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Abstract—Adaptation is a concern for elastic software systems.
Conventional methods like Brownout try to deactivate optional
computation per request after decoupling the software into
different components, to lower the workload when peaks occur.
However, resource-intensive components are not always easy to
isolate, and some software systems are even not separable. In this
paper, we propose a new paradigm that provides each core and
mandatory component a corresponding alternative component,
with similar function but lower resource consumption, and use
reinforcement learning in a feedback loop control for the self-
adaptation process. We modified the widely used benchmark RU-
BiS to make it weakly coupled and add alternative components.
Experiments show that our framework dramatically improves
both the efficiency and effectiveness of self-adaptation.

Index Terms—adaptive software, reinforcement learning, pro-
gramming paradigm

I. INTRODUCTION

Elasticity is the degree to which a system is able to adapt
to workload changes by provisioning and de-provisioning
resources in an autonomic manner. Self-adaptation is the most
obvious characteristic of elastic software systems that enables
systems to continuously adapt themselves to uncertainty in the
environment. One of the challenges in such kind of systems
concerns how to make adaptation to themselves at runtime
dynamically in response to possible and even unexpected
changes from the environment and/or user goals [1].

Different approaches have been proposed for the design of
self-adaptive software, a prominent one being architecture-
based adaptation [2]. For example, a paradigm called brownout
[3] successfully controls the load balance by separating soft-
ware components into mandatory and optional parts and
adaptively activating or deactivating optional parts to manage
resource usage in software systems. However, subordinate
and resource-intensive components are not always easy to
be isolated, and some software systems are even not sep-
arable, like single-function mobile apps with only few but
highly correlated modules. We thus propose a new adapta-
tion framework that separates software into three different
types of components: mandatory, optional and alternative. The
mandatory parts must be kept running all the time, such as the
critical services in the system, including data-relevant services.
The optional parts, on the other hand, need not be active
all the time and can be deactivated temporarily to ensure
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system performance in the case of flash crowds. Compared to
brownout programming paradigm [2] with only mandatory and
optional components, we introduce a new type of component
for the system design: alternative. Each mandatory component
has its corresponding “alternative” one providing the same
services but use less computation resources. Some “insepa-
rable” software systems may not have “optional” parts, but
definitely can build mandatory and corresponding alternative
components.

After building self-adaptive software architecture, we also
need to design a feedback loop control mechanism to fulfill
the self-adaptation process. Control theory was used to adap-
tively determine when to activate/deactivate optional features
in the applications through the feedback from software and
environment, but applying control theory to adapt the software
behavior is a complex problem [4], due to the difficulty of
accurately modeling software, to the types of requirements and
their tradeoffs [5] and to the need of instrumenting software
to obtain sensor measurements and actuators [6]. Techniques
from statistical machine learning have shown to be effective
for feedback control in autonomic computing systems [7],
and learning from system running environment can lead to
improvements in accurately tuning parameters that avoids
slow controller reactions to significant arrival rate changes [8]
Therefore, in this paper, we propose a reinforcement learning
based framework to cope with non-stationary environment and
changeable user goals at runtime by learning controlling rules
to find appropriate thresholds. We also designed the algorithm
to compute the priority of component in an application,
and modified the benchmark RUBiS to make it separable.
Experiments show that our framework dramatically improves
both the efficiency and effectiveness of self-adaptation.

II. RELATED WORK

To enhance the adaptation of software system, the first step
is to build the elastic software architecture with low-coupling
characteristic, and then design a feedback loop control mecha-
nism to fulfill the self-adaptation process. As discussed before,
it is more efficient using machine learning than control theory
as the control mechanism, so we only introduce existing works
on feedback loop control through machine learning to support
the online planning process of self-adaptive systems.



To make an application elastic, the designer needs to build a
software architecture that can decompose the act of serving a
request into different parts of the application, each dealing with
a different part of the response. Some functions of a software
application might be skipped when necessary. Rainbow [9] is
a framework using reusable infrastructure to support runtime
self-adaptation of software systems. Brownout [3] is a self-
adaptive paradigm that enables or disables optional parts in the
system to handle unpredictable workloads. In existing articles,
the optional parts are identified as contents, components, and
containers. Optional web contents on servers are to be showed
selectively to users to save resource usage [10]. Components-
based applications deactivate optional components to manage
resource utilization [11]. In containerized clouds, each service
is implemented as a container, and the optional containers can
be activated/deactivated based on system status [12]. Optional
parts might temporarily be deactivated so that the essential
functions of the system are ensured and applications avoid
saturation.

