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Abstract—Architecture Smells (ASs), as one source of technical 

debt, indicate underlying problems at a high level of systems and 

negatively impact various system qualities, such as maintainability 

and evolvability. Detecting and refactoring ASs requires the 

relevant architectural knowledge and experience. Therefore, 

gathering the knowledge of ASs from various sources can facilitate 

ASs detecting and refactoring. However, manually identifying AS 

knowledge is time-consuming. Automatically and correctly 

identifying AS-related posts from Stack Overflow is a step toward 

utilizing the AS knowledge to help developers better maintain 

their systems. In this work, we propose an approach to 

automatically identify AS-related posts from Stack Overflow (SoF) 

by using machine learning algorithms. We evaluate the 

performance of 12 classifiers based on 3 feature extraction 

techniques and 4 classification algorithms with a created dataset 

of SoF posts (including 208 AS-related posts and 187 AS-unrelated 

posts). The results demonstrate that the SVM algorithm with 

Word2Vec achieved the best overall performance with an 

accuracy of 0.650, a precision of 0.613, a recall of 0.905, and an F1-

score of 0.731. These results imply that the obtained model of the 

AS-related posts identification can be used to aid developers and 

researchers in collecting AS discussions from SoF. 

Keywords—Architecture Smell, Architecture Smell Discussion, 

Stack Overflow, Text Classification 

I. INTRODUCTION 

Architecture Smells (ASs) are proposed as frequently 
recurring architectural decisions that negatively impact system 
quality [1]. ASs, as the counterpart of code smells, occur at a 
higher granularity level of a system and can have system-wide 
impact on maintainability issues. Therefore, detecting and 
refactoring ASs require more effort compared to code smells [2]. 
Different researchers defined different categories of ASs with 
supported detection tools [3]. Fontana et al. defined three 
dependency-related ASs and proposed a tool, called ARCAN, to 
detect them by analyzing dependency graphs extracted from the 
packages of compiled Java projects [2]. Mo et al. proposed 
Hotspot Detector to detect five types of ASs, called Hotspot 
Patterns, defined at the package and file levels [4]. Le et al. 
presented ARCADE which can detect 11 types of ASs across 4 
categories [5]. These ASs detection tools are metrics-based and 
apply some fixed threshold to judge whether a package or 
component is smelly or not. But it is challenging to manually 
choose the metrics and thresholds, which can induce false-

positive instances of ASs. Correctly detecting and refactoring 
ASs requires knowledge and experience of developers and 
researchers to remove false positive instances [2]. Therefore, 
smell detection and refactoring rely on the knowledge and 
experience of developers and researchers, and need to consider 
different aspects such as system domain, software context, and 
software engineering experience. Moreover, unlike ASs 
detection, ASs refactoring is less researched and reported in the 
literature. Empirical studies on investing the knowledge and 
experience of detecting and refactoring ASs are needed [6]. 

Stack Overflow (SoF), as a crowdsourced knowledge 
sharing platform, has been a popularly and widely used software 
and development Questions and Answers (Q&A) sites that 
contain more than 18 million questions across a wide variety of 
topics since 2008 [7]. The knowledge and experience of 
developers in SoF has been adopted by researchers to study 
various topics. Tahir et al. investigated the developers’ 
perception of code smells and anti-patterns by mining and 
analyzing the discussions about these two concepts in SoF [8]. 
In our previous work, we manually collected and analyzed 207 
AS-related posts to investigate the understanding of developers 
about ASs [3], such as the approaches and tools used to detect 
and refactor ASs. Therefore, the discussions in SoF posts can 
provide knowledge of ASs and refactoring suggestions that can 
be used to guide a developer or architect in understanding and 
addressing potential issues in the architecture of a software 
system. However, from these studies [3][8], we can find that 
searching smell-related posts via tags or search terms is 
ineffective and induces false-positive posts. Furthermore, 
manually identifying AS-related posts is a time-consuming and 
subjective process which requires the expertise and experience 
of ASs and can also lead to inaccurate or incomplete posts. To 
address this challenge, automatically mining and identifying 
AS-related posts is needed. 

