
Characterizing Vulnerabilities in a Major Linux Distribution

Stephen R. Tate Moulika Bollinadi Joshua Moore

Department of Computer Science, UNC Greensboro, Greensboro, NC 27402
Contact email: srtate@uncg.edu

Abstract

This paper reports on a careful study of vulnerabilities
in open-source software, performing both a longitudinal
study over 7 years of data and an in-depth exploration of
a particular type of vulnerability. First, data was mined
from Ubuntu security notices from 2012 to 2019, specifi-
cally pulling security notices published within the first year
of each of the four stable releases during that time. This
provided a dataset covering 3,232 security vulnerabilities,
which were cross-referenced with other information, allow-
ing us to identify trends in types of vulnerabilities over the
past 7 years. Within these results, we see that out-of-bounds
memory access (which includes the classic “buffer over-
flow” vulnerability) has consistently been the most perni-
cious security weakness, so in the second part of this re-
search we performed an in-depth study of a random sample
of 30 recent out-of-bounds access vulnerabilities. Begin-
ning by evaluating each vulnerability in terms of seven fea-
tures, we identified trends and patterns and expanded the
analysis to a total of eleven features. These results help fur-
ther understanding of how out-of-bounds access vulnerabil-
ities occur in real software, which can help both researchers
looking to improve tools for vulnerability analysis and de-
velopers learning how to avoid common pitfalls.

1 Introduction

The enthusiasm of programmers to create new software
has led to an explosion in the size and complexity of pro-
grams that has greatly exceeded our ability to ensure that
the programs are free of errors. Of particular interest in our
highly-connected society are errors that can be exploited
to subvert security goals, a kind of error that is called a
“vulnerability.” In this project, we gain insight into what
kinds of vulnerabilities occur across a wide range of open-
source software that is used in Linux and Unix-like oper-
ating systems, how the frequency of various vulnerability

DOI Reference number: 10.18293/SEKE2020-033

types has changed over time, and what specific character-
istics are present in the most pernicious type of vulnerabil-
ity, the out-of-bounds access vulnerability. Our goal is to
improve knowledge about vulnerabilities in real-world soft-
ware, focusing on situations in which sourcecode is avail-
able so that patterns and trends can provide useful informa-
tion for software developers.

Vulnerabilities are cataloged and classified in the “Na-
tional Vulnerability Database,” or NVD, maintained by the
National Institute of Standards and Technology (NIST) [6].
While statistics on the entire NVD database are available,
including a break-down by type of vulnerability [7], these
statistics aggregate vulnerabilities across all environments,
including open-source software, closed-source and propri-
etary software, and dedicated devices and device firmware.
Since our primary motivation for this work is to find infor-
mation that will be useful in settings with access to source-
code (specifically, source-based analysis tools and devel-
oper practices), we look specifically at vulnerabilities where
sourcecode is published so it can be analyzed for patterns
and characteristics.

To study open-source software, we need to identify a set
of projects that we can study, and from which we can ex-
tract useful information about vulnerabilities. We initially
considered mining information from GitHub [4] or from the
Software Heritage Graph dataset [8], but the range of soft-
ware maturity and the ad hoc nature of vulnerability iden-
tification in these sources quickly showed this to be an un-
productive approach. We then looked to major Linux distri-
butions, since distribution maintainers have already iden-
tified interesting and mature projects for inclusion in the
distribution, and they track security vulnerabilities so that
their users can stay up-to-date with security patches. Ex-
ploring three major distributions, Debian [13], RedHat [10],
and Ubuntu [3], we found Ubuntu to be the easiest and
most effective to work with for three main reasons: the
Ubuntu maintainers track a huge collection of open-source
software, with over 29,000 source packages in the 18.04 re-
lease; there is a well-maintained CVE tracker and source
of security notifications (the Ubuntu Security notices, or
USNs); and the practice of producing stable long-term-



support (LTS) releases on precise two-year intervals pro-
vides a meaningful way to perform a longitudinal study. In
the end we selected four such LTS releases, 12.04, 14.04,
16.04, and 18.04, and studied both general changes between
releases and specific vulnerability characteristics from the
most recent release. While we use data from Ubuntu, all
major Linux distributions use the same base of open-source
software, so we believe these results are representative of
the broader open-source software community.