Several automatic policies based on machine learning and
admission control were introduced. Desmeurs et al. [8] pre-
sented an event-driven brownout technique to investigate the
tradeoffs between utilization and response time for web ap-
plications. Dupont et al. [13] proposed an automatic approach
to manage cloud elasticity in both infrastructure and software.
The proposed method takes advantage of the dynamic selection
of different strategies. Moreno et al. [14] presented a proactive
approach for latency aware scheduling under uncertainty to
accelerate decision time, and applied a formal model to solve
the nondeterministic choices of adaptation tactics. Li et al
[15] [16] designed a multi-agents model to improve the self-
adaptation of meta search systems.

Some existing works have the related idea with us to use
Reinforcement learning (RL) to support the online planning
process of self-adaptive systems. Amoui et al [17] use rein-
forcement learning to support action selection in the planning
process and clarify why, how, and when reinforcement learning
can be beneficial for an autonomic software system. Ho et al
[18] present a model-based reinforcement learning approach
that maintains a model to utilize the engineering knowledge
and continuously optimizes system behavior through model-
based reinforcement learning. Tianqi et al [1] combines re-
inforcement learning with case-based reasoning to overcome
the limitations of rule-based adaptation in which decisions are
only made based on static rules

The limitations of the past work are (i) the priority of
software component is not discussed, and (ii) no strategy to
deal with the inseparable components or applications. In next
sections, we will discuss our proposed solutions.

III. LEARNING - BASED ADAPTATION
FRAMEWORK

In this section, we first assign priority to each software
component, and then propose a reinforcement learning based
framework that supports self-adaptive activation/ deactivation
of software components to avoid saturations.

A. Component Priority Assignment

Since some components of a system will be deactivated
when unexpected peaks come, we want to know: which com-
ponent should be deactivated first, i.e. how to determine the
priority order of components that are deactivated? Two metrics
are used to calculate the component priority: computational
complexity and usage frequency. Computational complexity
refers is the amount of resources required for running a com-
ponent. The more complex a component, the more computing
resources it needs. Usage frequency is the number of times that
a component is invoked in the software system during a time
interval. The algorithm of selecting the optional component is
to choose the node with lower frequency but higher complexity
first, because such kind of component needs more computing
resources while it is less used by users. The more frequently
a component being used, the more important and valuable it
is. For component i, we have:

p = δ.c/f

where p is the popularity of component i, δ is the control
factor used for scaling component i’s priority, c refers to the
computational complexity and f is the usage frequency.

B. Reinforcement Learning based Adaptation Framework

Conventional elastic software architectures usually separate
software components into two parts: mandatory and optional,
but not all software applications can be easily decoupled,
so sometimes no components can be isolated. Another issue
is what if a software still cannot adapt to the environment
change after adjusting the running state of optional parts?
For example, what if the workload of server is still high
after deactivating the optional components? To deal with the
above issues, we propose a new design paradigm that prepares
alternative substitute for each of the mandatory components
with similar functions but less complexity. Figure 1 illustrates
the structure and working process of the proposed framework.

When the user traffic is low, the mandatory software compo-
nents and the optional components are activated (if any), and
the alternative parts are deactivated (Figure 1a). All functions
are available and the complete service of the software is
offered. When the traffic increases, the workload of server
rises and the response time gets longer. In this case, optional
components are deactivated in the order of priority. The user
experience might be degraded, but the whole software will
still work well instead of saturation. Figure 1b shows that all
optimal components are deactivated.

