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Abstract— Unit testing plays a crucial role in object-oriented 

software quality assurance. Software testing is often conducted 

under tight time and resource constraints. Hence, testers do not 

usually cover all software classes. Testing needs to be prioritized 

and testing effort to be focused on critical components. The 

research we present in this paper is part of the development of 

a collaborative decision support tool allowing the developers’ 

community to pool their unit testing experiences when selecting 

the candidate classes for unit tests. To achieve this, we proposed 

in our previous work a unit tests prioritization approach based 

on software information histories and software metrics. The 

goal is to suggest classes to be tested by building a classifier that 

matches the testers selection. Several machine learning 

classifiers have been previously considered. The current paper 

explores the deep neural network models with more software 

source code metrics including explicitly and implicitly tested 

classes. The training datasets that have been combined are from 

different systems. So, we considered metrics ranks. Using a 

cross systems validation technique, obtained results strongly 

suggest that deep neural network-based classifiers correctly 

reflect the tester’s selections and could thus help in decision 

support during the selection of candidate classes for unit tests. 

Key words— Tests Prioritization; Unit Tests; Source Code 

Metrics; Deep Neural Network; Deep Learning; Machine 

Learning Classifiers. 

I. INTRODUCTION 

Software testing plays a crucial role in software quality 
assurance. Unit testing is one of the main phases of the testing 
process where each software class is individually tested using 
dedicated test cases. In object-oriented (OO) software 
systems, units are software classes and testers usually write a 
dedicated unit test class for each software class they decided 
to test. The unit tests aim at early reveal faults in software 
classes. In the case of large-scale OO software systems, 
because of resource limitations and tight time constraints, the 
unit testing efforts are often focused. Testers usually select a 
limited set of software classes for which they write dedicated 
unit test classes. Knowing that it is often not realistic to 
equally test all software classes, it becomes important for 
testers to target the most critical and fault-prone classes. 
However, the task is not obvious and requires a deep analysis 
of software. These issues belong to the family of tests 
prioritization topics. Several existing approaches try to 

prioritize test suites execution in order to discover the 
maximum of faults quickly, while others try upstream to 
focus the developer efforts on suitable classes to be tested. 
This paper focus on how to automatically target suitable 
candidate classes for unit tests. The long-term goal is to build 
a collaborative tool for the developers’ community. That tool 
will collect source code metrics and classes unit test 
information from different projects in order to improve a 
unique cloud-hosted classifier performance to match the 
testers’ selection of unit tests candidate classes. For new 
systems under development, the tool could suggest, after 
collecting some specific source code metrics, a set of 
candidate classes for unit tests. Due to the large source code 
diversity and increasing amount of data that the tool will face, 
we considered using deep neural network models trained on 
combined systems’ datasets to explore how accurate the 
classifiers could match the testers’ selection.  

Many OO metrics, related to internal software class 
attributes have been proposed in literature [1, 2]. Some of 
them have already been recently used to predict unit 
testability of classes in OO software systems [3-10] by 
analyzing various existing open source Java software systems 
for which Junit [11] test cases were developed and are 
accessible in public repositories. For all systems, authors [3-
10] found that only a subset of classes have dedicated unit 
test classes written by developers. In previous work [9, 12], 
we focused on how the selection of the candidate classes for 
unit tests was made by testers. Multivariate Logistic 
Regression, Naive Bayes, Random Forest and K-Nearest 
Neighbours classifiers have been used to automate the 
selection of candidate classes for unit tests. They have been 
validated within systems and between systems using Cross 
Systems Validation (CSV) and Leave One System Out 
Validation (LOSOV). The latter validation technique implied 
the use of combined datasets extracted from different 
systems. 

Based on deep neural network models [13], the current 
work includes more source code metrics to capture various 
characteristics that we believe are determinative for a 
software class to be considered as a good candidate for unit 
tests from testers’ point of view. We also included two ways 
of labelling tested classes according to the existence of 
dedicated unit test classes and to the actual unit testing 
coverage.  

The paper is organized as follows. Section II presents 
some related works. Section III addresses the OO software 
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metrics we used for this study. Section IV describes the data 
collection procedure and the considered systems. Section V 
presents the empirical study we conducted and the results 
obtained with the related discussions. Section VI reports the 
main threats to validity relatively to our empirical 
experimentations. Finally, Section VII concludes the paper, 
summarizes the contributions of this work and outlines 
several directions for future investigations. 