Contributions: We make the following contributions in
this paper.

• We provide a clear picture of how the prevalence of
various types of vulnerabilities has changed over time.
The data show quantitatively that out-of-bounds mem-
ory access has remained the most pernicious type of
security vulnerability over time, consistently account-
ing for around a third of all security vulnerabilities.

• We report on a careful study of a random sample of 30
out-of-bounds memory access vulnerabilities, defining
the notion of an “exploit flow” to capture and ana-
lyze features in the sourcecode that characterize each
exploit. Our statistical breakdown reveals several in-
teresting and useful observations, including the per-
vasiveness of exploit flows that cross compilation-unit
boundaries (implying that analysis tools must similarly
consider multi-module analysis) and the importance of
pre and post condition statements at function bound-
aries to simplify understanding of vulnerabilities.

We believe that the results reported here will be beneficial
both for researchers working to improve source-based vul-
nerability identification tools, and for developers learning
about the types of security-related errors made in real-world
software systems.

2 Types Vulnerabilities Over Time

In order to study how vulnerabilities have changed over
time, we considered the four most recent Ubuntu Long-
Term Support (LTS) releases, which were released two
years apart in April, starting in 2012 with release 12.04. We
processed archived Ubuntu Security Notices (USNs), ex-
tending exactly one year after each initial release, extracting
CVE references and information on “affected distributions”
from each security notice to get CVE/distribution pairs.

After manually examining some of these results, we dis-
covered that there were a number of CVEs listed with dis-
tributions that were not actually affected by that CVE. The
problem is that a USN may reference a large number of
CVEs, and the USN flags a distribution as “affected” if any
one of those is a vulnerability in the distribution. In one
extreme case, a single USN (USN 3681-1) referenced 124

different CVEs! This leaves the possibility of a large num-
ber of CVEs in a USN not being relevant to that distribution.
To correct this problem, we pulled information on all CVEs
from the Ubuntu “CVE Tracker,” which indicates which dis-
tribution(s) are affected by an individual CVE, and dropped
a CVE/distribution pair if the CVE tracker has a distribution
classification for that CVE as “DNE” (does not exist), “not
affected,” or “ignore.” After processing, there was a modest
drop in CVE/distribution pairs, with the number of CVEs
affecting release 18.04 dropping from 911 (based on USN
alone) to 843 (based on both USN and the more accurate
CVE tracker classification).

For each CVE that affects an Ubuntu distribution (and
was fixed within the first year of that distribution’s release),
we cross-referenced the CVE with the corresponding en-
try in NIST’s National Vulnerability Database (NVD) to
extract the severity of the vulnerability, as given by the
CVSS v3.0 base score, and the type of vulnerability, as
given by the Common Weakness Enumeration (CWE) code
associated with the CVE. While there are 839 defined CWE
codes, only 62 appear in our dataset, and these can fur-
ther be categorized into a few broad classes of vulnerability
types. Our starting-point was the CWE cluster definitions
from MITRE, such as CWE-970 (“SFP Secondary Cluster:
Faulty Buffer Access”) that lists 11 fine-grained CWEs re-
lated to buffer access. CWEs that were not listed in such
pre-defined clusters were examined for obvious matches,
such as CWE-787 (Out-of-bounds Write). In the end, the
7 CWEs that occurred in our data set from the CWE-970
cluster along with CWE-787 formed our “Out-of-Bounds
vulnerability” class, as summarized in Table 2. Occurrences
of each vulnerability type in the four Ubuntu releases was
collated, and information on the “top 5” most prevalent vul-
nerability types is given in Table 1. Full data, including full
CWE-to-class mapping, occurrence rates for each class, as
well as the scripts used to analyze the Ubuntu data, is avail-
able at the project web site [12].

