model trends to
misclassify the large and the very large systems, while more
neurons conduct to overfitting issues. We tried different
compressing topologies by gradually reducing the number of
cells along the layers, from entry toward the output layer. The
results were inconclusive. We also increased/decreased the
number of layers and combined them with different epoch
numbers but misclassifications and overfitting issues still
persisted.

The output layer: The output layer is composed of 2
neurons to match our binary classification problem. The layer
uses softmax activation function.

We also found, after many tries, that 350 epochs gave the
best results. Increasing that number leads to overfitting with
totally unbalanced confusion matrix (classifier tends to
suggest all software classes or none of them as candidates for
unit tests), while reducing it produces misclassifications.

D. Results & Discussion

We considered both the E-TESTED and I-TESTED unit

test perspectives. Table 3 summarizes the results we got by

generated classifiers with 350 epochs. On each row that

represents evaluated system, LOSVO approach validates the

classifier obtained from the dataset composed of all

remaining systems by testing it on that system. The accuracy

column indicates the accuracy percentage, while the conf.

matrix column holds the confusion matrix produced by the

classifier.
We immediately remarked that: (1) the candidate classes for
unit tests of larger systems are better predicted with better
accuracy compared to our previous works, and (2) the I-
TESTED point of view leads to better suggestion results in
terms of the number of correctly predicted systems. The
relationship between systems’ size and classifiers’
performances is not surprising but follows the trends we
previously observed using other classifiers models. The
explanation may come from the lack of strategy when testing

small systems. It may also be related to the training dataset
scale. The largest system (POI) predication is weak according
to E-TESTED point of view (about 63.6%). Removing POI
from the combined dataset may unbalance the training dataset
and could explain the weakness of the prediction accuracy.

Table 3: LOSVO trained on metric values

E-TESTED, Value Only I-TESTED, Value Only
Accuracy Conf. Matrix Accuracy Conf. Matrix

MATH 38.30%
28 8

64.89%
5 10

50 8 23 56

IO 52.00%
30 4

68.00%
15 4

44 22 28 53

JODA 73.13%
97 28

78.61%
34 13

26 50 30 124

DBU 63.21%
115 12

80.66%
84 29

66 19 12 87

LOG4J 86.15%
175 12

78.79%
106 32

20 24 17 76

JFC 83.37%
168 14

82.15%
114 24

53 173 49 222

IVY 88.49%
472 41

85.20%
188 45

29 66 45 330

LUCENE 80.98%
436 65

84.55%
243 49

52 62 46 277

ANT 86.12%
497 54

78.73%
422 129

38 74 12 100

POI 63.6%
725 270

78.22%
431 84

233 154 217 650

When considering the I-TESTED point of view, the

candidate classes for unit tests are better predicted by
classifiers. 8 systems over 10 (against 6 over 10 for E-
TESTED) have an accuracy greater than 70%. The associated
confusion matrices ensure us that the classifiers are not
suggesting no class or all classes (at the same time) as
candidate classes for unit tests. Indeed, we faced that situation
when using shallow neural networks or when we increased
the number of training stages epochs during our
investigations.

When deepening our investigations and reviewing the
descriptive statistics, we understood that some characteristics
of class attributes relatively to other classes in the same
software system may have an impact on developer decision
to select or not that class as a candidate for unit tests. The raw
values of source code metrics considered alone are not
sufficient for our classifiers to correctly match the tester
selections. Indeed, a WMC score of 50 (for example) may be
important when a developer tests a system for which the
average class complexity (WMC) is much smaller than 50
which lead him to write an explicit test class for that software
class. On the other hand, a class with the same complexity
score may be considered as little complex by the developer
when it belongs to a large system in which average
complexity of classes is largely higher than 50. We thus need
an attribute that captures the metric values for a class
relatively to the other classes within the same system. When
combining datasets, that attribute will mitigate it
corresponding source code metrics. The ranks of metric
scores are good candidates. In the following steps, we tested
whether including metric ranks could improve the results of
Table 2. We computed the rank of each metric’s value of each
class inside each system. Ranks have been included to the
datasets. All new datasets contain 14 attributes that constrains
us to review our neural network topology.

The Input layer: With the new datasets of 14 properties
formed by the metrics and their ranks. We set the number of
neurons in the entry layer to 14.

The Hidden layers: We set the number of hidden layers to
13. Now, each layer contains 350 neurons. We kept the relu
as activation function.

The Output layer: The output remains unchanged. Its 2
neurons still match our binary classification problem. They
are activated with softmax function. The number of epochs
has also been doubled to 750 to prevent misclassification.

Table 4 summarizes the results. We immediately remark
that all predictions highly improved compared to Table 3. The
large systems are suggested with more than 99% of
correctness in both perspectives. MATH results with E-
TESTED point of view, slightly improved but remains the
only system under 70% of correctness. For several systems
(JODA, DBU, LOG4J and LUCENE) all tested classes have
been found by the classifier without any false positive or false
negative classification. We reached 100% of correctness.

