
Collaborative Denoising Graph Attention
Autoencoders for Social Recommendation

Nan Mu∗†, Daren Zha∗†, Lin Zhao∗, Rui Gong∗
∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Email: {munan,zhadaren,zhaolin1,gongrui}@iie.ac.cn

Abstract—In recent years, social recommendation has at-
tracted more and more attention from researchers, because it
can effectively solve the problems of data sparsity and cold
start. But social recommendation faces two problems: The first
is how to deeply integrate social information with user-item
preference information to obtain accurate user and item latent
vectors. The second problem is how to generate a robust top-
N recommendation model from the implicit feedback infor-
mation. To solve these problems, we propose a novel model:
collaborative denoising graph attention autoencoders for social
recommendation(CDGAAE). This model uses the currently pop-
ular graph neural networks to fuse the interaction preference
information graph and social information graph through a
multi-head attention message passing mechanism. At the same
time, this model delicately merges graph neural networks with
denoising autoencoders, which uses the corrupt versions of the
original data to make the model more robust and generalized.
Finally, we conduct comparative experiments of our model with
other baseline algorithms on two real world datasets, and the
experimental results prove the superiority of our model.

Index Terms—Denoising Graph Attention Autoencoders , So-
cial Recommendation , Implicit Feedback , Top-N Recommenda-
tion

I. INTRODUCTION

Recently, with the boom of the Internet and social media,
social recommendation is a hot topic in academia and industry.
Previous works [1], [2] incorporate social information into the
recommendation system from different perspectives and these
works have achieved good performance. However, the above
methods are shallow models and they cannot deeply merge
social information with user-item interaction information. In
addition, the robustness and generalization of the recommen-
dation system is also crucial, so how to resist the interference
of noise is also a problem we need to consider. In real world,
the user’s explicit rating information for items is difficult to
obtain and what we can usually get is the implicit feedback
data (click, browse, etc). At the same time, for ordinary users,
they prefer to get a list of items that are most interesting to
them. So for the social-based top-K recommendation system,
we face the following two problems: The first is how to deeply
integrate social information with user-item preference informa-
tion to obtain accurate user and item latent vectors. The second
problem is how to generate a robust top-k recommendation
model from the implicit feedback information.

DOI reference number: 10.18293/SEKE2020-105

The rapid development of deep learning technology has
brought us new ideas for solving the above problems. Graph
neural networks [9] generate the accurate representation for
nodes through deeply exploring the graph structure, which
has achieved significant results. The denoising autoencoders
[6] provide a robust feature representation algorithm by using
the corrupted version of the original data. Collaborative neural
filtering [14] deeply learns the interaction behaviors between
users and items.

So in this paper, we propose a novel model: Collaborative
Denoising Graph Attention Autoencoders for Social Recom-
mendation (CDGAAE). We deeply integrate the graph neural
networks with the denoising autoencoders. For the user-item
implicit preference interaction matrix, we use its corrupted
version as input to train our model. CDGAAE includes graph
attention encoder and collaborative neural filtering decoder.
The encoder performs the message passing process based
multi-head attention mechanism on the user-item preference
graph and the social network graph. Then we can obtain
the user latent vector by deeply merging the results of these
two graphs, and the item latent vector is generated from the
user-item preference graph. The decoder designs a multi-layer
neural collaborative recommendation module which takes the
latent vectors of users and items as input, and then the decoder
reconstructs the original user-item preferences, which can en-
hance the robustness of the model. For model learning process,
since the original data is implicit feedback data, we use a
binary cross-entropy loss function and a stochastic gradient
descent optimization method. So the main contributions of this
article are as follows:

1) We propose a novel model Collaborative Denoising
Graph Attention Autoencoders for Social Recommen-
dation (CDGAAE), which can deeply integrate social
information and user-item preference information to
accurately represent users and items.

2) The CDGAAE model delicately integrates graph neural
networks and denoising autoencoders, which making
the model more robust and generalized. At the same
time, it can make top-K recommendations from implicit
feedback data.

3) We compare CDGAAE and many baseline algorithms
on two real world datasets, and the experimental results
prove the superiority of our model.