Discussion: As can be seen in Table 1, the number of vul-
nerabilities has been generally increasing, with an anoma-
lous spike at version 16.04. However the number of high
or critical severity vulnerabilities has decreased, resulting
in the percentage of vulnerabilities classified as high or crit-
ical severity decreasing by over half (from 44% to 19%).
CVE evaluation has dramatically improved over the years,
with the percentage of CVEs giving a CWE classification
increasing 64% to 95%. The Out-of-Bounds access vul-
nerability has been the top vulnerability type in every ver-
sion. This is particularly frustrating as it is one of the oldest
forms of security vulnerability and a significant amount of
research has gone into locating and fixing such vulnerabili-
ties. Furthermore, pointer issues, also a memory safety vio-
lation, have also gotten much more common in the past few
years. Of issues that are not related to memory safety, per-



Distribution Ubuntu 12.04 Ubuntu 14.04 Ubuntu 16.04 Ubuntu 18.04
Release date April 26, 2012 April 17, 2014 April 21, 2016 April 26, 2018

Total CVEs fixed in Year 1 646 701 1042 843
High/Critical severity 287 (44%) 268 (38%) 258 (25%) 156 (19%)
CWE classified 415 (64%) 455 (65%) 952 (91%) 802 (95%)

Out-of-bounds access 24.3% (1) 30.8% (1) 38.9% (1) 30.2% (1)
Permissions 18.1% (3) 10.3% (3) 9.5% (3) 15.5% (2)
Pointer issues — 2.6% (10) 8.8% (4) 11.0% (3)
Input validation 16.6% (4) 14.3% (2) 13.1% (2) 10.8% (4)
Resource management 21.9% (2) 9.0% (4) 4.8% (7) 8.5% (5)
Numeric errors 7.0% (5) 8.1% (5) 1.7% (9) 0.2% (19)

Table 1. Vulnerabilities by distribution (rank of each type in parenthesis)

CWEs in the general “out-of-bounds access” class

CWE-118 Incorrect Access of Indexable Resource
(‘Range Error’)

CWE-119 Improper Restriction of Operations within
the Bounds of a Memory Buffer

CWE-122 Heap-based Buffer Overflow
CWE-123 Write-what-where Condition
CWE-125 Out-of-bounds Read
CWE-126 Buffer Over-read
CWE-129 Improper Validation of Array Index
CWE-787 Out-of-bounds Write

Table 2. Out-of-bounds access CWEs

mission and input validation issues remained in the top four
vulnerability types throughout the seven years, although the
percentage of input validation issues has been slowly de-
clining. Numeric errors have also fallen dramatically over
the years. Some of the changes in pointer issues and nu-
meric errors could be due to a change in classification cri-
teria (e.g., an integer overflow leading to out-of-bounds ac-
cess might have been classified as an integer overflow in the
past, but is now classified as out-of-bounds access), but dig-
ging deeper into the CVE classification criteria is beyond
the scope of this project and is left as an open question.

3 Out-of-bounds Access Vulnerabilities
Given the consistent top ranking of Out-of-Bounds ac-

cess vulnerabilities (abbreviated as “OoB access”), we next
undertook a study to gain deeper understanding into how
these vulnerabilities manifest in real-world systems. As a
first step, we pulled the full list of OoB access CVEs that
affected Ubuntu 18.04 in its first year of release, and ran-
domly sorted them so that we could select the first CVEs
in our random ordering as a random sample of OoB ac-
cess vulnerabilities. Early in our process we discovered that

the rapid release model of Firefox and family (Thunderbird,
mozjs, etc.) differed greatly from other packages, and the
huge patch updates made it practically impossible to locate
specific vulnerabilities based on public information. For ex-
ample, the fix for CVE-2018-18493 (a critical-severity OoB
vulnerability) was only included as part of the Firefox up-
date from version 63.0.3 to 64, where the diff between these
versions contains close to 1.9 million lines. As a result, we
excluded vulnerabilities in these packages from our list be-
fore taking our random sample.