II. RELATED WORK 

Test case prioritization has been widely discussed in the 
context of regression testing. Various techniques have been 
proposed in the literature and used different leverages. We 
can distinguish: (1) coverage rates based techniques, (2) 
software history information based techniques, and (3) risk 
analysis based techniques. 

Fault detection techniques focus on targeting the most 
fault prone components using, in practice, fault exposure 
factors as a proxy. Factors are estimated using different ways 
from the software artifacts. The results obtained by 
Rothermel et al. [11] and Yu and Lau [12] indicated that this 
approach improves the fault detection rates. 

The coverage-based techniques run the test suites that 
cover most modified software artefacts during regression 
testing. Several machine learning algorithms (Naïve Bayes, 
Genetic Algorithms) are used to derive a prioritization 
approach. The investigations [14-16] results showed that 
coverage-based techniques also lead to fault detection rate 
improvement. 

The history-based prioritization collects previous 

regression testing assets and current changes information of 

the same system in order to prioritize the new given test 

suites. Thus, the technique is unsuitable for the first 

regression testing of software. Kim and Porter [17] used the 

historical execution data to prioritize test cases for regression 

tests, while Lin et al. [18] investigated the weight of used 

information between two versions of history-based 

prioritization techniques. The results indicated that the 

history-based prioritization provides a better fault detection 

rate. Carlson et al. [19] mixed history and coverage-based 

techniques using a clustering based prioritization technique. 
Lachmann et al. [20] introduced a test case prioritization 

technique  for system-level regression testing based on 
supervised machine learning. The approach considers black-
box metadata, such as test cases history, as well as natural 
language test case descriptions for prioritizing. They used the 
SVM Rank machine learning algorithms and evaluate their 
approach on 2 subject systems. The results outperform a test 
case order given by a test expert. 

 Spieker et al. [21] proposed the Retecs approach, a 
method for automatically learning test case selection and 
prioritization in continuous integration with the goal to 
minimize the round-trip time between code commits and 
developer feedback on failed test cases. The approach uses 
reinforcement learning. The Empirical study shows that 
reinforcement learning enables fruitful automatic adaptive 
test case selection and prioritization. 

 The history and machine learning based techniques 
prioritize test suites in a regression testing context. Some 
other techniques allow, upstream, the prioritization of 
components to be tested. They aim to optimize the testing 
efforts distribution by targeting the most fault prone 
components. Shihab et al. [22] explored the prioritization for 
unit testing phase in the context of legacy systems.  Our 

previous papers [12] proposed machine learning approaches 
that aim to suggest candidate classes for unit tests.  We used 
2 classifiers trained on the dataset formed by source code 
metrics and labelled by tested/not tested, to build classifiers 
that match the candidate classes for unit tests. After applying 
cross systems validation techniques, our results indicated that 
for a given system, the ability of a classifier, to correctly 
suggest the candidate classes for unit tests ( more than 70% 
of accuracy). Furthermore, we considered more machine 
learning algorithms and we focused on affinities between the 
systems used as training and testing datasets during the cross 
systems validation. We wanted to determine whether some 
systems make better training sets for suggesting other 
specific systems unit test candidate classes. The result 
showed that the datasets of large systems could be only used 
to suggest large systems unit test candidate classes, while 
classifiers trained on small systems fail to suggest the 
candidate classes for unit tests on large and small systems. In 
the same study [12], we focused on the ability of combined 
datasets to suggest candidate classes for unit tests. After 
applying the leave one system out validation technique, the 
result show that more than 70% of candidate classes selected 
by testers were well predicted in the case of large size 
systems. 

The current paper investigates deep neural network 
classifiers trained on combined datasets as predictor models 
for unit tests candidate classes selection. Combining different 
systems as a single training dataset presents several 
advantages such as diversity of observations and their 
amount. Indeed, our long-term objective is to build a 
collaborative IDE plugin, based on unit tests information and 
some specific metrics to support the unit tests prioritization. 
Hence, the plugin will collect source code metrics and test 
information from various software systems. Under such 
conditions, the ability of learning from combined datasets is 
of great importance. Combining training datasets may, 
however, lead to metric dimensionality issues. Indeed, from 
the tester point of view, a class with a given metric value may 
be considered as a good candidate or not depending on the 
metric values of the other classes of the system. The 
following section presents the software metrics we used in 
our study. 