Table 4 LOSVO trained on metric and rank values
E-TESTED, Value + Rank I-TESTED, Value + Rank

Accuracy Conf. Matrix Accuracy Conf. Matrix

MATH 52.13%
14 22

76.60%
3 12

23 35 60 69

IO 93.00%
30 4

99.00%
19 0

3 63 1 80

JODA 100.00%
125 0

99.50%
46 1

0 76 0 154

DBU 100.00%
127 0%

100.00%
113 0

0% 85 0 99

LOG4J 100.00%
187 0

99.57%
137 1

0 44 0 93

JFC 99.76%
181 1

99.51%
138 0

0 227 2 269

IVY 99.84%
513 0

98.85%
226 7

1 94 0 375

LUCENE 100.00%
501 0

99.19%
289 3

0 114 2 321

ANT 99.85%
550 1

99.85%
551 0

0 112 1 111

POI 99.78%
994 1

99.35%
510 5

2 385 4 863

The results we obtained in Tables 3 and 4 strongly support

our hypothesis. It’s possible to build a prediction classifier
based on deep neural network and trained on combined
datasets composed by different software systems that
correctly suggest classes to be tested. “Correctly” means
matching the real testers’ selection. E-TESTED and I-
TESTED points of view have no impact when we included
the ranks values in the datasets. Let’s recall that our long-term
goal was to build an IDE plugin tool that automatically
collects source code metrics of systems under development
in order to suggest a set of classes to be tested. The plugin's
classifiers would be trained from datasets of various systems.
Under such conditions, it was important for us to explore in
the current work, the suggestion capability of classifiers
trained on such a mixed dataset.

VI. THREATS TO VALIDITY

Obtained results are suggestive and the study we
presented was performed on 10 open-source systems
containing almost a half million lines of code (453K). The
sample is large enough to allow obtaining significant results,
but the experimental approaches may present limitations that
could restrict the generalization of certain conclusions.
Indeed, all systems we used are developed using Java
language and tested using JUnit framework. Java and JUnit
are popular in the developers’ community. The obtained
results may not be generalizable to other unit testing
frameworks or programming languages. More investigations
are required to rule on the issue. Furthermore, it would be

interesting to know, in such a condition, whether mixing
dataset from systems built using different languages and unit
framework could improve or degrade the results. The neural
network topology we identified matches very well the
analyzed group of systems. Changing the number of systems
and their categories may degrade obtained results.
Replicating the study on more systems could help to draw
more general neural network topology that fits unit test
decision support.

VII. CONCLUSIONS AND FUTURE WORK

Ten open source software systems have been analyzed in
this study which totals more than 4400 classes. The testers of
each system developed dedicated unit test classes for a subset
of classes using the Junit Framework. We explored the
possibility of deep neural network models to correctly match
developers’ selections of the candidate classes for unit tests.
To achieve our investigations, we considered explicitly and
implicitly tested classes. With the combination of the 10
datasets formed by the considered systems, we tested various
deep neural network topologies that we validated using Leave
One System Out Validation technique. The objective was to
know to what extents the combined information of different
systems could be a usable training dataset for deep neural
network-based classifiers. Results show that it was possible
to correctly match the candidate classes for unit tests
proposed by testers. Furthermore, the results indicated that all
systems could be well predicted with more than 93% of
accuracy. These results are particularly interesting since the
long-term goal of our work is to build a collaborative plugin
tool that suggests the set of the candidate classes for unit tests
by learning from different systems information history. Our
next challenge will be to validate this approach using
different unit testing frameworks under different
programming language before developing the plugin tool.

REFERENCES

1. Chidamber S.R. and Kemerer C.F., 1994. A Metrics Suite for Object

Oriented Design, IEEE Transactions on Software Engineering, vol. 20,

no. 6, pp. 476–493.

2. Henderson-Sellers B. 1996. Object-Oriented Metrics Measures of

Complexity, Prentice-Hall, Upper Saddle River.

3. Bruntink M. and Van Deursen A. 2006. An Empirical Study into Class

Testability, Journal of Systems and Software, Vol. 79, No. 9, pp. 1219-

1232.

4. Badri L., Badri M. and Toure F., 2010. Exploring Empirically the
Relationship between Lack of Cohesion and Testability in Object-

Oriented Systems, JSEA Eds., Advances in Software Engineering,

Communications in Computer and Information Science, Vol. 117,

Springer, Berlin.

5. Badri M. and Toure F., 2011. Empirical analysis for investigating the
effect of control flow dependencies on testability of classes, in

Proceedings of the 23rd International Conference on Software

Engineering and Knowledge Engineering SEKE.

6. Badri M. and Toure F. 2012. Empirical analysis of object oriented

design metrics for predicting unit testing effort of classes, Journal of
Software Engineering and Applications (JSEA), Vol. 5 No. 7, pp.513-

526.

7. Toure F., Badri M. and Lamontagne L., 2014. Towards a metric suite

for JUnit Test Cases. In Proceedings of the 26th International
Conference on Software Engineering and Knowledge Engineering

(SEKE Vancouver, Canada. Knowledge Systems Institute Graduate

School, USA pp 115–120.

8. Toure F., Badri M. and Lamontagne L., 2014. A metrics suite for JUnit

test code: a multiple case study on open source software, Journal of

Software Engineering Research and Development, Springer, 2:14.

