
Automatic Identification of Architecture Smell

Discussions from Stack Overflow

Fangchao Tian 1,2, Fan Lu 1, Peng Liang 1,*, Muhammad Ali Babar 2

 1 School of Computer Science, Wuhan University, Wuhan, China
2 School of Computer Science, The University of Adelaide, Adelaide, Australia

Abstract—Architecture Smells (ASs), as one source of technical

debt, indicate underlying problems at a high level of systems and

negatively impact various system qualities, such as maintainability

and evolvability. Detecting and refactoring ASs requires the

relevant architectural knowledge and experience. Therefore,

gathering the knowledge of ASs from various sources can facilitate

ASs detecting and refactoring. However, manually identifying AS

knowledge is time-consuming. Automatically and correctly

identifying AS-related posts from Stack Overflow is a step toward

utilizing the AS knowledge to help developers better maintain

their systems. In this work, we propose an approach to

automatically identify AS-related posts from Stack Overflow (SoF)

by using machine learning algorithms. We evaluate the

performance of 12 classifiers based on 3 feature extraction

techniques and 4 classification algorithms with a created dataset

of SoF posts (including 208 AS-related posts and 187 AS-unrelated

posts). The results demonstrate that the SVM algorithm with

Word2Vec achieved the best overall performance with an

accuracy of 0.650, a precision of 0.613, a recall of 0.905, and an F1-

score of 0.731. These results imply that the obtained model of the

AS-related posts identification can be used to aid developers and

researchers in collecting AS discussions from SoF.

Keywords—Architecture Smell, Architecture Smell Discussion,

Stack Overflow, Text Classification

I. INTRODUCTION

Architecture Smells (ASs) are proposed as frequently
recurring architectural decisions that negatively impact system
quality [1]. ASs, as the counterpart of code smells, occur at a
higher granularity level of a system and can have system-wide
impact on maintainability issues. Therefore, detecting and
refactoring ASs require more effort compared to code smells [2].
Different researchers defined different categories of ASs with
supported detection tools [3]. Fontana et al. defined three
dependency-related ASs and proposed a tool, called ARCAN, to
detect them by analyzing dependency graphs extracted from the
packages of compiled Java projects [2]. Mo et al. proposed
Hotspot Detector to detect five types of ASs, called Hotspot
Patterns, defined at the package and file levels [4]. Le et al.
presented ARCADE which can detect 11 types of ASs across 4
categories [5]. These ASs detection tools are metrics-based and
apply some fixed threshold to judge whether a package or
component is smelly or not. But it is challenging to manually
choose the metrics and thresholds, which can induce false-

positive instances of ASs. Correctly detecting and refactoring
ASs requires knowledge and experience of developers and
researchers to remove false positive instances [2]. Therefore,
smell detection and refactoring rely on the knowledge and
experience of developers and researchers, and need to consider
different aspects such as system domain, software context, and
software engineering experience. Moreover, unlike ASs
detection, ASs refactoring is less researched and reported in the
literature. Empirical studies on investing the knowledge and
experience of detecting and refactoring ASs are needed [6].

Stack Overflow (SoF), as a crowdsourced knowledge
sharing platform, has been a popularly and widely used software
and development Questions and Answers (Q&A) sites that
contain more than 18 million questions across a wide variety of
topics since 2008 [7]. The knowledge and experience of
developers in SoF has been adopted by researchers to study
various topics. Tahir et al. investigated the developers’
perception of code smells and anti-patterns by mining and
analyzing the discussions about these two concepts in SoF [8].
In our previous work, we manually collected and analyzed 207
AS-related posts to investigate the understanding of developers
about ASs [3], such as the approaches and tools used to detect
and refactor ASs. Therefore, the discussions in SoF posts can
provide knowledge of ASs and refactoring suggestions that can
be used to guide a developer or architect in understanding and
addressing potential issues in the architecture of a software
system. However, from these studies [3][8], we can find that
searching smell-related posts via tags or search terms is
ineffective and induces false-positive posts. Furthermore,
manually identifying AS-related posts is a time-consuming and
subjective process which requires the expertise and experience
of ASs and can also lead to inaccurate or incomplete posts. To
address this challenge, automatically mining and identifying
AS-related posts is needed.