Machine Learning (ML) and Nature Language Process (NLP) 
techniques have been extensively used to automatically identify 
or mine meaningful information from SoF posts. For example, 
Ahasanuzzaman et al. built a technique, called CAPS, that can 
automatically classify SoF posts concerning API issues [9]. 
Borg et al. used active learning to train an SVM classifier for 
identifying SoF posts concerning the performance of software 
components [10]. To the best of our knowledge, there is 
currently no study that automatically mines SoF post discussing 
ASs. Our research aims at closing this gap by automatically 
identifying AS-related posts from SoF. 

We developed an approach to automate the classification of 
AS-related posts. We created a dataset, consisting of labelled 
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208 AS-related posts and 187 AS-unrelated posts, for training 
classification models. Furthermore, we ran an experiment with 
12 configurations by using three feature extraction techniques 
(i.e., BoW, TF-IDF, and Word2Vec) and four classification 
algorithms (i.e., LR, SVM, KNN, and RF). We then compared 
the performance of the models measured in terms of accuracy, 
precision, recall, and F1-score to determine the best 
configuration. In our experiment, the use of the SVM algorithm 
with Word2Vec performed best for automating the classification 
of AS-related posts. 

Thus, our paper makes these contributions: (1) a manually 
labelled dataset consisting of 208 AS-related posts and 187 AS-
unrelated posts; (2) an approach to automatically identify AS-
related posts using 12 different configurations regarding 3 
feature extraction techniques and 4 classification algorithms; (3) 
an evaluation of the performance of 12 different classifiers on 
the dataset. 

The rest of this paper is organized as follows. Section II 
presents the related work. The experiment methodology is 
explained in Section III. The results of our experiment are 
reported and discussed in Section IV. Section V concludes this 
work with future directions. 

II. RELATED WORK 

In the last years, research and practice on ASs has gained 

significant attention [2]. In this section, we provide an overview 

of ASs and automatic techniques for mining textual information 

from Stack Overflow. 

A. Architecture Smells 

Several studies proposed the definitions of ASs with 
different subtypes. ASs was originally proposed by Lipper [11] 
to indicate the underlying problems that occur at the architecture 
level of a system. They also provided a catalogue of ASs at 
different levels: dependency graphs, inheritance hierarchies, 
packages, subsystems and layer. Some of these ASs were 
provided with refactoring measures. Garcia et al. considered 
ASs as instances of poor architecture decisions that can affect a 
system life cycle properties, such as understandability and 
testability [1]. Moreover, they described four types of ASs and 
each smell’s impact on a system lifecycle properties. Fontana et 
al. presented an ASs Detector, called ARCAN, which can 
identify three different dependency based ASs: Unstable 
Dependency, HubLike Dependency and Cyclic Dependency [2]. 
They later developed a prototype tool, as an extension of the 
Arcan tool, which can provide refactoring suggestions to remove 
Cyclic Dependency smell [12]. In another study, Mo et al. 
formally defined five architecture hotspot patterns and presented 
a tool, called hotspot detector, to automatically detect and 
identify these smells at packages or files level [4]. Based on 
these works [1][4][6], Le et al. reviewed and integrated 
previously reported ASs. Finally, they described 11 ASs and 
classified them into four categories. More importantly, all these 
11 ASs can be automatically detected by the proposed ARCAN 
and the corresponding detection algorithm [5]. 

As mentioned by Fontana et al. [2], even the detection tools 
can induce false-negative AS instances, which require additional 
effort and experience as well as a better understanding of the 
smells to avoid false-positives instances. As reported in our 

previous study [6], SoF, as an online community for sharing 
knowledge, can provide a rich knowledge and experience about 
AS understanding, detection, and refactoring. 