III. SOFTWARE METRICS 

This section presents the considered OO source code 
metrics. We expanded the previous dataset metrics used in [9, 
12] by including more source code attributes. The selected 
metrics are being adopted by practitioners. Several studies 
have shown that the considered metrics are related to 
testability [3-8], maintainability [23-26], and fault proneness 
[27-29]. The set of metrics is related to inheritance, coupling, 
complexity and size software attributes. We computed them 
using the Borland Together (http://www.borland.com). 

Depth of Inheritance Tree: DIT metric is the maximum 

inheritance path from the given class to the root class. 

Coupling Between Objects: The CBO metric counts for a 

given class, the number of other classes to which it is coupled 

and vice versa. Fan Out: The FOUT metric counts the 

number of other classes referenced by a given class. Fan IN: 

The FIN metric counts the number of other classes that 

reference to a given class. Weighted Methods per Class: The 

WMC metric gives the sum of the complexities of the 

methods of a given class, where each method is weighted by 

its cyclomatic complexity [27]. Only methods specified in the 



 
class are considered. Response For Class: The RFC metric 

measures the class’s complexity in terms of method 

invocations. It sums the number of methods defined in a 

given class and the number of distinct method invocation 

made by that method. Lines of Code per Class: The SLOC 

metric counts for a given class, its number of source lines of 

code. 

IV. DATA COLLECTION 

A. Selected Systems 

The source codes of 10 open source OO software systems 
developed in Java have been extracted from public 
repositories and described below. For each system, only a 
subset of classes has been tested using JUnit framework. 

IO 1  is a library of utilities for developing input/output 
functionalities. It is developed by Apache Software 
Foundation. MATH 1 is a library of lightweight, self-
contained mathematics and statistics components addressing 
the most common problems not available in the Java 
programming language. JODA 2  is the de facto standard 
library for advanced date and time in Java. It provides a 
quality replacement for the Java date and time classes. The 
design supports multiple calendar systems, while still 
providing a simple API.  
DBU 3 (DbUnit) is a JUnit extension (also usable with Ant) 
used in database-driven projects that, among others, put a 
database into a known state between test runs. LOG4J 1 is a 
fast and flexible framework for logging applications 
debugging messages. JFC 4  (JFreeChart) is a free chart 
library for Java platform. IVY 1 is an agile dependency 
manager characterized by flexibility, simplicity and tight 
integration with Apache Ant. LUCENE 1 is a high-
performance, full-featured text search engine library. It is a 
suitable technology for applications requiring full-text 
search. ANT 1 is a Java library and command-line tool that 
drives processes described in build files as target and 
extension points dependent upon each other. POI 1 is an APIs 
for manipulating various file formats based upon the Office 
Open XML standards and Microsoft's OLE2. It can read and 
write MS Excel files using Java. 

B. Unit Test Data Collection Procedure  

The selected systems have been tested using the JUnit 
framework. JUnit [11] is a framework for writing and running 
automated unit tests for Java classes. JUnit gives testers some 
support so that they can write the test cases more 
conveniently. A typical usage of JUnit is to test each class Cs 
of the software by means of a dedicated test class Ct. To 
actually test a class Cs, we execute its test class Ct by calling 
JUnit’s test runner tool. JUnit report how many of the test 
methods in Ct succeeded, and how many failed. 

In [12], we used the prefix/suffix linking approach, as 
other authors [4, 10, 30], to link each software class to its 
dedicated JUnit test class if exists. Linked classes are referred 
as E-TESTED classes. Furthermore, we considered, the level 
of JUnit Coverage (JUC) score computed by Borland 
Together Tool to take transitively tested classes into account.  
Indeed, in [8, 9, 12], we noted that some of software classes 
were tested by transitive method invocations during unit tests.  

 
1 https://apache.org/ 

2 http://joda-time.sourceforge.net/ 

Table 1: Percent of tested classes 
  MATH IO JODA DBU LOG4J 
% I-TESTED  84.04% 81% 76.62% 46.70% 40.26% 
% E-TESTED 61.7% 66% 37.81% 40.1% 19.5% 
  JFC IVY LUCENE ANT POI 
% I-TESTED  66.26% 61.68% 52.52% 16.89% 67.73% 
% E-TESTED 55.50% 15.62% 18.54% 16.89% 28,00% 

The JUC score is based on unit test class invocation, 
representing for each class the percent of software lines of 
code covered by the set of unit test classes. Classes with a 
JUC score greater than 0 are referred as I-TESTED classes. 
Table 1 summarizes the distribution of E-TESTED and I-
TESTED classes. 