Machine Learning (ML) and Nature Language Process (NLP)
techniques have been extensively used to automatically identify
or mine meaningful information from SoF posts. For example,
Ahasanuzzaman et al. built a technique, called CAPS, that can
automatically classify SoF posts concerning API issues [9].
Borg et al. used active learning to train an SVM classifier for
identifying SoF posts concerning the performance of software
components [10]. To the best of our knowledge, there is
currently no study that automatically mines SoF post discussing
ASs. Our research aims at closing this gap by automatically
identifying AS-related posts from SoF.

We developed an approach to automate the classification of
AS-related posts. We created a dataset, consisting of labelled

* Corresponding author

This work has been partially supported by the National Key R&D

Program of China with Grant No. 2018YFB1402800 and IBO

Technology (Shenzhen) Co., Ltd., China.

DOI reference number: 10.18293/SEKE2020-084

208 AS-related posts and 187 AS-unrelated posts, for training
classification models. Furthermore, we ran an experiment with
12 configurations by using three feature extraction techniques
(i.e., BoW, TF-IDF, and Word2Vec) and four classification
algorithms (i.e., LR, SVM, KNN, and RF). We then compared
the performance of the models measured in terms of accuracy,
precision, recall, and F1-score to determine the best
configuration. In our experiment, the use of the SVM algorithm
with Word2Vec performed best for automating the classification
of AS-related posts.

Thus, our paper makes these contributions: (1) a manually
labelled dataset consisting of 208 AS-related posts and 187 AS-
unrelated posts; (2) an approach to automatically identify AS-
related posts using 12 different configurations regarding 3
feature extraction techniques and 4 classification algorithms; (3)
an evaluation of the performance of 12 different classifiers on
the dataset.

The rest of this paper is organized as follows. Section II
presents the related work. The experiment methodology is
explained in Section III. The results of our experiment are
reported and discussed in Section IV. Section V concludes this
work with future directions.

II. RELATED WORK

In the last years, research and practice on ASs has gained

significant attention [2]. In this section, we provide an overview

of ASs and automatic techniques for mining textual information

from Stack Overflow.

A. Architecture Smells

Several studies proposed the definitions of ASs with
different subtypes. ASs was originally proposed by Lipper [11]
to indicate the underlying problems that occur at the architecture
level of a system. They also provided a catalogue of ASs at
different levels: dependency graphs, inheritance hierarchies,
packages, subsystems and layer. Some of these ASs were
provided with refactoring measures. Garcia et al. considered
ASs as instances of poor architecture decisions that can affect a
system life cycle properties, such as understandability and
testability [1]. Moreover, they described four types of ASs and
each smell’s impact on a system lifecycle properties. Fontana et
al. presented an ASs Detector, called ARCAN, which can
identify three different dependency based ASs: Unstable
Dependency, HubLike Dependency and Cyclic Dependency [2].
They later developed a prototype tool, as an extension of the
Arcan tool, which can provide refactoring suggestions to remove
Cyclic Dependency smell [12]. In another study, Mo et al.
formally defined five architecture hotspot patterns and presented
a tool, called hotspot detector, to automatically detect and
identify these smells at packages or files level [4]. Based on
these works [1][4][6], Le et al. reviewed and integrated
previously reported ASs. Finally, they described 11 ASs and
classified them into four categories. More importantly, all these
11 ASs can be automatically detected by the proposed ARCAN
and the corresponding detection algorithm [5].

As mentioned by Fontana et al. [2], even the detection tools
can induce false-negative AS instances, which require additional
effort and experience as well as a better understanding of the
smells to avoid false-positives instances. As reported in our

previous study [6], SoF, as an online community for sharing
knowledge, can provide a rich knowledge and experience about
AS understanding, detection, and refactoring.