B. Mining Information from Stack Overflow 

Many studies have been performed to automatically mine 
SoF data from different perspectives using ML or NLP. Karthik 
et al. developed an automated mechanism using an unsupervised 
deep learning based method to identify three different types of 
compatibility relations between components from the 
unstructured text on Q&A site postings [13]. Beyer et al. built a 
classification model using ML algorithms (Random Forest and 
Support Vector Machines) to automatically classify SO posts 
into seven question categories [14]. In another study, Borg et al. 
made an attempt to use Active Learning and an SVM classifier 
for mining performance discussions on SoF posts with two 
alternating annotators [10]. Zhang et al. investigated an 
approach using NLP and sentiment analysis techniques to 
automatically extract problematic API features from SoF posts 
[15]. Furthermore, Ahasanuzzaman et al. presented a supervised 
learning approach using Conditional Random Field (CRF) to 
identify API issue-related sentences in an SoF post [9]. 

However, none of the works above focuses on the 
classification of AS posts in SoF. Inspired by the existing works, 
we plan to use ML and NLP techniques to automatically identify 
AS discussions on SoF posts. 

III. RESEARCH DESIGN 

In this section, we describe the goal and Research Questions 
(RQs), and the method used in the study design. 

A. Research Questions 

The objective of our work is to provide an approach to 
automatically mine and identify AS discussions from textual 
artefacts. To achieve this objective, we define the following 
three RQs and explain their rationale. 

RQ1: Which technique (BoW vs. TF-IDF vs. Word2Vec) 
performs best in the feature extraction step when 
identifying AS-related posts from SoF? 

Rationale: In text identification tasks, Text Data 

Vectorization is an essential process that converts text data into 

a set of real numbers (a vector). We use four well-performed 

vectorization methods for extracting textual features: BoW, TF-

IDF, and Word2Vec. BoW (Bag of Words), as one of the most 

commonly used traditional vector representations, links each 

word or n-gram to a vector index that represents weather word 

occurs in a document or not. TF- IDF is a statistical measure 

used to evaluate the importance of a word to a document in a 

collection of documents or corpus. Word2Vec, introduced by 

Google, is a predictive embedding model to produce a 

distributed representation of words with word semantics [16]. 

There are two main models of Word2Vec - Continuous Bag of 

Words (CBOW) and Skip-Gram. Employing different 

vectorization techniques may affect the final performance of 

classifiers. Therefore, the aim of the question is to determine 

the vector representation which can achieve the best 

performance when identifying AS discussions from SoF post. 
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Fig. 1. The overall process of classifying AS-related posts 

RQ2: Which classification algorithm (i.e., LR, SVM, 
KNN, and RF) performs best when identifying AS-related 
posts from SoF? 

Rationale: Various text classifiers have been employed in 
the literature based on ML techniques, probabilistic models, etc. 
Different classification methods may lead to differences in 
classification performance when coping with text identification 
tasks [18]. We use four commonly used classification 
algorithms (i.e., Random Forest (RF), KNN, SVM, and 
Logistic Regression (LR)) for classifying textual artifacts in 
software development (e.g., [17]) and compare their 
performance in our AS-related posts identification tasks. By 
answering this question, we can determine the kind of 
classification algorithm that can perform best in automatically 
identifying AS-related posts. 

RQ3: What is the best configuration to automatically 
identify AS-related posts from SoF by combining different 
feature extraction techniques and classification algorithms? 

Rationale: Different performances can be achieved by 
using different feature extraction techniques and classification 
algorithms. We used three feature extraction techniques and 
four classification algorithms, which results in 12 classifier 
configurations. The configuration with best overall 
performance may not be combined by the technique and 
algorithm which achieve the best performance in each separate 
step. Therefore, the aim of this RQ is to analyze the 
performance of classifiers with different configurations and 
determine the best configuration (that achieves the best 
performance) for identifying AS-related posts. 

B. Study Design 

In this section, we introduce how we performed an 
experiment to identify AS discussions from SoF posts using 
automatic techniques. As shown in Fig. 1, the study design 
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consists of five steps. In the following, we describe the details 
of the tasks conducted in each step. 