Descriptive Statistics 

Table 2 summarizes the statistics of selected metrics for 
the 10 systems ordered by increasing sizes in terms of the 
number of classes.  

Table 2 Descriptive statistics 
Syst Obs Stat FIN CBO DIT LOC RFC FOU

T 
WMC 

MATH 94 

Min. 0 0 1 2 13 0 0 
Max
. 

13 18 6 660 119 12 174 
Sum 275 306 195 7779 3717 194 1824 
µ 2.93 3.26 2.07 82.76 39.54 2.06 19.40 
σ 2.47 3.72 1.11 97.60 18.64 2.46 25.12 

IO 100 

Min. 0 0 1 7 17 0 1 
Max
. 

14 39 5 968 202 21 250 
Sum 323 405 214 7604 3782 254 1817 
µ 3.23 4.05 2.14 76.04 37.82 2.54 18.17 
σ 4.07 5.70 1.01 121.56 24.79 3.27 31.75           

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC 

JODA 201 

Min. 0 0 1 5 11 0 1 
Max
. 

106 36 6 1760 287 22 176 
Sum 2116 1596 447 31339 17857 1089 6269 
µ 10.53 7.94 2.22 155.92 88.84 5.42 31.19 
σ 16.12 6.44 1.28 210.97 64.21 4.78 30.55 

DBU 212 

Min. 0 0 1 4 11 0 1 
Max
. 

28 24 6 488 95 19 61 
Sum 517 1316 452 12187 6827 901 1989 
µ 2.43 6.18 2.13 57.22 32.05 4.23 9.34 
σ 3.44 5.32 1.22 60.55 14.54 3.94 9.45 

LOG4J 231 

Min. 0 0 1 5 11 0 1 
Max
. 

72 107 7 1103 632 47 207 
Sum 966 1698 467 20150 15879 1088 3694 
µ 4.18 7.35 2.02 87.23 68.74 4.71 15.99 
σ 9.29 10.12 1.30 130.42 105.75 5.93 25.70           

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC 

JFC 409 

Min. 0 0 1 4 11 0 0 
Max
. 

55 101 7 2041 677 56 470 
Sum 2583 4861 967 67481 50628 3253 13428 
µ 6.28 11.83 2.36 164.19 123.18 7.91 32.67 
σ 8.99 14.07 1.40 228.06 148.28 9.43 46.73 

IVY 608 

Min. 0 0 0 2 1 0 0 
Max
. 

103 92 6 1039 458 46 231 
Sum 2239 5205 1037 50080 35274 3419 9664 
µ 3.68 370.03 1.71 219.60 58.02 5.62 15.84 
σ 7.89 11.74 1.31 141.80 61.67 7.33 27.38 

LUCEN
E 

615 

Min. 0 0 1 1 11 0 0 
Max
. 

63 55 6 2644 433 46 557 
Sum 2860 3793 1212 56108 23724 2872 10803 
µ 4.65 6.17 1.97 91.23 38.58 4.67 17.57 
σ 7.18 7.24 1.06 192.87 34.61 5.49 35.70 

ANT 663 

Min. 0 0 0 1 11 0 0 
Max
. 

300 41 6 1252 550 30 245 
Sum 3228 4613 1563 63548 36282 3294 12034 
µ 4.87 6.96 2.36 95.85 54.72 4.97 18.15 
σ 16.87 7.25 1.28 132.92 46.25 5.41 24.17  

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC 

POI 1382 

Min. 0 0 1 2 11 0 0 

Max. 189 168 7 1686 642 62 374 

Sum 5733 9660 2899 130185 66574 5924 23810 

µ 4.15 6.99 2.10 94.20 48.17 4.29 17.23 

σ 9.51 10.78 1.24 154.28 58.44 6.27 28.32 

3 http://dbunit.sourceforge.net/ 

4 http://www.jfree.org/jfreechart/ 



 
 
The number of lines of code varies from 7,779 lines 

spread over 94 software classes for MATH system, to more 
than 130,185 lines of code over 1,382 software classes for 
POI system. The number of classes and their cyclomatic 
complexity follow the same trend. Following the descriptive 
statistics, we grouped the systems into 4 categories relatively 
to their size in order to better interpret the results: (1) the 
small-size systems, about 100 software classes such as IO and 
MATH, (2) the medium-size systems around 200 classes such 
as LOG4J, DBU and JODA, (3) the large-size systems, 
between 400 and just over 600 classes such as LUCENE, 
IVY, ANT and JFC, and (4) the very large-size systems over 
than 1,000 software classes such as POI. 