We started our evaluation based on 7 characteristics sug-
gested by our past experience. The authors studied 14 CVEs
over a period of 6 weeks, with group discussions that iden-
tified 4 additional recurring patterns, giving a final set of 11
relevant characteristics. The 14 initial vulnerabilities were
re-examined along with 16 others. Of these 30 vulnerabili-
ties, six were excluded for various reasons: three did not ap-
ply to Ubuntu 18.04, two were mis-classified in the NVD as
out-of-bounds access vulnerabilities, and one did not have
enough public information available to analyze. While this
process gave deep insight into vulnerability characteristics,
it was highly labor-intensive, and an interesting future re-
search direction could explore ways to automate or at least
provide tools to assist in this analysis.

3.1 Exploit Flow Definition
To characterize out-of-bounds access vulnerabilities, we

introduce the idea of an exploit flow: the shortest execution
path through the program that fully explains to an informed
reader how the vulnerability arises and what causes the out-
of bounds access, where we allow irrelevant portions of the
flow to be redacted. This definition is inherently subjective,
with reference to “an informed reader,” but in general it will
include code that calculates an array index or a pointer that
is subsequently used in the out-of-bounds access. When the
out-of-bounds access involves a dynamically-sized block of
memory, the exploit flow will also typically include the size



5658 first_object=(p[0] << 8) | p[1];
5659 last_object=(p[2] << 8) | p[3];
5660 p+=4;
5661
5662 for (i=(int) first_object;

i <= (int) last_object; i++)
5663 {
5664 if (mng_info->exists[i] &&

!mng_info->frozen[i])
5665 {
5666 ...

Figure 1. Vulnerability CVE-2017-13139

calculation and memory allocation.
An example of an out-of-bounds access vulnerability is

shown in Figure 1, where the code comes from PNG im-
age processing module for the ImageMagick library (code
has been somewhat reformatted to fit in one column, but is
otherwise directly taken from the coders/png.c file of
ImageMagick version 6.9.7-4). Note, this was actually one
of the vulnerabilities that ended up being excluded from our
study, since it was patched prior to the official Ubuntu 18.04
release; however, due to its simplicity it serves as the best
example to explain exploit flows in this paper.

The exploit flow is the following description, which
traces an execution through the code to demonstrate clearly
how the vulnerability can be exploited:

1. Comment: Variable p points to an input buffer con-
taining unsigned characters, read directly from (possi-
bly malicious) input.

2. Lines 5658–5659: 16-bit binary values are loaded
in to unsigned int variables first_object and
second_object, and are unchecked so they can be
any possible 16-bit values (e.g., these variables can
have values 1000 and 2000, respectively).

3. Line 5662: A for loop starts on line 5662, with index
i ranging from first_object to last_object.

4. Line 5664: Array mng_info->exists[i] is ac-
cessed, which is a statically-sized array of size 256.

5. Out-of-bounds access, line 5664: With the sample val-
ues above, on the first iteration of the for loop, i is
1000 and when used as an index into an array of size
256 this results in an out-of-bounds read.

There are a few important observations to make from this
example. First, it is not entirely self-contained, since the
first comment simply mentions that buffer p is uncon-
strained data read from the user. This should be perfectly
clear to the “informed reader” that is part of the exploit flow
definition, and allows us to leave out sometimes-confusing
I/O buffering code from the flow. Second, we include

specific example values that could be used in a proof-of-
concept exploit for the vulnerability — in all but a few
cases, we have constructed actual proof-of-concept inputs
to test our exploit flows. Finally, we do not include code
that defines sizes of memory blocks in the exploit flow when
they follow from static type declarations, and instead simply
state the size of the data block (as we did with the 256-entry
array in the example exploit flow).

