
Self-Adaptive software changes analysis method

based on “Detection-Recognition” Mechanism

He Zhang, Qingshan Li*, Lu Wang*, Wen Cheng

 Department of Software Engineering

Xidian University

Xi’an, P. R. China

qshli@mail.xidian.edu.cn

Abstract—Self-Adaptive Systems (SASs) need to analyze software

changes accurately and continuously, that is, recognize events

caused by changes, and adjust structure or behavior. However,

present event recognition methods frequently monitor events,

resulting in waste of system resources. And most of them ignore

the impact of operating environment uncertainty, causing errors

in recognizing the event and directly affecting the reliability of

SASs. Addressing the above problems, this paper proposes an

event recognition method based on "detection-recognition"

mechanism. Firstly, the Naive Bayesian Classification algorithm is

used to detect the state of the system. If the system is judged to be

abnormal, we will combine with rule reasoning and fuzzy

reasoning to recognize events. The system does not have to monitor

the occurrence of events from time to time, avoiding the waste of

system resources. Moreover, the probabilistic reasoning method of

Bayesian Classification and the introduction of fuzzy reasoning

can cope with environmental uncertainty and improve the

accuracy of event recognition. Finally, we exemplify this

mechanism with the Web system, which proves the effectiveness of

the methods.

Keywords-component; Self-Adaptive software; Analyze; Naive

Bayes Classification; Rule reasoning

I. INTRODUCTION

Self-adaptive Systems (SASs) modify their behaviors or
structures in response to their perception of the environment and
the system itself [1]. Adaptation process for SASs generally
includes monitor, analyze, plan and execution [2]. The Analyze
is responsible for judging whether the system needs to be
adjusted by observing the changes information of the Monitor,
and to recognize accurately the events triggered by the changes.

At present, there are few researches on changes analysis.
Some researchers apply ontology to analyze system situation
[3][4]. The accuracy of ontology reasoning is higher, but the
ontology has high demand for developers, and it is difficult to
perform dynamic correction during system running, so we will
not consider the ontology reasoning method. Some researchers
use rule methods to recognize environmental events [5], and
some recognize active database events [6]. The types of events
recognized in the above studies are single or limited. Nowadays,
the operating environment or system structure is highly likely to
change. If the ontology or rules are unchanged, the accuracy of

DOI reference number: 10.18293/SEKE2019-049

event recognition will be low.

There are other methods for recognizing events, including
event listeners [7], a generalized modeling framework of fault
detection and correction processes [8]. Most methods lack
research on system state detection, they usually recognize events
directly. However, software changes do not necessarily trigger
events, for example, fluctuations and surges of system status
data will not affect the normal provisioning of system functions
and system status, so they will not evolve into events as the
system runs. Such frequent monitoring of events will frequently
make use of system resources, resulting in waste of resources.

In addition, if the event is recognized incorrectly, even if the
system performs a series of adjustments, it may not achieve the
expected results, or even make the system crash, which seriously
affects the reliability of the SASs. Nowadays, the dynamic
operating environment of complex software and the complexity
of its structure cause the process of event recognition faces
uncertainties such as environmental complexity and ambiguity
of demand. Most methods focus on recognizing events in a
certain environment, its accuracy cannot be guaranteed in the
dynamic and variable environments. The present ideas of
processing uncertainty mainly include fuzzy logic and
probability theory [9][10]. These methods only consider the
research of design phase, or have specific scenario constraints.

In response to above issues, this paper proposes a
“detection-recognition” mechanism, which first judge the
system state, if it is abnormal, then recognize the event. In the
“detection” stage, we establish the Naive Bayesian
Classification model to judge system status quickly by
analyzing the probability value. In the “recognition” stage, we
combine the rule reasoning and fuzzy reasoning to recognize
the event, which can improve the accuracy of event recognition
and migrate this method to other systems through the addition
and modification of rules.

This paper is organized as follows: section Ⅱ provides the

detail of our event recognition method; section Ⅲ introduces

our experiment and some discussions; conclusion is discussed in
section IV.

II. THE EVENT RECOGNITION METHOD

We propose the "detection-recognition" mechanism to
analyze events triggered by the changes. It contains two stages
of abnormal state detection and event recognition.

A. Abnormal State Detection

Abnormal state definition: the system's functional or non-
functional requirements are affected due to system events. To
detect accurately and quickly the abnormal state of the system
running, we apply the Naive Bayesian Classification model to
judge the system status.

First, we convert the numerical data collected in the system
log into character data by conversion threshold. The processed
log is divided into the training set and the test set by the 4-fold
cross-validation method.

Second, the frequency of occurrence of features or categories
in the training set is counted to estimate the probability of
occurrence. We adopt the Laplace transformation method to
avoid the situation where the probability value is 0.

Then, we get the error rate of the model by operating the test
set. If the error rate is higher than the preset tolerance, we will
return to data processing process, and dynamically adjust the
threshold of the converted numerical data. In general, the

tolerance is set to 8%, this value will be verified in Section Ⅲ.