II. RELATED WORK

A. Social Recommendation

With the booming development of online social media,
social recommendation technology has attracted more and
more researchers’ attention. SocialMF [1] incorporates the
mechanism of trust propagation into the social recommenda-
tion model because the trust propagation has been shown to be
a crucial phenomenon in the social sciences. In order to further
improve the performance of recommendation, TrustSVD [2]
integrates explicit and implicit influence into the model at the
same time. And then the top-K recommendation is also an
important research hotspot in social recommendation. SBPR
[3] extends the classical BPR [4] method with observation that
users tend to assign higher rankings to their friends’ favorite
items. SPF [5] develops a social poisson factorization method
to closely combine ratings with social information.

B. Denoising Autoencoders

The Denoising Autoencoder (DAE) [6] is an extension
of the classical autoencoder and the purpose of DAE is to
reconstruct the raw input data χ from its (partially) corrupted
version χ̃. The common corrupted methods consist of the
additive Gaussian noise and the mask-out/drop-out noise. With
this setup, DAE can generate more robust features than the
classical autoencoder. The DAE model is widely used in
recommendation systems to improve the performance of the
framework. Collaborative denoising auto-encoders(CDAE) [7]
proposes a top-N recommendation algorithm which utilizes
the idea of DAE and the CDAE model is a generalization
of several well-known collaborative filtering models but with
more flexible components. And then to tackle the data sparsity
and cold start problems, the Trust-aware Collaborative De-
noising AutoEncoder (TDAE) [8] learn compact and effective
representations from both rating and trust data for top-N
recommendation.

C. Graph Neural Networks

In recent years, graph neural networks [9] have developed
rapidly in the field of representation learning and make
remarkable achievements. The representation of each node
on the graph structure data has always been a research
hotspot and graph neural networks achieve better performance
in terms of accuracy and speed than the classical network
repersentation methods [10] in many application scenarios.
Due to the advantages of graph neural networks more and
more recommendation systems adopt these algorithms. GCMC
[12] provides a framework which considers matrix completion
as a link prediction task and leverage graph autoencoders
combining interaction data with side information. GraphRec
[13] provides a principled approach to jointly capture interac-
tions with opinions in the user-item graph and introduces the
attention mechanism into the model.

III. THE PROPOSED MODEL

In the classical recommendation system, we usually have a
userset U with N users {u1, u2, . . . , uN} and itemset V with

M items {v1, v2, . . . , vM}. We also have a matrix R ∈ RN×M

that represents the users’ preferences for the items. And in this
paper we focus on the implicit feedback information because
the explicit feedback is often hard to get. In the preference
matrix R, if there is an interaction between the user ui and
the item vj , rij = 1, otherwise rij = 0. And then we also
have a matrix S ∈ RN×N , which refers to the social network
relationship between users. In the social graph, if uk has a
relation to ui, ski = 1, otherwise ski = 0.

Now we have the implicit preference matrix R and the
social matrix S, so the goal of our social recommendation
system is to pick a top-k list of the most interesting items
from the unobserved item set for each user.

A. Overall Structure of the Proposed Framework
In this part, we will introduce the overall structure of our

proposed model Collaborative Denoising Graph Attention Au-
toencoders(CDGAAE). The classical denoising autoencoder
has been described in the related work II-B. The common
corrupted methods consist of the additive Gaussian noise and
the multiplicative mask-out/drop-out noise. And in this paper,
we use the mask-out/drop-out corruption, which is widely
used in the previous works [7], [8]. The drop-out corruption
can be explained that the non-zero values (rij = 1) in the
preference matrix R are randomly dropped out independently
with probability q:

P (rij = 0) = q

P (rij = rij) = 1− q
(1)

And then the autoencoder framework of CDGAAE consists
of graph attention encoder and neural collaborative filtering
decoder. The encoder performs the message passing process
based multi-head attention mechanism on the user-item im-
plicit preference graph and the social network information
graph. Then we can obtain the user latent vector by deeply
merging the results of these two graphs, and the item latent
vector is generated from the user-item preference graph. The
decoder designs a multi-layer neural collaborative filtering
module which takes the latent vectors of users and items as in-
put, and then the decoder reconstructs the original preferences
between users and items, which can enhance the robustness
and generalization of the model. For model learning process,
since the original data is implicit feedback data, we use a
binary cross-entropy loss function and a stochastic gradient
descent optimization method.