Step 1: Training data collection. The input of the 
classification process of AS-related posts in Fig. 1 is SoF posts. 
We used a set of inclusion and exclusion criteria (enlisted in 
TABLE I) [3] for manually selecting and labeling AS posts. If 
a post contained at least one sentence which met one criterion, 
we labeled this post as AS-related. Furthermore, we used the 
criterion C7 to label AS-unrelated posts. Each post was 
independently analyzed and manually labelled as AS-related or 
unrelated by two of the authors. To mitigate unconscious bias, 
any disagreements of the labelling results were discussed and 
resolved with the help of a third author. 

We selected and labelled 395 posts (208 AS-related posts 
and 187 AS-unrelated posts) according to the above criteria. A 
few examples of AS-related and AS-unrelated posts are 
provided in TABLE II. This dataset was then split into two parts: 
(a) 90% of the posts as the training data set, and (b) 10% of the 
posts as the testing data set. To support preprocessing in the 
next step, we used a web crawler to collect and store the content 
of the labelled SO posts by using their URLs. The crawler 
works in four steps: (1) extract the URLs of the labelled posts, 
(2) remove useless URL information in the posts (e.g., 
http://www.xxx.org/), (3) parse and extract post information 
(i.e., titles, questions, and answers), and (4) save the post 
information into a CSV document. For the replicability of our 
experiment, the dataset of our experiment has been made 
available online1. 

TABLE I.  Criteria for Labelling AS-Related Sentences 

 Criterion ID Description 

Criteria for 

labelling AS-

related sentences  

C1: Description 

of Ass 

Descriptions of ASs by 

practitioners based on their 

understanding 

C2: Cause of ASs Causes that lead to ASs 

C3: Approach for 

detecting and 

refactoring ASs 

Methods used to detect/refactor 

specific ASs (e.g., machine 

learning based approaches) 

C4: Tool for 

detecting and 

refactoring ASs 

Tools for detecting and 

refactoring specific ASs (e.g., 

source code analysis tools to 

identify dependency cycles) 

C5: Impact of 

Ass 

Impact of ASs on software 

development (e.g., 

understandability, testability, 

extensibility, and reusability) 

C6: Challenge of 

detecting and 

refactoring ASs 

Challenges identified in 

detecting and refactoring ASs 

Criterion for 

labelling AS-

unrelated 

sentences 

C7: Not AS-

related topic  

The sentence does not describe 

ASs or the sentence topic is not 

about AS, for example 

sentences do not describe AS 

but only other types of smells 

(e.g., code smells). 



TABLE II.  Examples of AS-related Sentences and AS-unrelated 

Sentences 

Type Example 

AS-related 

Sentence 

“Is using a root persistent class or base persistable 

object an architecture smell?” 

“I think my architecture has kind of a smell to it: The 

webservice is acting as a proxy, collecting information 

from different sources.” 

“Message Bus and Message Based Architecture With 
Winforms/Desktop Application and Strategies/Policies 

for View/UI Logic” 

“What would be a nice architecture so I can pass 
information of eventual problems to a higher layer?” 

“Using a command architecture is a good idea, since 

this moves all business logic out of the controller, and 

allows you to add cross-cutting concerns without 
changes to the code.” 

AS-unrelated 

Sentence 

“There's a distinct smell of burned out circuits coming 

from my head, so forgive my ignorance.” 

“For some derived classes, I want to ensure that one of 

two overloaded abstract methods get overridden, but 

not both. Is this possible?” 

“Judging by the quality of the pixels that have been 
restored properly, the network architecture seems to be 

fine for this task.” 

“I came across the Open Test Architecture API and was 

wondering if there are any good Python or java 
examples for the same that I could see.” 

Step 2: Data Preprocessing. Data preprocessing eliminates the 

terms or characters in the training posts that are unnecessary to 

train classifiers for identifying AS discussions, which is 

composed of 2 steps: (1) Removing useless characters. Since 

the posts were crawled from Stack Overflow website which is 

formed in HTML 5, most posts contain some useless 

punctuations like “…” and escape characters like “/n” or “/r”. 