In terms of vulnerability characteristics, this exploit flow
is a very simple example of a pattern we saw regularly in
out-of-bounds access vulnerabilities: An offset into a binary
structure is read from user data, unpacked from a straight
binary value (typically 16 or 32 bits), and then used without
being checked to ensure that it is a sensible value.

3.2 Exploit Flow Characteristics

As described above, we evaluated all vulnerabilities in
terms of 11 characteristics or features. In this section we
define and describe these characteristics.

Spans multiple compilation units or files: Does the exploit
flow include code from multiple compilation units, where
“compilation unit” is the unit of source code processed by
one pass of a compiler? For C and C++, a compilation unit
consists of both a main source file (.c or .cpp file) and
any included header files (.h files). This characteristic is
important when considering code analysis tools, as some
tools (e.g., the Clang static analyzer [5]) restrict analysis to
a single compilation unit, whereas others (e.g., Infer [2] and
Klee [1]) perform analysis using information from multiple
compilation units.

Spans multiple functions: Does the exploit flow include
code from multiple functions, where these functions may
be library functions, user-defined functions, or both? Unlike
the previous characteristic, functions may be in the same file
or compilation unit. This characteristic is important while
considering code analysis tools as some tools do not trace
across function call boundaries.

Involves typecasting or type confusion: Does critical data
change types during the exploit flow? Code that initializes
a variable using one type and converts it into another type
is type casting. If that resource is accessed using an in-
compatible type with the original type then it is type con-
fusion. This can result in triggering logical errors in the
source code.

Simplified with a function pre/post condition: Would a
stated function pre/post condition shorten or simplify the
exploit flow? Given the frequency of exploit flows that
span multiple functions, it is not surprising that such con-
ditions could help analysis. In particular, a function that
fills a block of memory could have a pre-condition that the
buffer must have sufficient size, and then the exploit flow



does not need to extend into the function. A static anal-
ysis tool could use such pre/post conditions to check both
that pre-conditions are met when a function is called, and to
start path analysis in the function using the pre-condition as
a starting condition.

Simplified with a data structure invariant: Would a stated
data structure invariant shorten or simplify the exploit flow?
The most common way that this is relevant in our study
would be an invariant that relates to the size of a dynami-
cally allocated buffer, so that the buffer size is known to a
static analyzer without requiring the exploit flow to trace all
the way back to the actual size calculation and allocation.

Dynamically-sized memory block: Are memory needs de-
termined at runtime, such as when they are dependent on
user input? Dynamic allocation poses a particular prob-
lem for static analysis tools, as the tool often does not
have any information about the size of the memory block
(this is related to, and potentially addressed by, a data
structure invariant as mentioned above). In addition, with
dynamic memory allocation there is a possibility that the
user/attacker introduces a large value and the system cannot
allocate enough memory for it, so no buffer at all is allo-
cated. While programs can detect this situation by checking
the allocation return value, it is unfortunately common that
programmers omit this error-check.

Binary data format processing: Does the data being handled
in the exploit flow come from a raw binary data format, such
as image or audio files? Vulnerabilities can arise from code
that unpacks and uses values such as sizes or offsets without
first checking them for validity. While legitimate data in
such formats is produced by software that will only output
data conforming to certain rules, attacker-supplied data is
not restricted to sensible values.

Other characteristics: We evaluated all vulnerabilities with
respect to several other characteristics which ended up be-
ing less significant. In particular, we considered whether
the exploit flow was asynchronous, as might be common in
event-driven programming; whether bugs were involved in
parsing textual input; whether there are a significant number
of branching decisions (including loop iterations), which
would lead to path explosion in analysis; and whether the
exploit flow is determined by dynamic type resolution, such
as through a method dispatch table in C++. Any of these
characteristics would complicate the task of code analy-
sis, but all turned out to be rare in our random sample of
OoB vulnerabilities. This is encouraging because it implies
that significant improvements in static analysis can be made
without having to address these particularly challenging sit-
uations. For example, only one CVE had an asynchronous
exploit flow, and most had very limited branching (some
included loops, but the vulnerability could typically be trig-