The average cyclomatic complexity varies widely 
between systems with similar sizes as for JODA and DBU 
systems. Indeed, these systems present similar number of 
classes (around 200) but quite a different average of 
cyclomatic complexity (31.19 vs. 9.34). We made the same 
observations for LUCENE and JFC systems.  

The DIT metric varies from 1 to 7 in all systems when it 
average is about 2 for the majority of systems. DIT has the 
lowest variance values compared to other metrics. The 
minimum average value of DIT is observed for IVY (1.71) 
and the maximum average value for JFC and ANT (2.36). A 
very deep inheritance tree may indicate a bad design while 
shallow inheritance reflects the lack of code reusability.  

JODA software has the highest average value of FIN 
(10.53) while JFC got the highest average value of FOUT 
(7.91) and RFC (123.18). 

V. EMPIRICAL ANALYSIS 

A. Research question 

The machine learning models in [12] have been trained 
on combined datasets formed by source code metrics and unit 
tests information of different systems. With 70% of correct 
classifications, the generated classifiers well suggested the 
candidate classes for unit tests as long as the targeted systems 
was large enough. That result has been mainly explained by 
the probably missing of strategies when testing small 
software systems. With more source code metrics, our current 
work test different deep neural network topologies to 
improve the results we observed previously. The main 
research question is:  

Can deep neural network-based classifier better fit the 
candidate classes selected by testers for unit testing? 

The main goal remains to use metric information in order 
to support unit tests prioritization decisions. Our research 
question allows to validate whether a deep neural network 
model can produce good classifiers that fit the testers 
selection of candidate classes for unit tests. The empirical 
study we conducted is based on combined training datasets 
from which the system under analysis has been excluded, a 
technique we referred as Leave One System Out Validation.  

B. Deep Neural Network 

Deep neural network is a family of Artificial Neural 
Network (ANN) that contains more than one hidden layer.  
When well trained (Deep learning), it allows computational 
models that are composed of multiple processing layers to 
learn representations of data with multiple levels of 
abstraction. These methods have dramatically improved the 
state-of-the-art in speech recognition, visual object 
recognition, object detection and many other domains such as 

drug discovery and genomics. Deep learning discovers 
intricate structure in large data sets by using the 
backpropagation algorithm to indicate how ANN should 
change its internal parameters that are used to compute the 
representation in each layer, from the representation in the 

previous layer [13]. 
In deep neural network models, the layers configuration 

may strongly impact the performances of classifiers. 
Unfortunately, there is no systematic approach that may 
determine the right layers topology for a given dataset. 
Hence, we adopted the try and error strategy to find the 
suitable architecture for our datasets.  

C. Leave One System Out Validation LOSOV 

The LOSOV consists of combining the datasets of 

different Si systems excluding Sj  to form a unique training 

dataset for the neural network model. The generated classifier 

is tested on the remaining Sj system. After many tries, 

following layers topology has been set for the deep neural 

network model. 
The input layer: We managed a dataset that contains 7 

properties formed by the selected metrics which lead us to set 
7 neurons on the entry layer.  

The hidden layers: The hidden layers organization result 
from multiple tries/error, and the best results was obtained 
when setting 6 layers of 175 neurons each of them activated 
with relu function. With fewer neurons, the model trends to 
misclassify the large and the very large systems, while more 
neurons conduct to overfitting issues. We tried different 
compressing topologies by gradually reducing the number of 
cells along the layers, from entry toward the output layer. The 
results were inconclusive. We also increased/decreased the 
number of layers and combined them with different epoch 
numbers but misclassifications and overfitting issues still 
persisted. 

The output layer: The output layer is composed of 2 
neurons to match our binary classification problem. The layer 
uses softmax activation function. 