B. Mining Information from Stack Overflow

Many studies have been performed to automatically mine
SoF data from different perspectives using ML or NLP. Karthik
et al. developed an automated mechanism using an unsupervised
deep learning based method to identify three different types of
compatibility relations between components from the
unstructured text on Q&A site postings [13]. Beyer et al. built a
classification model using ML algorithms (Random Forest and
Support Vector Machines) to automatically classify SO posts
into seven question categories [14]. In another study, Borg et al.
made an attempt to use Active Learning and an SVM classifier
for mining performance discussions on SoF posts with two
alternating annotators [10]. Zhang et al. investigated an
approach using NLP and sentiment analysis techniques to
automatically extract problematic API features from SoF posts
[15]. Furthermore, Ahasanuzzaman et al. presented a supervised
learning approach using Conditional Random Field (CRF) to
identify API issue-related sentences in an SoF post [9].

However, none of the works above focuses on the
classification of AS posts in SoF. Inspired by the existing works,
we plan to use ML and NLP techniques to automatically identify
AS discussions on SoF posts.

III. RESEARCH DESIGN

In this section, we describe the goal and Research Questions
(RQs), and the method used in the study design.

A. Research Questions

The objective of our work is to provide an approach to
automatically mine and identify AS discussions from textual
artefacts. To achieve this objective, we define the following
three RQs and explain their rationale.

RQ1: Which technique (BoW vs. TF-IDF vs. Word2Vec)
performs best in the feature extraction step when
identifying AS-related posts from SoF?

Rationale: In text identification tasks, Text Data

Vectorization is an essential process that converts text data into

a set of real numbers (a vector). We use four well-performed

vectorization methods for extracting textual features: BoW, TF-

IDF, and Word2Vec. BoW (Bag of Words), as one of the most

commonly used traditional vector representations, links each

word or n-gram to a vector index that represents weather word

occurs in a document or not. TF- IDF is a statistical measure

used to evaluate the importance of a word to a document in a

collection of documents or corpus. Word2Vec, introduced by

Google, is a predictive embedding model to produce a

distributed representation of words with word semantics [16].

There are two main models of Word2Vec - Continuous Bag of

Words (CBOW) and Skip-Gram. Employing different

vectorization techniques may affect the final performance of

classifiers. Therefore, the aim of the question is to determine

the vector representation which can achieve the best

performance when identifying AS discussions from SoF post.

Step 1: Training data collection

Step 2: Preprocess Texts

(Remove useless characters and stopwords)

Step 3: Extract Features

(BoW, TF-IDF, and Word2Vec)

Step 4: Train Classifiers

(LR, RF, KNN, and SVM)

Step 5: Evaluate Trained Classifiers

Fig. 1. The overall process of classifying AS-related posts

RQ2: Which classification algorithm (i.e., LR, SVM,
KNN, and RF) performs best when identifying AS-related
posts from SoF?

Rationale: Various text classifiers have been employed in
the literature based on ML techniques, probabilistic models, etc.
Different classification methods may lead to differences in
classification performance when coping with text identification
tasks [18]. We use four commonly used classification
algorithms (i.e., Random Forest (RF), KNN, SVM, and
Logistic Regression (LR)) for classifying textual artifacts in
software development (e.g., [17]) and compare their
performance in our AS-related posts identification tasks. By
answering this question, we can determine the kind of
classification algorithm that can perform best in automatically
identifying AS-related posts.

RQ3: What is the best configuration to automatically
identify AS-related posts from SoF by combining different
feature extraction techniques and classification algorithms?

Rationale: Different performances can be achieved by
using different feature extraction techniques and classification
algorithms. We used three feature extraction techniques and
four classification algorithms, which results in 12 classifier
configurations. The configuration with best overall
performance may not be combined by the technique and
algorithm which achieve the best performance in each separate
step. Therefore, the aim of this RQ is to analyze the
performance of classifiers with different configurations and
determine the best configuration (that achieves the best
performance) for identifying AS-related posts.