B. Graph Attention Encoder
The purpose of the encoder module is to learn user latent

vector hi and and item latent vector hj . The graph attention
encoder part shown in Fig.1 contains three message passing
processes. So hi is from user-item implicit preference graph
and social network graph, and hj from user-item preference
graph. Following the initialize method of NeuMF [14], for the
one hot embedding user i and item j, we pass them through two
multi-Layer perceptrons, then we can get the initial embedding
ui ∈ Rd and vj ∈ Rd. Next we will introduce the generation
method of these two latent vectors hi and hj .

𝒗𝑗1

𝒗𝑗2

𝒗𝑗3

Graph attention encoder Neural collaborative
filtering decoder

1

1

1

1
𝒉𝑗

User-item
graph

Predicted user-
item graph

𝒗𝑗1

𝑢𝑖2

?
?

?

?

?

?

𝑢𝑖1 𝒉𝑖
𝑆

𝒉𝑖

𝑢𝑖2

𝑢𝑖1

1

1

1

𝒗𝑗2
𝒗𝑗3

User-item
corrupted graph

𝑢𝑖1

𝑢𝑖1

𝑢𝑖3

𝑢𝑖4

𝑢𝑖5

𝑢𝑖3

𝑢𝑖4

𝑢𝑖5

𝒗𝑗1

𝒗𝑗2

𝒗𝑗3

1

1

1

𝟎

𝑢𝑖2

𝑢𝑖1

Concat

𝑢𝑖1Concat 𝒉𝑖
𝑈

𝑢𝑖1Concat

𝑢𝑖1MLP

𝒉𝑖 𝒉𝑗 𝒉𝑖° 𝒉𝑗

ℒ𝑎𝑦𝑒𝑟1

ℒ𝑎𝑦𝑒𝑟2

ℒ𝑎𝑦𝑒𝑟𝑜𝑢𝑡

…

 𝑟𝑖𝑗

𝒗𝑗1

𝒗𝑗2

𝑢𝑖1

𝑢𝑖2

User-user graph

Fig. 1. Overall Structure of the Proposed Framework.

1) User Latent Vector: For each user, firstly, the features of
all directly connected items in the user-item preference graph
are collected to obtain the embedding vector hU

i . The second
aggregation is the message passing of the associated users in
the social graph and we can get another embedding vector hS

i .
Finally, the deep fusion of these two vectors can form a new
embedding vector, that is user latent vector hi.

In the user-item preference graph, for user i, Oi denotes the
set of items which this user interacted with. Firstly we need to
calculate how important the item vj is to the user ui, which
we call the attention coefficients eij :

eij = f(Wuui,Wuvj) (2)

In this equation, f is a function mapping and we can im-
plement it with a variety of neural network structures. Wu

denotes a weight matrix, of which the purpose is to make
reasonable linear transformations for the ui and vj . For each
node in the graph, weight matrix Wu and function f are
shared. This sharing strategy is inspired by the weight sharing
of convolutional neural networks. During the message passing
process, we consider all the items from the set Oi, so we pass
the attention coefficients through a softmax function to get the
final weight of each node:

αij = softmax(eij) =
exp(eij)∑

k∈C(i) exp(eik)
(3)

In our model, we use a standard multi-Layer perceptron gu
to implement the mapping function f , so the calculation of
specific αij is as follows:

αij =
exp(gu(Wuui ⊕Wuvj))∑

k∈Oi
exp(gu(Wuui ⊕Wuvk))

(4)

⊕ denotes the concatenation of two vectors, so Next we can
get the single user embedding vector hU

i from the aggregation

of items’ characteristics:

hU
i = σ(

∑
j∈Oi

αijWuvj) (5)