OoB Access Characteristics

Multiple Functions 17/24 71%
Multiple Compilation Units 12/24 50%
Type confusion/casting 9/24 38%
Simplifying Pre/Post-condition 15/24 63%
Simplifying Invariant 10/24 42%
Dynamically-sized memory 19/24 79%
Binary data formats 19/24 79%

Table 3. Out-of-Bounds Characteristics

gered on the first iteration of the loop).

As we investigated characteristics of exploit flows, an-
other interesting fact emerged: the prominence of fuzz test-
ing in detecting vulnerabilities. The method used to de-
tect the vulnerability was clearly stated in slightly over
half of the studied CVEs, and in every single one of those
cases the vulnerability was found by fuzzing (typically us-
ing AFL [14] or a variant). In several other cases, while not
stated explicitly there was evidence that fuzzing was used
to locate the vulnerability, and in only a single case did the
evidence suggest that the vulnerability was found in some
other way (probably manual code review). This does raise
an interesting question, which would require further study
to resolve: Is improved success in finding OoB vulnerabili-
ties masking a decline in frequency of occurrence? In other
words, how much of the OoB frequency in Table 1 is due to
actual prevalence of the type of vulnerability and how much
is due to our success in locating such vulnerabilities? The
widespread use of fuzzing could also explain the predomi-
nance of vulnerabilities in binary file format processing, as
fuzzing works particularly well on such data.

3.3 Results

The prevalence of the various vulnerability characteris-
tics described above, across the 24 usable samples, is given
in Table 3. The frequency of exploit flows that cross func-
tion and even compilation-unit boundaries clearly demon-
strates that effective analysis tools must be able to reason
about multi-unit execution paths. However, a promising as-
pect of this analysis is that a large number of such flows
(roughly two-thirds of the multi-function exploit flows)
could be greatly simplified through proper use of func-
tion pre/post conditions. Programmers naturally divide pro-
grams into pieces with clear logical requirements so that
they can cope with complexity as a developer. Making these
logical requirements explicit could significantly help analy-
sis in most of the OoB vulnerabilities that we studied.

Furthermore, dynamic memory allocation is very com-
mon in modern software, and our results show that it also
plays an important role in many vulnerabilities. Again,



buffer sizes are generally logically designed by program-
mers, even if such sizes are not available (in C and C++) to
static analysis tools. Taking this logical design out of the
mind of the programmer and turning it into an explicitly-
stated data structure invariant could help identify vulnera-
bilities in almost half of the vulnerabilities studied.

Finally, type confusion and casting is a less common but
still significant problem. Casting issues, such as from an
unsigned size to a signed size, could be easily identified
by even simple static analysis tools. As a next step in our
work, we will study how often such casting issues occur and
how often they lead to vulnerabilities. We suspect that the
number of safe uses of typecasting far exceeds the unsafe
uses, which would lead such a static analysis tool to produce
too many false positives to be useful. Analysis of how to
identify just the unsafe uses is an interesting open question.

4 Related Work
Rigorous work classifying vulnerabilities across a wide

span of open-source software is uncommon, but a few re-
cent projects are related to our work. Ponta et al. manually
curated a large collection of 624 vulnerabilities and associ-
ated patches in open-source Java packages related to their
area of interest [9]. As their work focuses specifically on
Java code in a niche area, it does not provide the broad pic-
ture of open-source vulnerabilities that our study seeks.

In a similar effort to ours, reviewing reported buffer-
overflow vulnerabilities, Shuckert et al. performed a review
of such vulnerabilities that had been reported in the Firefox
web browser [11]. This study provides some interesting ob-
servations, but results are reported in a more qualitative than
quantitative fashion, with no statistics on the prevalence of
various vulnerability characteristics reported. Furthermore,
focusing on a single software package provides excellent
insight into that package, but it is unclear how much the
results reflect overall open-source development characteris-
tics as opposed to particular coding practices and standards
for that particular development team.