We also found, after many tries, that 350 epochs gave the 
best results. Increasing that number leads to overfitting with 
totally unbalanced confusion matrix (classifier tends to 
suggest all software classes or none of them as candidates for 
unit tests), while reducing it produces misclassifications.  

D. Results & Discussion 

We considered both the E-TESTED and I-TESTED unit 

test perspectives. Table 3 summarizes the results we got by 

generated classifiers with 350 epochs. On each row that 

represents evaluated system, LOSVO approach validates the 

classifier obtained from the dataset composed of all 

remaining systems by testing it on that system. The accuracy 

column indicates the accuracy percentage, while the conf. 

matrix column holds the confusion matrix produced by the 

classifier. 
We immediately remarked that: (1) the candidate classes for 
unit tests of larger systems are better predicted with better 
accuracy compared to our previous works, and (2) the I-
TESTED point of view leads to better suggestion results in 
terms of the number of correctly predicted systems.  The 
relationship between systems’ size and classifiers’ 
performances is not surprising but follows the trends we 
previously observed using other classifiers models. The 
explanation may come from the lack of strategy when testing 



 
small systems. It may also be related to the training dataset 
scale. The largest system (POI) predication is weak according 
to E-TESTED point of view (about 63.6%). Removing POI 
from the combined dataset may unbalance the training dataset 
and could explain the weakness of the prediction accuracy. 

Table 3: LOSVO trained on metric values 
  
  

E-TESTED, Value Only I-TESTED, Value Only 
Accuracy Conf. Matrix Accuracy Conf. Matrix 

MATH 38.30% 
28 8 

64.89% 
5 10 

50 8 23 56 

IO 52.00% 
30 4 

68.00% 
15 4 

44 22 28 53 

JODA 73.13% 
97 28 

78.61% 
34 13 

26 50 30 124 

DBU 63.21% 
115 12 

80.66% 
84 29 

66 19 12 87 

LOG4J 86.15% 
175 12 

78.79% 
106 32 

20 24 17 76 

JFC 83.37% 
168 14 

82.15% 
114 24 

53 173 49 222 

IVY 88.49% 
472 41 

85.20% 
188 45 

29 66 45 330 

LUCENE 80.98% 
436 65 

84.55% 
243 49 

52 62 46 277 

ANT 86.12% 
497 54 

78.73% 
422 129 

38 74 12 100 

POI 63.6% 
725 270 

78.22% 
431 84 

233 154 217 650 

 
When considering the I-TESTED point of view, the 

candidate classes for unit tests are better predicted by 
classifiers. 8 systems over 10 (against 6 over 10 for E-
TESTED) have an accuracy greater than 70%. The associated 
confusion matrices ensure us that the classifiers are not 
suggesting no class or all classes (at the same time) as 
candidate classes for unit tests. Indeed, we faced that situation 
when using shallow neural networks or when we increased 
the number of training stages epochs during our 
investigations. 

When deepening our investigations and reviewing the 
descriptive statistics, we understood that some characteristics 
of class attributes relatively to other classes in the same 
software system may have an impact on developer decision 
to select or not that class as a candidate for unit tests. The raw 
values of source code metrics considered alone are not 
sufficient for our classifiers to correctly match the tester 
selections. Indeed, a WMC score of 50 (for example) may be 
important when a developer tests a system for which the 
average class complexity (WMC) is much smaller than 50 
which lead him to write an explicit test class for that software 
class. On the other hand, a class with the same complexity 
score may be considered as little complex by the developer 
when it belongs to a large system in which average 
complexity of classes is largely higher than 50. We thus need 
an attribute that captures the metric values for a class 
relatively to the other classes within the same system. When 
combining datasets, that attribute will mitigate it 
corresponding source code metrics. The ranks of metric 
scores are good candidates.  In the following steps, we tested 
whether including metric ranks could improve the results of 
Table 2. We computed the rank of each metric’s value of each 
class inside each system. Ranks have been included to the 
datasets. All new datasets contain 14 attributes that constrains 
us to review our neural network topology. 

The Input layer: With the new datasets of 14 properties 
formed by the metrics and their ranks. We set the number of 
neurons in the entry layer to 14.  

The Hidden layers: We set the number of hidden layers to 
13. Now, each layer contains 350 neurons. We kept the relu 
as activation function. 

The Output layer: The output remains unchanged. Its 2 
neurons still match our binary classification problem. They 
are activated with softmax function. The number of epochs 
has also been doubled to 750 to prevent misclassification. 