B. Study Design

In this section, we introduce how we performed an
experiment to identify AS discussions from SoF posts using
automatic techniques. As shown in Fig. 1, the study design

1 https://tinyurl.com/wdhy46l

consists of five steps. In the following, we describe the details
of the tasks conducted in each step.

Step 1: Training data collection. The input of the
classification process of AS-related posts in Fig. 1 is SoF posts.
We used a set of inclusion and exclusion criteria (enlisted in
TABLE I) [3] for manually selecting and labeling AS posts. If
a post contained at least one sentence which met one criterion,
we labeled this post as AS-related. Furthermore, we used the
criterion C7 to label AS-unrelated posts. Each post was
independently analyzed and manually labelled as AS-related or
unrelated by two of the authors. To mitigate unconscious bias,
any disagreements of the labelling results were discussed and
resolved with the help of a third author.

We selected and labelled 395 posts (208 AS-related posts
and 187 AS-unrelated posts) according to the above criteria. A
few examples of AS-related and AS-unrelated posts are
provided in TABLE II. This dataset was then split into two parts:
(a) 90% of the posts as the training data set, and (b) 10% of the
posts as the testing data set. To support preprocessing in the
next step, we used a web crawler to collect and store the content
of the labelled SO posts by using their URLs. The crawler
works in four steps: (1) extract the URLs of the labelled posts,
(2) remove useless URL information in the posts (e.g.,
http://www.xxx.org/), (3) parse and extract post information
(i.e., titles, questions, and answers), and (4) save the post
information into a CSV document. For the replicability of our
experiment, the dataset of our experiment has been made
available online1.

TABLE I. Criteria for Labelling AS-Related Sentences

 Criterion ID Description

Criteria for

labelling AS-

related sentences

C1: Description

of Ass

Descriptions of ASs by

practitioners based on their

understanding

C2: Cause of ASs Causes that lead to ASs

C3: Approach for

detecting and

refactoring ASs

Methods used to detect/refactor

specific ASs (e.g., machine

learning based approaches)

C4: Tool for

detecting and

refactoring ASs

Tools for detecting and

refactoring specific ASs (e.g.,

source code analysis tools to

identify dependency cycles)

C5: Impact of

Ass

Impact of ASs on software

development (e.g.,

understandability, testability,

extensibility, and reusability)

C6: Challenge of

detecting and

refactoring ASs

Challenges identified in

detecting and refactoring ASs

Criterion for

labelling AS-

unrelated

sentences

C7: Not AS-

related topic

The sentence does not describe

ASs or the sentence topic is not

about AS, for example

sentences do not describe AS

but only other types of smells

(e.g., code smells).

TABLE II. Examples of AS-related Sentences and AS-unrelated

Sentences

Type Example

AS-related

Sentence

“Is using a root persistent class or base persistable

object an architecture smell?”

“I think my architecture has kind of a smell to it: The

webservice is acting as a proxy, collecting information

from different sources.”

“Message Bus and Message Based Architecture With
Winforms/Desktop Application and Strategies/Policies

for View/UI Logic”

“What would be a nice architecture so I can pass
information of eventual problems to a higher layer?”

“Using a command architecture is a good idea, since

this moves all business logic out of the controller, and

allows you to add cross-cutting concerns without
changes to the code.”

AS-unrelated

Sentence

“There's a distinct smell of burned out circuits coming

from my head, so forgive my ignorance.”

“For some derived classes, I want to ensure that one of

two overloaded abstract methods get overridden, but

not both. Is this possible?”

“Judging by the quality of the pixels that have been
restored properly, the network architecture seems to be

fine for this task.”

“I came across the Open Test Architecture API and was

wondering if there are any good Python or java
examples for the same that I could see.”