9. Toure F., Badri M. and Lamontagne L., 2017. Investigating the

Prioritization of Unit Testing Effort Using Software Metrics, In

Proceedings of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE’17) Volume 1:

ENASE, pages 69-80.

10. Bruntink M., and Deursen A.V., 2004. Predicting Class Testability
using Object-Oriented Metrics, 4th Int. Workshop on Source Code

Analysis and Manipulation (SCAM), IEEE.

11. JUnit Framework, https://junit.org/junit5/. Visited in December 2019.

12. Toure F., and Badri M., 2018. Prioritizing Unit Testing Effort Using

Software Metrics and Machine Learning Classifiers, In Proceedings of
the 30th International Conference on Software Engineering and

Knowledge Engineering, SEKE 2018 DOI:10.18293/SEKE2018-146

13. LeCun Y, Bengio Y, and Hinton G., 2015. Deep learning. Nature. 2015,

521(7553):436-444. doi:10.1038/nature14539.

14. Rothermel G., Untch R.H., Chu C. and Harrold M.J., 1999. Test case
prioritization: an empirical study, International Conference on

Software Maintenance, Oxford, UK, pp. 179–188.

15. Yu Y. T. and Lau M. F., 2012. Fault-based test suite prioritization for

specification-based testing, Information and Software Technology

Volume 54, Issue 2, Pages 179–202.

16. Mirarab S. and Tahvildari L., 2007. A prioritization approach for

software test cases on Bayesian networks, In FASE, LNCS 4422-0276,

pages 276–290.

17. Kim J. and Porter A., 2002. A history-based test prioritization technique

for regression testing in resource constrained environments, In

Proceedings of the International Conference on Software Engineering.

18. Lin C.T., Chen C.D., Tsai C.S. and Kapfhammer G. M., 2013. History-

based Test Case Prioritization with Software Version Awareness, 18th

International Conference on Engineering of Complex Computer

Systems.

19. Carlson R., Do H., and Denton A., 2011. A clustering approach to

improving test case prioritization: An industrial case study, Software

Maintenance, 27th IEEE International Conference, ICSM, pp. 382-391.

20. Lachmann R., Schulze S., Nieke M., Seidl C. and Schaefer I., 2016
System-Level Test Case Prioritization Using Machine Learning, 2016

15th IEEE International Conference on Machine Learning and

Applications (ICMLA), Anaheim, CA, 2016, pp. 361-368.

21. Spieker H., Gotlieb A., Marijan D. and Mossige M., Reinforcement

learning for automatic test case prioritization and selection in
continuous integration, Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, July 2017.

22. Shihaby E., Jiangy Z. M., Adamsy B., Ahmed E. Hassany A. and

Bowermanx R., 2010. Prioritizing the Creation of Unit Tests in Legacy

Software Systems, Softw. Pract. Exper., 00:1–22.

23. Li W., and Henry S., 1993. Object-Oriented Metrics that Predict

Maintainability Journal of Systems and Software, vol. 23 no. 2 pp. 111-

122.

24. Dagpinar M., and Jahnke J., 2003. Predicting maintainability with

object-oriented metrics – an empirical comparison, Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), IEEE

Computer Society, pp. 155–164.

25. Zhou Y., and Leung H., 2007. Predicting object-oriented software

maintainability using multivariate adaptive regression splines, Journal

of Systems and Software, Volume 80, Issue 8, August 2007, Pages

1349-1361, ISSN 0164-1212.

26. Basili V.R., Briand L.C. and Melo W.L., 1996. A Validation of Object-

Oriented Design Metrics as Quality Indicators, IEEE Transactions on

Software Engineering. vol. 22, no. 10, pp. 751-761.

27. Aggarwal K.K., Singh Y., Kaur A., and Malhotra R., 2009. Empirical
Analysis for Investigating the Effect of Object-Oriented Metrics on

Fault Proneness: A Replicated Case Study, Software Process

Improvement and Practice, vol. 14, no. 1, pp. 39-62.

28. Shatnawi R., 2010. A Quantitative Investigation of the Acceptable Risk

Levels of Object-Oriented Metrics in Open-Source Systems, IEEE

Transactions On Software Engineering, Vol. 36, No. 2.

29. Zhou Y. and Leung H., 2006. Empirical Analysis of Object-Oriented

Design Metrics for Predicting High and Low Severity Faults, IEEE

Transaction Software Engineering, vol. 32, no. 10, pp. 771-789.

30. Mockus A., Nagappan N. and Dinh-Trong T. T., 2009. Test coverage
and post-verification defects: a multiple case study, in proceedings of

the 3rd International Symposium on Empirical Software Engineering

and Measurement (ESEM), pp. 291– 301.

	I. Introduction
	II. Related Work
	III. Software Metrics
	IV. Data collection
	A. Selected Systems
	B. Unit Test Data Collection Procedure
	Descriptive Statistics

	V. Empirical Analysis
	A. Research question
	B. Deep Neural Network
	C. Leave One System Out Validation LOSOV
	D. Results & Discussion

	VI. Threats to Validity
	VII. Conclusions and Future Work
	References