If the workload of server is still high after deactivating
optimal components, we need to switch the service running
on mandatory components to alternative components (Figure
1c). The alternative code provides similar but “lighter” services
than mandatory content such as a website with static picture
instead of dynamic animation. Sometimes applications may
not contain components that can be grouped as “optional”,
like mobile apps with few functions, so alternative substitutes
are necessary.
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(a) Mandatory and optional components are activated
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Fig. 1. The proposed reinforcement learning framework with three types of
components: Mandatory, Optional and Alternative. The auto scaling process
as the user traffic changes is depicted from subfigure (a) to (c)

To lower the maintenance effort, the whole feedback loop
needs to be automatically managed. This would enable soft-
ware applications to rapidly and robustly respond to environ-
mental changes, and being self-adaptive. We use reinforcement
learning to automatically acquire the optimal strategies as
policies that controllers produce for different situations. In
the reinforcement learning context, an agent takes action at
when the system is in state st and leaves the system to evolve
to the next state st+1 and observes the reinforcement signal
rt+1. Decision making in elastic systems can be represented as
an interaction between software controllers and environment
through sensors and actuators, and the feedback reward is
evaluated in the form of utility functions. An elastic system
may stay in the same state, but should take different actions
in different situations and workload intensity.

We study the adaptive management of resources task in
which a Reinforcement Learning Agent (RLA) interacts with
environment by sequentially choosing which software com-
ponent to be activated or deactivated, so as to maximize

its cumulative reward. We model this problem as a Markov
Decision Process (MDP), which includes a sequence of states,
actions and rewards. More formally, MDP consists of a tuple
of five elements (S, A, P, R, γ) as follows:
• State space S: A state st ∈ S is defined as the metric

function that quantifies the degree of auto-scaling vari-
ables, such as workload, response time, throughout and
etc. The items in st are sorted in chronological order. The
elasticity policy is defined in terms of rules based on the
metric function: ”IF workload is high AND response time
is long THEN take action at”.

• Action space A: Each component has a running proba-
bility controlling how often it is executed, and the sum
of running probability between a mandatory component
and its corresponding alternative part should be 1. The
action at ∈ A of RLA is to change the probability of a
component being activated. The action at is among three
possible candidates:

at ∈ A = {−θ, 0, θ}

• Reward R: After the RLA taking action at at state st,
i.e., changing the running probability of a component,
the utility of software system changes and provides feed-
back, and the RLA receives immediate reward r(st, at)
according to the system’s feedback. In this paper, we use
the response time as the metric of system utility and have:
.

rt = λ(resp(t)− resp(t− 1))

where resp(t) is the response time of the system at time t,
and λ is a constant number scaling the reward value. If a
controlling action leads to a decreased response time, the
reward will increase, meaning the action is appropriate.
Otherwise, if the reward is close to zero, it implies that
the action is not appropriate.

• Transition probability P: Transition probability
p(st+1|st, at) defines the probability of state transition
from st to st+1 when RLA takes action at. We assume
that the MDP satisfies:

p(st+1|st, at, ..., s1, a1) = p(st+1|st, at)

• Discount factor γ : γ ∈ [0, 1] defines the discount factor
when we measure the present value of future reward.
In particular, when γ = 0, RLA only considers the
immediate reward. In other words, when γ = 1, all future
rewards can be counted fully into that of the current
action.

The upper part of each graph in Figure 1 illustrates the
agent-software interactions in MDP. With the notations and
definitions above, the problem of adaptive management of
resources can be formally defined as follows: Given the histor-
ical MDP, i.e., (S,A, P,R, γ), the goal is to find a controlling
policy π : S → A, which can maximize the cumulative reward
for the software system. A widely-used reinforcement learning
method is Q-learning that directly approximates the optimal
quality function of a policy π:



Q∗(s, a) = maxQπ(s, a)

and then derives the optimal policy from Q∗ by selecting the
highest valued action in each state:

π∗ = argmaxa∈AQ
∗(s, a)

To approximate the optimal Q-function, Q-learning repeats
the following two steps: 1) choose action a at s using policy
derived from the current Q-function; and 2) take action a, and
then update Q-function with the observed reward using the
following formula:

Q(st, at)← Q(st, at)+α[rt+1+γmaxaQ(st+1, a)−Q(st, at)]

where a is the learning rate, and γ is the discount factor that
determines the present value of future rewards.

IV. EXPERIMENT

A. Experiment Setting

We verify our framework based on a widely used benchmark
e-commerce web application RUBiS, with the dataset “Oopsla
paper dump” from RUBiS official website1. The evaluation
setup includes a ThinkPad laptop with Intel Core i5 2.50 GHz
processor and 10 GB RAM. This web application is deployed
on the laptop, while the visiting traffic is generated by a load
test tool named JMeter. JMeter allows to dynamically selecting
the number of users and maintains a number of client threads
equal to the number of users.