Step 2: Data Preprocessing. Data preprocessing eliminates the

terms or characters in the training posts that are unnecessary to

train classifiers for identifying AS discussions, which is

composed of 2 steps: (1) Removing useless characters. Since

the posts were crawled from Stack Overflow website which is

formed in HTML 5, most posts contain some useless

punctuations like “…” and escape characters like “/n” or “/r”.

Those characters provide invalid information in semantic

parsing, so we removed those useless characters. (2)

Processing stop words. Referring to the original idea of TF-

IDF, daily language interaction like Q&A posts from Stack

Overflow can be filled with common words such as auxiliary

verbs, conjunctions and articles. Removing stop words can

reduce the noise in natural language, because these words also

lack the distinguishing feature for training classifiers. To

remove those meaningless words, we apply the default stop

words list in Natural Language Toolkit (NLTK) package.

Note that, in our study, we did not apply stemming and

lemmatizing but stop words removing to preprocess the training

data, because stemming and lemmatizing may change the

meaning of the text. Moreover, prior research shows that the

text preprocessing method with No Stemming and

Lemmatization performs best when preprocessing posts to

identify decisions from textual artifacts in software

development [17].

Step 3: Feature extraction. The aim of feature extraction is to

transform preprocessed documents into numerical vector

representations for classifiers regardless of the vectorization

method. In our work, we applied three feature extraction

techniques, i.e., BoW, TF-IDF, and Word2Vec to calculate the

feature value of each post.

BoW is a commonly used traditional feature extraction

technique. A corpus is created consisting of every unique word

across the documents. Then each word is converted into the

corresponding vector by counting the occurrence of a word in a

document. While BoW is simple to understand and implement,

it lacks the ordering of words, which leads to loss of contextual

information and word meaning in the document (semantics).

TF-IDF is a basic vectorization method which considers

frequencies of words in one document and words relationships

among documents. However, TF-IDF is also unable to capture

the word meaning. TF-IDF produces vectors based on

frequencies of words in one document (TF) and the weight of

rare words across all documents (IDF). TF-IDF used in this

study is defined as in Formula (1):

 𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × log(
𝑁

𝑑𝑓𝑖
) 

𝑡𝑓𝑖,𝑗 represent the count of a term “I” in a document “j”, N

represents the number of total documents in the corpus, and 𝑑𝑓𝑖

represents the number of total documents containing the term i.

Word2Vec is a word embedding method which produces

dimensional numerical representations of words and more

syntactic information than BoW and TF-IDF. These two

models of Word2Vec: Continuous Bag of Words (CBOW) and

Skip-Gram. The CBOW model obtains word representations by

predicting the current word based on its context (surrounding

words). Contrary to the CBOW model, The Skip-Gram learns

the embedding by predicting the surrounding words (context)

given a current word. CBOW is several times faster than Skip-

Gram, while Skip-Gram performs better for even rare words or

phrases than CBOW.

Step 4: Classifier Training. After transforming the collected

SoF into numerical vectors, we used the extracted features to

train four algorithms, i.e., LR, SVM, RF, and KNN, to

automatically identify AS-related posts. RF, KNN, and SVM

are three non-parametric classifiers. In contrast, LR is a

parametric classifier and faster and simpler classification

method than the other three. We used the implementation of

these four classifiers in the scikit-learn Python package.

Step 5: Performance Evaluation. To evaluate the

performance of three feature extracting methods and four

classifiers, we used four common measures: accuracy,

precision, recall, and F1-score. We used Formula (2), (3), (4),

and (5) to calculate accuracy, precision, recall, and F1-score,

respectively.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Among these formulas, True Positive (TP) denotes the

number of correctly identified AS-related posts by classifiers.

False Positive (FP) represents the number of AS-unrelated posts

that are incorrectly identified as AS-related posts by classifiers.

False Negative (FN) indicates the number of AS-related posts

that are incorrectly labelled as AS-unrelated posts by classifiers.

True Negative (FN) shows the number of correctly identified

AS-unrelated posts by classifiers.