Those characters provide invalid information in semantic 

parsing, so we removed those useless characters. (2) 

Processing stop words. Referring to the original idea of TF-

IDF, daily language interaction like Q&A posts from Stack 

Overflow can be filled with common words such as auxiliary 

verbs, conjunctions and articles. Removing stop words can 

reduce the noise in natural language, because these words also 

lack the distinguishing feature for training classifiers. To 

remove those meaningless words, we apply the default stop 

words list in Natural Language Toolkit (NLTK) package. 

Note that, in our study, we did not apply stemming and 

lemmatizing but stop words removing to preprocess the training 

data, because stemming and lemmatizing may change the 

meaning of the text. Moreover, prior research shows that the 

text preprocessing method with No Stemming and 

Lemmatization performs best when preprocessing posts to 

identify decisions from textual artifacts in software 

development [17]. 

Step 3: Feature extraction. The aim of feature extraction is to 

transform preprocessed documents into numerical vector 

representations for classifiers regardless of the vectorization 

method. In our work, we applied three feature extraction 

techniques, i.e., BoW, TF-IDF, and Word2Vec to calculate the 

feature value of each post. 

BoW is a commonly used traditional feature extraction 

technique. A corpus is created consisting of every unique word 

across the documents. Then each word is converted into the 

corresponding vector by counting the occurrence of a word in a 

document. While BoW is simple to understand and implement, 

it lacks the ordering of words, which leads to loss of contextual 

information and word meaning in the document (semantics). 

TF-IDF is a basic vectorization method which considers 

frequencies of words in one document and words relationships 

among documents. However, TF-IDF is also unable to capture 

the word meaning. TF-IDF produces vectors based on 

frequencies of words in one document (TF) and the weight of 

rare words across all documents (IDF). TF-IDF used in this 

study is defined as in Formula (1): 

 𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × log(
𝑁

𝑑𝑓𝑖
) 

𝑡𝑓𝑖,𝑗 represent the count of a term “I” in a document “j”, N 

represents the number of total documents in the corpus, and 𝑑𝑓𝑖 

represents the number of total documents containing the term i. 

Word2Vec is a word embedding method which produces 

dimensional numerical representations of words and more 

syntactic information than BoW and TF-IDF. These two 

models of Word2Vec: Continuous Bag of Words (CBOW) and 

Skip-Gram. The CBOW model obtains word representations by 

predicting the current word based on its context (surrounding 

words). Contrary to the CBOW model, The Skip-Gram learns 

the embedding by predicting the surrounding words (context) 

given a current word. CBOW is several times faster than Skip-

Gram, while Skip-Gram performs better for even rare words or 

phrases than CBOW. 

Step 4: Classifier Training. After transforming the collected 

SoF into numerical vectors, we used the extracted features to 

train four algorithms, i.e., LR, SVM, RF, and KNN, to 

automatically identify AS-related posts. RF, KNN, and SVM 

are three non-parametric classifiers. In contrast, LR is a 

parametric classifier and faster and simpler classification 

method than the other three. We used the implementation of 

these four classifiers in the scikit-learn Python package. 

Step 5: Performance Evaluation. To evaluate the 

performance of three feature extracting methods and four 

classifiers, we used four common measures: accuracy, 

precision, recall, and F1-score. We used Formula (2), (3), (4), 

and (5) to calculate accuracy, precision, recall, and F1-score, 

respectively. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 



Among these formulas, True Positive (TP) denotes the 

number of correctly identified AS-related posts by classifiers. 

False Positive (FP) represents the number of AS-unrelated posts 

that are incorrectly identified as AS-related posts by classifiers. 

False Negative (FN) indicates the number of AS-related posts 

that are incorrectly labelled as AS-unrelated posts by classifiers. 

True Negative (FN) shows the number of correctly identified 

AS-unrelated posts by classifiers. 

Therefore, in our context, precision is used to measure the 

exactness of prediction set and represented as the ratio of posts 

correctly identified as AS-related posts to all posts identified as 

AS-related posts. Recall is the fraction of all AS-related posts 

correctly demarcated. F1-score is a combination of precision 

and recall. We consider precision and recall equally important. 