Finally, the model calculates the system state, as in (1).

1

1

((|)) ()

(|)

()

n

i

i
n

i

i

P FeatureValue Category P Category

P Category FeatureValue

P FeatureValue

=

=



=



 ()

As in (1), FeatureValue refers to the eigenvalues that can
characterize the state of the system. Category is divided into
Normal and Abnormal categories in this paper. When
P(Abnormal|FeatureValue) is greater than
P(Normal|FeatureValue), we consider that the current system is
in an abnormal state, and further need to inference the event.

B. Event Recognition

We combine the rule-based reasoning and fuzzy reasoning
to recognize events. The working process is shown in Fig.1. We
first establish the events library. Then, according to the
predefined recognition rule base, the event information that
occurs is reasoned. At the same time, we apply fuzzy reasoning
to supplement rule reasoning, further achieve feedback and
correction of the rule base and ensure the accuracy of event
recognition.

Adaptive
events
library

Monitor
data Rule

matching Rule base

Trigger event list

Rule reasoning

Fuzzy membership
function

 feedback、

correction

Input

Output

Output

Input

Fig.1. Event recognition method working process

1）Event recognition method based on rule reasoning

The process of this method is as follows. First, we define the
corresponding mapping rules for the event. The rules indicate
the relationship between system status and events, as in (2).

rule RuleName

when Judging condition， then Event information (&&

action)
end (2)

We introduce the mapping rules between system states data
and " Unit Fault" as an example, as shown in Fig.2.

rule UnitFault

 when SystemState (heartBeatInterval>threshold&&

responseTime>threshold&&errorRate>threshold

&&nodeState==“normal”)

 then <E0201> && getTime();

end

Fig.2. UnitFault rule example

Among them, the rule conditions are the judgment of the
system status value, and the latter part of the rule is the event ID
and the time that successfully matches the rule.

Then, we recognize events based on the mapping rules. We
match the status information with the conditions of the rules in
the rule base. If the current status information can match
multiple rules, the rules will be placed in the conflict set. Conflict
resolution strategies such as predefined rule priorities or
definition rule groups are used to resolve conflicts between rules
in conflict sets. Once the conflicts are complete, the rules will be
executed in order. Then we will output event information or
perform corresponding actions.

This method belongs to the category of precise matching, so
events that have occurred can be accurately inferred according
to the rules.

2)Event recognition method based on fuzzy reasoning

In this method, we establish fuzzy sets and membership
function for the state eigenvalues of the system. Then, we
establish fuzzy rules. In the rule base, the rules include the form
of the fuzzy set in addition to the above-mentioned form of
passing the threshold. Finally, the matching degree between the
current system state and each rule is calculated by (3). We select
a rule with the largest matching degree, output event or perform
action in the latter part of the rule.

1

()
n

R i i

i

MatchingDegree membership weight
=

= 
 ()

RMatchingDegree indicates the matching degree between

the system state and rule A. n indicates the number of system
state eigenvalues.

imembership

indicates that the eigenvalues i

belongs to the membership of the fuzzy set of eigenvalues in

rule R, and
iweight

indicates the weight corresponding to the i-

th eigenvalues.

In summary, the event recognition method based on fuzzy
reasoning mainly supplements and corrects rule reasoning to
improve the accuracy of event recognition.

III. EXPERIMENT

To validate the methods of this paper, we choose BookStore
System as the case to test the ability and accuracy of "detection-
recognition" mechanism.

A. Bookstore system

BookStore is a e-commerce system that uses the B/S
architecture to provide users with functions such as registration
login, product browsing, product payment and so on. Various
types of events such as server corruption, response timeout,
network bandwidth change, etc. may occur during system
running. And the user requirements, computing resources,
system overhead, etc. in the system are easily affected by the
open environment, it is not possible to define recognition rules
for all events during the design phase. Therefore, BookStore can
be used to test the ability of this method to recognize multiple
event types and uncertain event.

B. The experiment for recognizing events

1)Model system status. When detecting the system status, we
use the three characteristic values of response time, page error
rate and load to characterize the system status. The node load
is calculated by (4).

0 4 0 3 0 3nodeLoad . *CPU . * memory . * disk= + + ()

2)Establish event library. We use tuples to represent event and
store it in the event library to facilitate event information
output during subsequent event recognition, as in (5).

Event { E _ Id ,E _ Name,E _Value,E _Time,E _ Effect,

E _ Pr iority,E _ Duration }

=

 ()

E_Id is composed of 4 digits. The first two digits indicate
the event type. "01" refers to the type of node resource
changes."02" refers to the type of unit resource changes such.
"03" refers to the type of changes in the business logic layer.
"04" refers to the type of communication environment changes.
"05" refers to the type of hardware environment changes. The
last two digits indicate specific events under a particular type.