To make the model aggregate more information from different
perspectives, we adopt a very popular multi-head attention
mechanism [11], which can be described as:

hU
i =

K

‖
k=1

σ(
∑
j∈Oi

αk
ijW

k
uvj) (6)

In this equation, where ‖ represents concatenation of the
vectors, and αk

ij , Wk
u denote the k-th attention weights and

linear transformation’s weight matrix.
Now we hava generated the vector hU

i for user ui from
the user-item preference graph. Next, we will introduce the
generation method of social embedding vector hS

i from the
social network graph. we also use the multi-head attention for
message passing and the calculation of attention coefficients
is similar to Eq.3:

αij =
exp(gs(Wsui ⊕Wsuj))∑

o∈Si exp(gs(Wsui ⊕Wsuo))
(7)

gs is a multi-Layer perceptron and Ws denotes a weight
matrix. Si is the collection of users which have relationship
with user ui, then we can generate the vector hS

i through the
multi-head attention mechanism:

hS
i =

K

‖
k=1

σ(
∑
o∈Si

αk
ioW

k
suo) (8)

Through the above illustration we’ve generated the two parts
of the user latent vector: user embedding vector hU

i from
the user-item implicit preference graph and social embedding
vector hS

i from the social network graph. Both of these
vectors are important components of the representation of user

characteristics,so in order to deeply merge the information of
two vectors we also use a multi-layer perceptron:

hi = gus(h
U
i ⊕ hS

i) (9)

So hi is the final user latent vector which deeply integrates
the information from user-item implicit preference graph and
social network graph.

2) Item Latent Vector: In this part, we introduce the gen-
eration of item latent vector hj from the user-item interaction
graph. For each item vj , we aggregate the characteristics of
users who have interated with this item. So this process is very
similar to the generation of user embedding vector hU

i and due
to the limit length of this article, we only list the important
formulas below:

αij =
exp(gv(Wvvj ⊕Wvui))∑

t∈Bj
exp(gv(Wvvj ⊕Wvut))

(10)

hj =
K

‖
k=1

σ(
∑
i∈Bj

αk
ijW

k
vui) (11)

Through the above statement, we finally get the user latent
vector hi and item latent vector hj .

C. Neural Collaborative Filtering Decoder

For reconstructing the user-item relations in the preference
graph, we proposes a neural collaborative filtering decoder
inspired by NeuMF framework [14]. The neural collaborative
filtering decoder part is shown in Fig.1, which consists of
collaboration layer and neural collaborative filtering layers.

The collaboration layer combines user latent vector hi, item
latent vector hj and the element-wise product hi � hj :

Pij = [hi ⊕ hj ⊕ (hi � hj)] (12)

hi,hj is the results from the graph attention encoder part. But
in our framework we also introduce the element-wise product
of these two vectors hi�hj , which depicts the shallow linear
user–item interaction. Next, we take Pij as the input for the
neural collaborative filtering layers to get the deep and intrinsic
interaction of user-item pairs.

We now define the neural collaborative filtering layers as a
multi-layer neural network formulated as:

r̂ij = Lout(LX(. . .L2(L1(Pij)) . . .)) (13)

r̂ij is the reconstructed value of user i with item j and
the Lout is the Logistic function for the output predicted
value. L1,L2, . . . ,LX are the mapping function and in our
experiment, we all use the standard multi-layer perceptron
(MLP) to implement the function.

D. Model Learning

When we talk about the model learning process, we first
need to generate the negative instances. The set O represents
the user-item pairs (ui, vj , rij = 1) with observed interactions
and the set Õ denotes the other user-item pairs (ui, vj , rij =
0). In general, the size of Õ is much larger than the size
of O, so we can’t just take the set Õ as negative instances.

To balance the positive and negative instances, we randomly
sample set Õ and get a new set O−, which size matches the
size of set O.