F1-score is calculated by the harmonic mean of precision and 

recall. Accuracy is the ratio of correctly identified posts, 

including AS-related posts (TP) and AS-unrelated posts (TN) 

to all identified posts. 

IV. RESULTS AND ANALYSIS 

As described in Section III, we conducted an experiment 

with 3 (three feature extraction techniques) × 4 (four 

classification algorithms) = 12 configurations. We calculated 

these metrics (i.e., precision, recall, F1-score, and accuracy) to 

evaluate the performance of each configuration for identifying 

AS-related posts in SoF. In this section, we present and analyze 

the results to answer the research questions. 

A. Results and Analysis of RQ1 

To answer RQ1, we calculated the average of the results 

obtained by three feature extraction techniques to observe the 

impact of different techniques on the performance of classifiers. 

TABLE III shows the performance of ASs classifiers by 

employing three feature extraction techniques (i.e., TF-IDF, 

BoW, Word2vec). The highest accuracy, precision, recall, and 

F1-score values of AS discussion classification across all 

techniques are highlighted in boldface. we found that TF-IDF 

technique can achieve the highest average precision (0.620), 

accuracy (0.619), and F1-score (0.714), and the BoW technique 

can achieve the best Recall (0.798). One important observation 

is that the recall value for the TF-IDF is very poor. It can also 

be found that the performance of the Word2Vec model is poor, 

which is consistent with the result observed by Li et al. [17]. 

The results indicate that the TF-IDF technique can perform 

better than the other techniques (i.e., Bow, Word2Vec) and 

extract meaningful AS discussions from SoF posts. 

TABLE III.  Average Results of Different Feature Extraction 

Techniques for Identifying Architecture Smell Discussions 

Technique Accuracy Precision Recall F1-score 

TF-IDF 0.619 0.620 0.698 0.714 

BoW 0.516 0.528 0.798 0.629 

Word2vec 0.556 0.563 0.631 0.589 

B. Results and Analysis of RQ2 

To answer RQ2, we calculated the average of the results 

obtained by the four classification algorithms to observe the 

impact of different algorithms on the performance of classifiers 

(i.e., the results of AS discussions classification). TABLE IV 

presents the performance of ASs classifiers by employing the 

four classification algorithms (i.e., LR, SVM, RF, KNN). The 

highest precision, recall and F1-score of AS identification 

across all classification algorithms are highlighted in boldface. 

We observed that the highest average accuracy (0.600), recall 

(0.921) and F1-score (0.709) are achieved by the SVM-based 

classifier, and the highest average precision (0.589) are 

achieved by KNN-based algorithm. Moreover, SVM can 

achieve the second-highest average precision (0.579). The 

performance of KNN-based classifier is slightly worse than 

SVM, with an accuracy of (0.592), a recall of (0.762), and an 

F1-score of (0.620). DT-based classifier got the lowest average 

precision (0.583), recall (0.577), and F1-score (0.577). These 

results indicate that the SVM-based classifier performs the best 

in term of the overall performance and can be used as the most 

suitable classification algorithm in the classifier training step 

when automatically identifying ASs from SoF compared to 

other three classification algorithms. This conclusion is 

consistent with the findings reported in [17]. 

TABLE IV.  Average Results of Different Classification Algorithms 
for Identifying Architecture Smell Discussions 