Other work on buffer-overflow vulnerabilities considers,
as part of the background to their work, investigation of cer-
tain characteristics related to their work, but these are not
broadly-focused studies that provide insight into bigger pic-
ture of open-source vulnerabilities.

5 Conclusion
In this paper, we examined characteristics of real-world

vulnerabilities in open-source software. Mining a large
set of 3,232 vulnerabilities over 7 years revealed several
interesting trends, and clearly showed that out-of-bounds
access vulnerabilities have remained the most commonly-
occurring danger. With an eye toward identifying promis-
ing directions for program analysis tools and techniques, we

carefully studied a random sample of out-of-bounds access
vulnerabilities, identifying several particularly promising
directions for future work. First, there is a strong need for
analysis that spans function or even compilation unit bound-
aries. Second, the use of pre/post conditions and data struc-
ture invariants, perhaps provided to analysis tools through
sourcecode annotations, could greatly simply the reasoning
required to identify vulnerabilities. And finally, exploring
how tools can distinguish between safe and unsafe uses of
typecasting could produce interesting and practical results.

References
[1] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-

sisted and Automatic Generation of High-coverage Tests for
Complex Systems Programs. In Proc. of the 8th USENIX
Conference on Operating Systems Design and Implementa-
tion (2008), OSDI’08, pp. 209–224.

[2] CALCAGNO, C., AND DISTEFANO, D. Infer: An Auto-
matic Program Verifier for Memory Safety of C Programs.
In NASA Formal Methods. 2011, pp. 459–465.

[3] CANONICAL, LTD. Ubuntu website. https://ubuntu.
com/.

[4] GITHUB, INC. Github website. https://github.
com/. Accessed: 2020-01-30.

[5] LATTNER, C., AND ADVE, V. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion. In Proc. of the 2004 International Symposium on Code
Generation and Optimization (2004).

[6] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. National vulnerability database. https://nvd.
nist.gov/.

[7] ÖZKAN, S. CVE Details website. https://www.
cvedetails.com/. Accessed: 2020-01-30.

[8] PIETRI, A., SPINELLIS, D., AND ZACCHIROLI, S. The
Software Heritage Graph Dataset: Public Software Devel-
opment under One Roof. In Proc. of the 16th International
Conference on Mining Software Repositories (2019), MSR
19, pp. 138–142.

[9] PONTA, S. E., PLATE, H., SABETTA, A., BEZZI, M., AND

DANGREMONT, C. A Manually-curated Dataset of Fixes to
Vulnerabilities of Open-source Software. In Proc. of the 16th
International Conference on Mining Software Repositories
(2019), MSR ’19, pp. 383–387.

[10] REDHAT. Website. http://www.redhat.com/.
[11] SCHUCKERT, F., HILDNER, M., KATT, B., AND LANG-

WEG, H. Source Code Patterns of Buffer Overflow Vulnera-
bilities in Firefox. Gesellschaft fr Informatik e.V., 2018.

[12] TATE, S., BOLLINADI, M., AND MOORE, J. Ubuntu vul-
nerability study project. https://span.uncg.edu/
vulnerabilities.

[13] THE DEBIAN PROJECT. Website. https://www.
debian.org/.

[14] ZALEWSKI, M. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl/.

https://ubuntu.com/
https://ubuntu.com/
https://github.com/
https://github.com/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.cvedetails.com/
https://www.cvedetails.com/
http://www.redhat.com/
https://span.uncg.edu/vulnerabilities
https://span.uncg.edu/vulnerabilities
https://www.debian.org/
https://www.debian.org/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Types Vulnerabilities Over Time
	Out-of-bounds Access Vulnerabilities
	Exploit Flow Definition
	Exploit Flow Characteristics
	Results

	Related Work
	Conclusion