RUBiS benchmark implements three functions of an auction
site: selling, browsing and bidding. There are two roles in this
benchmark: server for an auction and client that can be a seller,
buyer or visitor. To calculate the priority of each component,
we assume that one file (.class, .html or. xml) represents one
unit of complexity, which means if a component includes three
files of .class, its complexity is three. Though it is not very
accurate to compute the running time using this method, it
has little effect to our project since the complexity of each
file is close to the other. Therefore, we can view each file as
a unit with the same resource requirement. We use “session
mechanism” to identify users who are visiting the website and
simulate the workload with the number of visits because it is
not easy to get the actual workload of the server. When the user
traffic changes, controllers can switch the running components
dynamically.

We select “Recommendation for You” as the optional com-
ponent according to the sorting result of priority value. In order
to make a more obvious comparison, we add website effects
to the page “AboutMe” to construct the mandatory component
and its original plain webpage without any effects is regarded
as the alternative part. The website effects are implemented
by CSS and JavaScript. We also add a new alternative compo-
nent “ViewItem light” that introduces product items in words
compared to the original indivisible “ViewItem” module that

1https://rubis.ow2.org/

TABLE I
SELECTED COMPONENTS FOR EXPERIMENTS

Component Type Function Description

Mandatory
AboutMe AboutMe with web effects

ViewItem Introduction of products in
pictures

Alternative
AboutMe light AboutMe without web effects

ViewItem light Introduction of products in
words

Optional Recommendation Recommendation for You

presents items in pictures. All the components used in our
experiment are listed in Table 1.

For JMeter, three parameters need to be set before running
the sampler: number of threads, ramp-up period and the
number of times to execute the test. The ramp-up time tells
JMeter how long to take to run full number of threads chosen.
For example, if 10 threads are used, and the ramp-up period is
100 seconds, then JMeter will take 100 seconds to get all 10
threads up and running. Listeners added to the thread group
are: “aggregate report”, “view results tree” and “view results
in table”. “Aggregate report” shows results of measurements
by calling the same page lots of times as if many users are
calling that page. “Result tree” outputs the report in whether
requests are responded successfully or not. In “result table”,
“sample time” means the time every request uses and “latency”
indicates the time interval between request and response from
the server.

B. Evaluation

To verify the effectiveness of our proposed framework,
two experiments are done in this section: running RUBiS in
non-adaptive configuration and self-adaptive configuration. We
first need to find the maximum capacity of our platform to
acquire the configuration parameters for the “traffic peak”. By
gradually increasing the number of threads in the sampler, we
obtain the lower limit of the peak condition: “launch 4000
threads in 4 seconds”. Figure 2 shows the result.

(a) Aggregate report with errors and high average time

(b) View of results with failed request

Fig. 2. Peak evaluation

Figure 2a shows that the total number of successful samples
is only 1407 because the web server cannot process all requests



given only a limited time. The maximum response time set to
4s is because a study made by Amazon shows that 25% users
will leave when the responding time is over 4s. The error rate
is 89.98%. Errors are reflected by warning status in Figure 2b.

Next, we make comparison experiments between non-
adaptive and self-adaptive patterns on the module ”About Me”.
It askes to register first before accessing the page, so we
package username and password information as a request and
send it to the server. To make it close to the real scenario,
we simulate different users to visit the web page instead of
one user visit multiple times. The method is to put 100 users’
information extracted from database into a “.dat” file with
“nickname” and “password” as the parameters and package it
as a request (See Figure 3).

Fig. 3. Multi-users parameter. “Name” means the name list of variables
used in the project. ”Nickname” is the first (No. 0) column in test.dat and
”password” is the second (No. 1) column in test.dat.

Non-adaptive Experiment: we observe the response time
and error rate on three different running modes while the
visits increase without adaptation mechanisms: 1) Mandatory
+ Optional components (“AboutMe” and “Recommendation”)
2) Mandatory component only (“AboutMe”) 3) Alternative
component only (”AboutMe light”). To evaluate the three
modes, we set up samplers with the number of threads ranging
from 250 to 3500 and launch in 4 seconds each time, and
calculate the average response time and error rate for each
sample. Figure 4 shows the performance of RUBiS with the
three modes.