Algorithm Accuracy Precision Recall F1-score 

LR 0.542 0.560 0.571 0.566 

SVM 0.600 0.579 0.921 0.709 

RF 0.525 0.553 0.603 0.570 

KNN 0.592 0.589 0.762 0.620 

C. Results and Analysis of RQ3 

To answer RQ3, we calculated and compared the precision, 

recall, and F1-score of each of 12 configurations to analyze how 

accurately we can automatically identify AS-related posts from 

SoF. TABLE V presents the performance of 12 ASs classifiers 

by employing four classification algorithms (i.e., LR, SVM, RF, 

KNN) across three feature extraction techniques. The highest 

precision, recall, and F1-score values for ASs classifiers across 

all configurations are highlighted in boldface. It can be found 

that the highest accuracy (0.650), precision (0.636), recall 

(1.000), and F1-score (0.731) can be achieved with the 

combination of three feature extraction techniques and four 

classification algorithms. We can also find that there are two 

configurations with an F1-score more than 0.7 and accuracy 

greater than 0.625. It is also worth noting that these two 

configurations employ SVM. The highest precision (0.650) and 

F1-score (0.731) are achieved by the combination of Word2Vec 

with SVM, which confirms the result of RQ2 that SVM-based 

classifier performs the best for automatic classification of AS-

related posts. One important observation is that although the 

TF-IDF technique can achieve the best performance in the step 

of text feature extraction when identifying AS-related posts, the 

combination of Word2vec and SVM can achieve the best 

overall performance. These results indicate that each 

configuration presents a diverse performance. Moreover, the 

configuration with the best performance is not simply combined 

by the technique and algorithm which achieves the best 

performance in each separate step, respectively. Overall, with 

an accuracy of 0.650, a precision of 0.613, a recall of 0.905, and 

an F1-score of 0.731, the configuration with a combination of 

Word2Vec and SVM can achieve the best performance for 



identifying AS-related posts, and can be used by developers and 

researchers to collect AS discussions from SoF. 

TABLE V.  Evaluation Results of Combining Different Feature 
Extraction Techniques and Classification Algorithms for 

Identifying Architecture Smell Discussions 

Technique Algorithm Accuracy Precision Recall F1-score 

TF-IDF LR 0.625 0.636 0.667 0.651 

SVM 0.625 0.600 0.857 0.706 

RF 0.600 0.619 0.619 0.619 

KNN 0.625 0.625 0.714 0.619 

BoW LR 0.525 0.545 0.571 0.558 

SVM 0.525 0.525 1.000 0.689 

RF 0.450 0.484 0.714 0.577 

KNN 0.575 0.559 0.905 0.691 

Word2Vec LR 0.475 0.500 0.476 0.488 

SVM 0.650 0.613 0.905 0.731 

RF 0.525 0.556 0.476 0.513 

KNN 0.575 0.583 0.667 0.622 

V. CONCLUSIONS AND FUTURE WORK 

Architecture Smells (ASs), as a type of technical debt, have 

been attaining importance in recent years since they may 

significantly depreciate software quality. Detecting and 

refactoring ASs correctly require appropriate architectural 

knowledge. The online communities, such as Stack Overflow 

(SoF), contain a wealth of latent information expressed in 

natural language and become a valuable source of information 

for sharing knowledge of ASs. But manually gathering AS 

discussions from the online communities is a time-consuming 

and labor-intensive task. To address this problem, we have 

proposed a solution to automatically identify AS related posts 

from SoF using 12 different configurations of feature extraction 

techniques and classification algorithms. 

We first created a dataset from SoF consisting of 208 AS-

related posts and 187 AS-unrelated posts and manually labelled 

AS-related sentences for training classification models across 

the combinations of the three feature extraction techniques and 

four classification algorithms. We evaluated and discussed the 

performance of the 12 combinations by calculating four metrics: 

accuracy, precision, recall, and F1-score. The results from our 

experiment show that: (1) the TF-IDF technique performs best 

when extracting text features to identify ASs; (2) the SVM 

based classifier achieves the best overall performance regarding 

accuracy and F1-score of automatic AS discussions 

classification; and (3) the SVM algorithm with Word2Vec 

outperforms the other combinations when automatically 

identifying AS-related posts. 

These results provide several implications for our future 

research including: (1) validating the best configurations in 

other online sources of textual information such as developer 

mailing lists and issue tracking systems, (2) to identify AS-

related discussions at the sentence level, which provides more 

focused content about AS discussions, (3) employing multi-

classification algorithms (e.g., Softmax) to automatically 

classify different types of AS-related discussions from textual 

artefacts, and (4) automatically extracting AS information to 

enrich practioners’ knowledge and experience of detecting and 

refactoring ASs, and evaluating whether and how the AS 

information can improve detecting and refactoring ASs. 
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