Then we will introduce the model learning process. For
recommendation system based on explicit feedback, the loss
function is mainly a regression with squared loss. But for
the implicit feedback data used in our paper, the square loss
function doesn’t perform very well because the target value
rij is a binarized 1 or 0, which refers to whether there is any
interaction between user i and item j. So in order to learn the
parameters of the model better, we constrain the output value
r̂ij in the range of [0, 1] with the Logistic function in the
output layer. Just like the NCF model [14] described by He et
al, we define the finall objective function as follows:

L = −
∑

(i,j)∈(O∪O−)

rij log r̂ij + (1− rij) log(1− r̂ij) (14)

This function is the classical binary cross-entropy loss and we
use the stochastic gradient descent algorithm to optimize the
model.

IV. EXPERIMENT

A. Experimental Settings

1) Datasets: In our experiments, we choose two real-
world public datasets: Ciao1 and Epinions2. These datasets are
crawled from two famous commerce website, Ciao.com and
Epinions.com, which contain user-item interaction information
and social relationships. The ratings in Ciao and Epinions are
integers from 1 to 5: {1, 2, 3, 4, 5} and the statistics of datasets
are illustrated in TABLE I.

To generate the implicit feedback data for our model, we
take records greater than or equal to 4 as observed preference
interactions and other records as the unobserved preference.
Then we iteratively drop users and items with less than 5
interactions. This data processing method is widely used in the
previous works [7], [8]. For negative sampling, we randomly
sample the unobserved set Õ to get the negative instances set
O−. In our experiment, the sampling strategy is that for each
user the number of negative instances is 5 times the number
of observed instances of this user.

TABLE I
GENERAL STATISTICS OF THE CIAO AND EPINIONS

statistics Ciao Epinions
Users 7,375 40,163
Items 106,797 139,738

Ratings 284,086 664,824
Density(Ratings) 0.036% 0.051%
Social Relations 111,781 487,183

Density(Social Relations) 0.205% 0.029%

1https://www.cse.msu.edu/ tangjili/datasetcode/ciao.zip
2www.trustlet.org/downloaded epinions.html

2) Evaluation Metrics: We use two classical metrics to
evaluate the performance of our top-k recommendation sys-
tem: NDCG@K and MAP@K.

DCG@K is computed by:

DCG@K =

K∑
i=1

2reli − 1

log2(i+ 1)
(15)

and then NDCG@K is the normalized DCG@K over the ideal
iDCG@K.

AP@K is computed by:

AP@K =

∑K
m=1 P@m× relm
min{K, |Yi|}

(16)

P@m represents the precision with m recommended items and
by calculating the average of AP@K from all the users we can
get the MAP@K.

3) Baselines: We choose the following baselines compared
with our model:

– BPR [4]. BPR is a typical pairwise ranking method for
item recommendation and it achieved competitive results
in many datasets.

– SBPR [3]. This model extends the BPR algorithm by
adding the social network information. SBPR is based
on the same idea that a user’s behavior can be influenced
by the users associated with him on social networks.

– NCF [14]. NCF is a neural network based method which
learn the internal interactions between users and items
through the multi-layer perceptrons.

– CDAE [7]. CDAE formulates the top-N recommenda-
tion problem using the Denoising Auto-Encoder frame-
work and learns distributed representations of the users
and items from the implicit feedback data.

– TDAE [8]. TDAE extends the CDAE model and learns
compact and effective representations from both rating
and trust data for top-N recommendation.

– GraphRec [13]. GraphRec provides a state-of-the-art
model for the social recommender system, which cap-
tures interactions in the user-item graph and social
graph.

– CDGAAEden. It is a variant of CDGAAE, which uses
the uncorrupted input for the whole model.

4) Parameter Settings: We implement our model CDGAAE
with the famous framework Pytorch and in view of the
effectiveness and efficiency we set the final parameters of our
model with the following values: For each user, we select 80%
of the data as train set to learn the model parameters, 10% for
validation and 10% for test. Moreover, we set the batch size
and embedding size to 128 and 64, and also the learning rate
is 0.001. Through multiple experiments, we set the number of
attention heads to 4. Then we use the Gaussian distribution
to randomly initialize the model parameters and the activation
function is ReLU. For all the baseline algorithms, we read
the articles and implement methods carefully to get the best
performance.