(a) Average response time (b) Percentage of error

Fig. 4. Performance of RUBiS with three different modes.

Figure 4a shows that average response time increases with
the number of visit users increases. It basically takes the
longest time for a web server to support the functions in mode
1, because the “Recommendation” module involves frequent
interactions with database. The performance improves a little
after deactivating the “Recommendation” module in mode 2,
and it improves obviously after switching the mode 2 to mode
3. In addition, Figure 4b shows that although some fluctuations
appear in the graph, the trend is still very clear that the error

rate tends to be flat when it is approaching to saturation after
switching Mandatory component into an Alternative one.

Self-Adaptive Experiment: to make the system self-
adaptive, we first need to model the change of running
environment. In this paper, we model the change of server
workload. Since it is not easy to detect the real workload, we
thus choose the response time as the metric, and the longer
response time means the higher workload. However, we notice
that the response time of failed requests are sometimes even
shorter than successful ones in JMeter, which will interfere the
whole process and make the result inaccurate. Figure 5 shows
an example.

Fig. 5. Sample time of failed requests are shorter than successful ones

Due to the above property of JMeter, we evaluate the self-
adaptive experiment by launching a limited number of threads
to make sure there are no failed requests and the response time
is in linear growth. We set the maximum number of threads to
500 and ramp-up period to 5 seconds, and we make sure there
are no errors with the number of requests less than 500. We set
the control factor δ to 1 for each component and set two elas-
ticity policies for state space: “IF response time is over 3000
ms THEN take action deactivate Optional components.” and
”IF response time is over 6000 ms THEN take action switch
Mandatory components to Alternative parts.” The whole self-
adaptive process is controlled by the Reinforcement Learning
Agent (RLA). Figure 6 shows the experiment results.
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(b) Cumulative response time

Fig. 6. Performance of running RUBiS with self-adaptive control in Manda-
tory, Optional and Alternative Components

When the number of visiting users is close to 150, the
response time comes to 3000 ms that is our first threshold
of ”high workload”. RLA captures the high workload through
its sensor and take the action of deactivating the Optional
components. However, we find that there is no obvious im-
provement in performance as shown in Figure 6. When the
number of users is close to 200, the response time comes to
6000 ms that reaches our second threshold, so RLA takes the
action of switching Mandatory components to their Alternative
parts. We can see that the cumulative response time decreases



dramatically compared to the system without self-adaptation
mechanism from Figure 6b.

Next, we verify the effectiveness of our framework to deal
with the problem of ”what if a software application cannot be
easily decoupled?” When all the modules are highly correlated
in a software application and cannot be easily isolated, the
Brownout mechanism does not work anymore. As discussed
before, we propose the method of switching the whole com-
plex module or component into a simpler one, instead of
isolating optional parts. As an example, we choose the function
”ViewItem” with all its components related and cannot be
decoupled. We set the maximum number of threads to 700 and
ramp-up period to 5 seconds. We set an elasticity policy for
the state space: “IF response time is over 35 ms THEN take
action switch Mandatory components to Alternative parts”.
Figure 7 shows the experiment results.

(a) Average response time (b) Cumulative response time

Fig. 7. Performance of running RUBiS with self-adaptive control in Manda-
tory and Alternative Components.

When the number of visiting users is close to 300, the
response time comes to 38 MS that reaches our threshold,
and then the action of switching the ”ViewItem” component
to its Alternative part ”ViewItem light” is taken. In Figure
7a, the response time is very high at the beginning because
of the initialization of the module. After the modules switch,
the response time of the system in self-adaptation mode is
less than that without self-adaptation mechanism on average.
From the cumulative response time shown in Figure 7b, we
can see that it is very close for two curves at first, but the
self-adaptive one outperforms the original one as the number
of users increase.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a framework to support self-
adaptation decision making. This framework separates soft-
ware into three different types of components: mandatory,
optional and alternative, and use reinforcement learning to
design the ”controller” aiming at coping with non-stationary
environment and changeable user goals at runtime. It will
be interesting to integrate our framework with containers to
improve scheduling performance in the future.
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