Therefore, in our context, precision is used to measure the

exactness of prediction set and represented as the ratio of posts

correctly identified as AS-related posts to all posts identified as

AS-related posts. Recall is the fraction of all AS-related posts

correctly demarcated. F1-score is a combination of precision

and recall. We consider precision and recall equally important.

F1-score is calculated by the harmonic mean of precision and

recall. Accuracy is the ratio of correctly identified posts,

including AS-related posts (TP) and AS-unrelated posts (TN)

to all identified posts.

IV. RESULTS AND ANALYSIS

As described in Section III, we conducted an experiment

with 3 (three feature extraction techniques) × 4 (four

classification algorithms) = 12 configurations. We calculated

these metrics (i.e., precision, recall, F1-score, and accuracy) to

evaluate the performance of each configuration for identifying

AS-related posts in SoF. In this section, we present and analyze

the results to answer the research questions.

A. Results and Analysis of RQ1

To answer RQ1, we calculated the average of the results

obtained by three feature extraction techniques to observe the

impact of different techniques on the performance of classifiers.

TABLE III shows the performance of ASs classifiers by

employing three feature extraction techniques (i.e., TF-IDF,

BoW, Word2vec). The highest accuracy, precision, recall, and

F1-score values of AS discussion classification across all

techniques are highlighted in boldface. we found that TF-IDF

technique can achieve the highest average precision (0.620),

accuracy (0.619), and F1-score (0.714), and the BoW technique

can achieve the best Recall (0.798). One important observation

is that the recall value for the TF-IDF is very poor. It can also

be found that the performance of the Word2Vec model is poor,

which is consistent with the result observed by Li et al. [17].

The results indicate that the TF-IDF technique can perform

better than the other techniques (i.e., Bow, Word2Vec) and

extract meaningful AS discussions from SoF posts.

TABLE III. Average Results of Different Feature Extraction

Techniques for Identifying Architecture Smell Discussions

Technique Accuracy Precision Recall F1-score

TF-IDF 0.619 0.620 0.698 0.714

BoW 0.516 0.528 0.798 0.629

Word2vec 0.556 0.563 0.631 0.589

B. Results and Analysis of RQ2

To answer RQ2, we calculated the average of the results

obtained by the four classification algorithms to observe the

impact of different algorithms on the performance of classifiers

(i.e., the results of AS discussions classification). TABLE IV

presents the performance of ASs classifiers by employing the

four classification algorithms (i.e., LR, SVM, RF, KNN). The

highest precision, recall and F1-score of AS identification

across all classification algorithms are highlighted in boldface.

We observed that the highest average accuracy (0.600), recall

(0.921) and F1-score (0.709) are achieved by the SVM-based

classifier, and the highest average precision (0.589) are

achieved by KNN-based algorithm. Moreover, SVM can

achieve the second-highest average precision (0.579). The

performance of KNN-based classifier is slightly worse than

SVM, with an accuracy of (0.592), a recall of (0.762), and an

F1-score of (0.620). DT-based classifier got the lowest average

precision (0.583), recall (0.577), and F1-score (0.577). These

results indicate that the SVM-based classifier performs the best

in term of the overall performance and can be used as the most

suitable classification algorithm in the classifier training step

when automatically identifying ASs from SoF compared to

other three classification algorithms. This conclusion is

consistent with the findings reported in [17].

TABLE IV. Average Results of Different Classification Algorithms
for Identifying Architecture Smell Discussions