B. Performance

Table. II shows the perfomance comparison of our model
and baseline methods. ∗ represents the best performace except
for our method and the boldface represents the best result
among all the algorithms. By careful comparison, we can find
the following conclusions:
• Deep neural networks have better performance than the

shallow models. In the absence of social network infor-
mation, the results of NCF and CDAE are better than
that of BPR, and if we add the social network data, the
models TDAE and CDGAAE perform better than SBPR.

• The social network can improve the performace of the
recommendation system. SBPR add social information to
BPR and in the table we can find that SBPR performs
better than BPR. The same conclusion can be drawn from
the comparison of CDAE and TDAE.

• GraphRec shows best experimental results apart from
CDGAAEden and CDGAAE. This model uses graph
neural networks to generate more accurate embedding
for users and items. At the same time, GraphRec uses
attention mechanism for user-item graph and social graph.

• CDGAAEden uses the uncorrupted input for the model,
so it’s less robust than CDGAAE. From the results, we
can clearly find that the performance of CDGAAEden is
worse than that of CDGAAE, and even worse than that
of GraphRec method under certain metrics.

• It is clear from the table II that our method CDGAAE per-
forms best among all the algorithms. We deeply fuse the
graph neural networks with the Denoising Auto-Encoder,
and we also adopt multi-head attention mechanism for
message passing.

C. Model Analysis

We now study the performance of our approach under
different parameter settings. We mainly analyze the multi-head
attention and the embedding size of the latent vector.

1) The impact of multi-head attention: In our graph atten-
tion encoder part, user aggregation, item aggregation in user-
item interaction graph and social aggregation in social graph
all use multi-head attention mechanism. In this method, the
number of attention heads is an important parameter, which
has a crucial impact on the performance of the model. So we
will compare the effects of different quantities of heads on the
results. In the parameter analysis setting, we set the number
of heads k=1, 2, 4, 8, 16 and the experimental performance is
shown in Fig. 2.

From the figure, we can clearly see that experimental
performance of multi-head attetion is better than single-head
attention. In our experimental environment, when the number
of heads is 4, the performance is best for the two datasets.
however, when k=16, the results are worse than the baseline
GraphRec bacause the dimension of single attention layer is
small, which is difficult to learn all the useful information in
the two graphs. So for the multi-head attetion mechanism, an
appropriate number of heads is the key to improve perfor-
mance.

TABLE II
PERFOMANCE COMPARISON OF OUR MODEL AND BASELINE METHODS

Datasets Metrics
Algorithms

BPR SBPR NCF CDAE TDAE GraphRec CDGAAEden CDGAAE Improve

Ciao
NDCG@10 0.0369 0.0421 0.0437 0.0461 0.0496 0.0503 0.0506∗ 0.0532 4.89%
MAP@10 0.0210 0.0237 0.0241 0.0261 0.0299 0.0307∗ 0.0305 0.0315 2.61%

Epinions
NDCG@10 0.0153 0.0188 0.0191 0.0218 0.0244 0.0240 0.0248∗ 0.0258 4.03%
MAP@10 0.0080 0.0105 0.0107 0.0104 0.0127 0.0132∗ 0.0120 0.0135 2.27%

0.0515

0.052

0.0525

0.053

0.0535

1 2 4 8 16

Ciao - NDCG@10

0.03

0.0302
0.0304

0.0306

0.0308

0.031

0.0312

0.0314

0.0316

1 2 4 8 16

Ciao - MAP@10

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

0.0265

1 2 4 8 16

Epinions-NDCG@10

0.0115

0.012

0.0125

0.013

0.0135

0.014

1 2 4 8 16

Epinions-MAP@10

Fig. 2. Experimental results under different number of attention heads on
two datasets.

0.0508

0.0513

0.0518

0.0523

0.0528

0.0533

8 16 32 64 128 256

Ciao - NDCG@10

0.0298

0.0303

0.0308

0.0313

0.0318

8 16 32 64 128 256

Ciao-MAP@10

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

8 16 32 64 128 256

Epinions-NDCG@10

0.0118

0.0123

0.0128

0.0133

8 16 32 64 128 256

Epinions-MAP@10

Fig. 3. Experimental results under different embedding size d on two datasets.