Table 4 summarizes the results. We immediately remark 
that all predictions highly improved compared to Table 3. The 
large systems are suggested with more than 99% of 
correctness in both perspectives. MATH results with E-
TESTED point of view, slightly improved but remains the 
only system under 70% of correctness. For several systems 
(JODA, DBU, LOG4J and LUCENE) all tested classes have 
been found by the classifier without any false positive or false 
negative classification. We reached 100% of correctness.  

Table 4 LOSVO trained on metric and rank values  
E-TESTED, Value + Rank I-TESTED, Value + Rank  

Accuracy Conf. Matrix Accuracy Conf. Matrix 

MATH 52.13% 
14 22 

76.60% 
3 12 

23 35 60 69 

IO 93.00% 
30 4 

99.00% 
19 0 

3 63 1 80 

JODA 100.00% 
125 0 

99.50% 
46 1 

0 76 0 154 

DBU 100.00% 
127 0% 

100.00% 
113 0 

0% 85 0 99 

LOG4J 100.00% 
187 0 

99.57% 
137 1 

0 44 0 93 

JFC 99.76% 
181 1 

99.51% 
138 0 

0 227 2 269 

IVY 99.84% 
513 0 

98.85% 
226 7 

1 94 0 375 

LUCENE 100.00% 
501 0 

99.19% 
289 3 

0 114 2 321 

ANT 99.85% 
550 1 

99.85% 
551 0 

0 112 1 111 

POI 99.78% 
994 1 

99.35% 
510 5 

2 385 4 863 

 
The results we obtained in Tables 3 and 4 strongly support 

our hypothesis. It’s possible to build a prediction classifier 
based on deep neural network and trained on combined 
datasets composed by different software systems that 
correctly suggest classes to be tested. “Correctly” means 
matching the real testers’ selection. E-TESTED and I-
TESTED points of view have no impact when we included 
the ranks values in the datasets. Let’s recall that our long-term 
goal was to build an IDE plugin tool that automatically 
collects source code metrics of systems under development 
in order to suggest a set of classes to be tested. The plugin's 
classifiers would be trained from datasets of various systems. 
Under such conditions, it was important for us to explore in 
the current work, the suggestion capability of classifiers 
trained on such a mixed dataset.   

VI. THREATS TO VALIDITY 

Obtained results are suggestive and the study we 
presented was performed on 10 open-source systems 
containing almost a half million lines of code (453K). The 
sample is large enough to allow obtaining significant results, 
but the experimental approaches may present limitations that 
could restrict the generalization of certain conclusions. 
Indeed, all systems we used are developed using Java 
language and tested using JUnit framework. Java and JUnit 
are popular in the developers’ community. The obtained 
results may not be generalizable to other unit testing 
frameworks or programming languages. More investigations 
are required to rule on the issue. Furthermore, it would be 



 
interesting to know, in such a condition, whether mixing 
dataset from systems built using different languages and unit 
framework could improve or degrade the results. The neural 
network topology we identified matches very well the 
analyzed group of systems. Changing the number of systems 
and their categories may degrade obtained results. 
Replicating the study on more systems could help to draw 
more general neural network topology that fits unit test 
decision support. 

VII. CONCLUSIONS AND FUTURE WORK 

Ten open source software systems have been analyzed in 
this study which totals more than 4400 classes. The testers of 
each system developed dedicated unit test classes for a subset 
of classes using the Junit Framework. We explored the 
possibility of deep neural network models to correctly match 
developers’ selections of the candidate classes for unit tests. 
To achieve our investigations, we considered explicitly and 
implicitly tested classes. With the combination of the 10 
datasets formed by the considered systems, we tested various 
deep neural network topologies that we validated using Leave 
One System Out Validation technique. The objective was to 
know to what extents the combined information of different 
systems could be a usable training dataset for deep neural 
network-based classifiers. Results show that it was possible 
to correctly match the candidate classes for unit tests 
proposed by testers. Furthermore, the results indicated that all 
systems could be well predicted with more than 93% of 
accuracy. These results are particularly interesting since the 
long-term goal of our work is to build a collaborative plugin 
tool that suggests the set of the candidate classes for unit tests 
by learning from different systems information history. Our 
next challenge will be to validate this approach using 
different unit testing frameworks under different 
programming language before developing the plugin tool. 
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