Algorithm Accuracy Precision Recall F1-score

LR 0.542 0.560 0.571 0.566

SVM 0.600 0.579 0.921 0.709

RF 0.525 0.553 0.603 0.570

KNN 0.592 0.589 0.762 0.620

C. Results and Analysis of RQ3

To answer RQ3, we calculated and compared the precision,

recall, and F1-score of each of 12 configurations to analyze how

accurately we can automatically identify AS-related posts from

SoF. TABLE V presents the performance of 12 ASs classifiers

by employing four classification algorithms (i.e., LR, SVM, RF,

KNN) across three feature extraction techniques. The highest

precision, recall, and F1-score values for ASs classifiers across

all configurations are highlighted in boldface. It can be found

that the highest accuracy (0.650), precision (0.636), recall

(1.000), and F1-score (0.731) can be achieved with the

combination of three feature extraction techniques and four

classification algorithms. We can also find that there are two

configurations with an F1-score more than 0.7 and accuracy

greater than 0.625. It is also worth noting that these two

configurations employ SVM. The highest precision (0.650) and

F1-score (0.731) are achieved by the combination of Word2Vec

with SVM, which confirms the result of RQ2 that SVM-based

classifier performs the best for automatic classification of AS-

related posts. One important observation is that although the

TF-IDF technique can achieve the best performance in the step

of text feature extraction when identifying AS-related posts, the

combination of Word2vec and SVM can achieve the best

overall performance. These results indicate that each

configuration presents a diverse performance. Moreover, the

configuration with the best performance is not simply combined

by the technique and algorithm which achieves the best

performance in each separate step, respectively. Overall, with

an accuracy of 0.650, a precision of 0.613, a recall of 0.905, and

an F1-score of 0.731, the configuration with a combination of

Word2Vec and SVM can achieve the best performance for

identifying AS-related posts, and can be used by developers and

researchers to collect AS discussions from SoF.

TABLE V. Evaluation Results of Combining Different Feature
Extraction Techniques and Classification Algorithms for

Identifying Architecture Smell Discussions

Technique Algorithm Accuracy Precision Recall F1-score

TF-IDF LR 0.625 0.636 0.667 0.651

SVM 0.625 0.600 0.857 0.706

RF 0.600 0.619 0.619 0.619

KNN 0.625 0.625 0.714 0.619

BoW LR 0.525 0.545 0.571 0.558

SVM 0.525 0.525 1.000 0.689

RF 0.450 0.484 0.714 0.577

KNN 0.575 0.559 0.905 0.691

Word2Vec LR 0.475 0.500 0.476 0.488

SVM 0.650 0.613 0.905 0.731

RF 0.525 0.556 0.476 0.513

KNN 0.575 0.583 0.667 0.622

V. CONCLUSIONS AND FUTURE WORK

Architecture Smells (ASs), as a type of technical debt, have

been attaining importance in recent years since they may

significantly depreciate software quality. Detecting and

refactoring ASs correctly require appropriate architectural

knowledge. The online communities, such as Stack Overflow

(SoF), contain a wealth of latent information expressed in

natural language and become a valuable source of information

for sharing knowledge of ASs. But manually gathering AS

discussions from the online communities is a time-consuming

and labor-intensive task. To address this problem, we have

proposed a solution to automatically identify AS related posts

from SoF using 12 different configurations of feature extraction

techniques and classification algorithms.

We first created a dataset from SoF consisting of 208 AS-

related posts and 187 AS-unrelated posts and manually labelled

AS-related sentences for training classification models across

the combinations of the three feature extraction techniques and

four classification algorithms. We evaluated and discussed the

performance of the 12 combinations by calculating four metrics:

accuracy, precision, recall, and F1-score. The results from our

experiment show that: (1) the TF-IDF technique performs best

when extracting text features to identify ASs; (2) the SVM

based classifier achieves the best overall performance regarding

accuracy and F1-score of automatic AS discussions

classification; and (3) the SVM algorithm with Word2Vec

outperforms the other combinations when automatically

identifying AS-related posts.

These results provide several implications for our future

research including: (1) validating the best configurations in

other online sources of textual information such as developer

mailing lists and issue tracking systems, (2) to identify AS-

related discussions at the sentence level, which provides more

focused content about AS discussions, (3) employing multi-

classification algorithms (e.g., Softmax) to automatically

classify different types of AS-related discussions from textual

artefacts, and (4) automatically extracting AS information to

enrich practioners’ knowledge and experience of detecting and

refactoring ASs, and evaluating whether and how the AS

information can improve detecting and refactoring ASs.