2) The impact of the embedding size: In this part, we
will discuss the effect of embedding size on model perfor-
mance. We adopt six different embedding sizes 8, 16, 32,
64, 126, 256 for parameter analysis on the two datasets
and the experimental performance comparison is shown in
Fig.3. In general, with the embedding size increases, the
recommendation performance of our model first increases and
then decreases. The embedding size of less than 8 and greater
then 128 significantly degrades the model performance. This
phenomenon demonstrates that if embedding size is small, the
model can not fully and accurately represent user and item
characteristics, but if the size is large, the complexity of the
model is high, leading to performance degradation. So we need
to find a suitable embedding size to balance the representation
performance and complexity of the model.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel model: Collaborative
Denoising Graph Attention Autoencoders for Social Recom-
mendation (CDGAAE). CDGAAE uses a corrupted version
of the original data as input, making the representation of the
model more robust. At the same time, this autoencoder frame-
work consists of graph attention encoder and collaborative
neural decoder, which is used to deeply merge the user-item
preference information and social network information. The
final experiments are conducted on two real-world datasets,
and the results show the superiority of our proposed model.

In the future, in order to improve the accuracy of the
recommendation list, we can use the side information of users
and items, which is a significant supplement to depict the
rich characteristics of users and items. Moreover, in addition
to denoising autoencoders, variational autoencoders are also
widely used in recommendation systems. Therefore, we will
integrate the idea of variational autoencoders into the social
recommendation systems in the future, expecting to get better
performance.

REFERENCES

[1] Jamali M, Ester M. A matrix factorization technique with trust prop-
agation for recommendation in social networks[C]//Proceedings of the
fourth ACM conference on Recommender systems. ACM, 2010: 135-
142.

[2] Guo G, Zhang J, Yorke-Smith N. TrustSVD: collaborative filtering
with both the explicit and implicit influence of user trust and of item
ratings[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015.

[3] Zhao T, McAuley J, King I. Leveraging social connections to improve
personalized ranking for collaborative filtering[C]//Proceedings of the
23rd ACM international conference on conference on information and
knowledge management. ACM, 2014: 261-270.

[4] Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personal-
ized ranking from implicit feedback[C]//Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence. AUAI Press, 2009:
452-461.

[5] Chaney A J B, Blei D M, Eliassi-Rad T. A probabilistic model for using
social networks in personalized item recommendation[C]//Proceedings
of the 9th ACM Conference on Recommender Systems. ACM, 2015:
43-50.

[6] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing
robust features with denoising autoencoders[C]//Proceedings of the 25th
international conference on Machine learning. ACM, 2008: 1096-1103.

[7] Wu Y, DuBois C, Zheng A X, et al. Collaborative denoising auto-
encoders for top-n recommender systems[C]//Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining. ACM,
2016: 153-162.

[8] Pan Y, He F, Yu H. Trust-aware collaborative denoising auto-encoder
for top-n recommendation[J]. arXiv preprint arXiv:1703.01760, 2017.

[9] Zhou J, Cui G, Zhang Z, et al. Graph neural networks: A review of
methods and applications[J]. arXiv preprint arXiv:1812.08434, 2018.

[10] Tang J, Qu M, Wang M, et al. Line: Large-scale information network
embedding[C]//Proceedings of the 24th international conference on
world wide web. International World Wide Web Conferences Steering
Committee, 2015: 1067-1077.

[11] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J].
arXiv preprint arXiv:1710.10903, 2017.

[12] Berg R, Kipf T N, Welling M. Graph convolutional matrix completion[J].
arXiv preprint arXiv:1706.02263, 2017.

[13] Fan W, Ma Y, Li Q, et al. Graph Neural Networks for Social Recom-
mendation[C]//The World Wide Web Conference. ACM, 2019: 417-426.

[14] He X, Liao L, Zhang H, et al. Neural collaborative filter-
ing[C]//Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee,
2017: 173-182.