REFERENCES

[1] Garcia, J., Popescu, D., Edwards, G. and Medvidovic, N., 2009.
Identifying architectural bad smells. In: Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR).
Kaiserslautern, Germany. pp. 255-258.

[2] Fontana, F.A., Pigazzini, I., Roveda, R. and Zanoni, M., 2016. Automatic
detection of instability architectural smells. In: Proceedings of the 32nd
IEEE International Conference on Software Maintenance and Evolution
(ICSME). Raleigh, NC, USA, pp. 433-437.

[3] Tian, F., Liang, P. and Babar, M. A., 2019. How developers discuss
architecture smells? an exploratory study on Stack Overflow. In:
Proceedings of the 16th International Conference on Software
Architecture (ICSA). Hamburg, Germany, pp. 91-100.

[4] Mo, R., Cai, Y., Kazman, R. and Xiao, L., 2015. Hotspot patterns: the
formal definition and automatic detection of architecture smells. In:
Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Montreal, QC, Canada, pp. 51-60.

[5] Le, D. M., Link, D., Shahbazian, A., & Medvidovic, N. 2018. An
empirical study of architectural decay in open-source software. In:
Proceedings of the 15th IEEE International Conference on Software
Architecture (ICSA), Seattle, WA, USA, pp. 176-185.

[6] Samarthyam, G., Suryanarayana, G. and Sharma, T., 2016. Refactoring
for software architecture smells. In: Proceedings of the 1st International
Workshop on Software Refactoring (IWoR). Singapore, Singapore, pp. 1-
4.

[7] Grant, S. and Betts, B., 2013. Encouraging user behaviour with
achievements: an empirical study. In: Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR). San Francisco, CA,
USA, pp. 65-68.

[8] Tahir, A., Yamashita, A., Licorish, S., Dietrich, J. and Counsell, S., 2018.
Can you tell me if it smells?: a study on how developers discuss code
smells and anti-patterns in Stack Overflow. In: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering (EASE), Christchurch, New Zealand, pp. 68-78.

[9] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K. and Schneider, K.A.,
2020. CAPS: a supervised technique for classifying Stack Overflow posts
concerning API issues. Empirical Software Engineering, 25: 1493-1532.

[10] Borg, M., Lennerstad, I., Ros, R. and Bjarnason, E., 2017. On using active
learning and self-training when mining performance discussions on Stack
Overflow. In: Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering (EASE), Karlskrona
Sweden, pp. 308-313.

[11] Lippert, M. and Roock, S., 2006. Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons.

[12] Rizzi, L., Fontana, F.A. and Roveda, R., 2018. Support for architectural
smell refactoring. In: Proceedings of the 2nd International Workshop on
Refactoring (IwoR), Montpellier, France, pp. 7-10.

[13] Karthik, S. and Medvidovic, N., 2019. Automatic detection of latent
software component relationships from online Q&A sites. In: Proceedings
of the 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), Montreal, QC, Canada, pp.
15-21.

[14] Beyer, S., Macho, C., Di Penta, M. and Pinzger, M., 2018. Automatically
classifying posts into question categories on Stack Overflow. In:
Proceedings of the 26th International Conference on Program
Comprehension (ICPC), Gothenburg, Sweden, pp. 211-221.

[15] Zhang, Y. and Hou, D., 2013. Extracting problematic API features from
forum discussions. In: Proceedings of the 21st International Conference
on Program Comprehension (ICPC), San Francisco, CA, USA, pp. 142-
151.

[16] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

[17] Li, X., Liang, P. and Li, Z., 2020. Automatic identification of decisions
from the Hibernate developer mailing list. In: Proceedings of the 24st
International Conference on Evaluation and Assessment in Software
Engineering (EASE), Trondheim, Norway, pp. 51-60.

[18] Ikonomakis, M., Kotsiantis, S. and Tampakas, V., 2005. Text
classification using machine learning techniques. WSEAS Transactions
on Computers, 4(8): 966-974.