E_Effect can be divided into local and global categories.
The local effect refers to an event that affects only one software
unit, and the global effect refers to an event that affects the
global system. E_Duration indicates the duration of the event
from being recognized to the current time, and it can be used
as a reference to set the sequence of event processing.

3)Experiment Design and result
We continuously collect and store the running data of the

Bookstore, and we set the dataset size as follows: the size of
data set 1 to set 6 is 300, 500, 700, 900, 1100, 1300 data,
respectively. The following tests are performed on a computer
with Inter(R) Core(TM) i5-4570 processors and 8GB RAM.

We use the "detection-recognition" mechanism to detect the
state of the BookStore system over a period of time and to

recognize events, as shown in Table Ⅰ.

TABLEⅠ

THE SYSTEM STATUS AND EVENT DISPLAY OF BOOKSTORE

System

status
Id Name Effect Time Priority

abnormal 0101
User server

overload
global

11:28

2018-

10-15

urgent

abnormal 0501

Home

response

timeout

global

12:05

2018-

10-15

urgent

abnormal 0502 Reduce ads local

12:43

2018-

10-15

general

abnormal 0201

Product

display

page lost

local

13:18

2018-

10-15

very

urgent

abnormal 0301
Network

delay
global

13:47

2018-

10-15

urgent

We show the main attributes of the event. The priority refers
to the urgency of the event to be processed, which is determined
by the impact of the event on the functional and non-functional
requirements of the system. We set the priority of events that
have a large impact on functional or non-functional
requirements to be very urgent, such as server damage events.
The priority of a more influential event is set to urgent, such as
response timeout. The priority of the less influential event is set
to general, such as the user request to reduce the number of ads.

From Table Ⅰ we can see that the mechanism of this paper

can detect the state of the system and further recognize various
types of events. It shows that the mechanism can effectively
realize the main tasks of the analyze of the adaptive process.

To verify the time efficiency of the mechanism, we test the
time when it processes data sets of different sizes, as shown in
Fig.3. As the data size increases, the operation time of the
mechanism increases, but the overall does not exceed 2500ms,
indicating that the mechanism has higher time efficiency.

To verify the accuracy of the mechanism, we test the error
rate of abnormal state detection under the aforementioned data
sets, as shown in Fig.4. Meanwhile, the Accuracy, Precision and
Recall of the method are verified under the aforementioned data

sets, as shown in Table Ⅱ.

Fig.3. Operation time of the mechanism

0

500

1000

1500

2000

2500

set1 set2 set3 set4 set5 set6

O
p

er
at

io
n

 t
im

e(
m

s)

Perception data set

Fig.4. Error rate of state detection method

TABLE Ⅱ

ACCURATENESS OF EVENT RECOGNITION METHOD UNDER
DIFFERENT DATA SIZES

Set

number
Accuracy Precision Recall

Set 1 95.33% 99.61% 95.27%

Set 2 96.2% 99.54% 96.24%

Set 3 96.85% 99.67% 96.88%

Set 4 97.33% 99.63% 97.45%

Set 5 97.64% 99.70% 97.75%

Set 6 97.76% 99.67% 97.94%

As shown in Fig.4, as the data size increase, the error rate of
the detection method is declining and gradually gradual. Since
the effect of the Bayesian model depends not only on the amount
of training data, but also on the construction of the classifier and
the characteristics of the data to be classified, there are inevitable

errors in the method for state detection. As shown in Table Ⅱ,

the Accuracy, Precision and Recall of the event recognition
method are higher in the data sets of different scales, indicating
that the method proposed in this paper has a better recognition
effect.

In the state detection, to select the appropriate error rate
tolerance, we set different tolerances when realizing detection
method. Then we recognize events under dataset 6 to obtain the
accuracy of recognition, as shown in Fig.5. The accuracy has a
significant continuous decline when the tolerance is greater than
8%. At 2% to 8%, the decline is lower. If the tolerance is smaller,
the system will constantly adjust and cause system overhead.
Therefore, we take 8% as the tolerance.

We compare the Recall of using only rule reasoning and our
method under the aforementioned data set, as shown in Fig.6.
The Recall of this method is higher than that of rule-based
reasoning. Fuzzy reasoning supplements the rule reasoning
when encountering an unknown situation. This also verifies the
effectiveness of the event recognition method in this paper.

Fig.5. Impact of error rate tolerance on event recognition accuracy

Fig.6. Comparison of event recognition methods

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a "detection-recognition
mechanism, which can effectively avoid the waste of system
resources, and cope with the uncertainty in the environment, so
that the accuracy of event recognition is improved. In the future,
we will further observe the operating characteristics of the
system, and consider the online dynamic correction method of
the rules. And we will expand the type of recognition event to
further enhance the range of recognized events.

ACKNOWLEDGMENT

This work is supported by the Projects (61672401)
supported by the National Natural Science Foundation of
China; Projects (315***10101, 315**0102) supported by the
Pre-Research Project of the “Thirteenth Five-Year-Plan” of
China.

REFERENCES

[1] Lemos R D, Giese H, Müller H A, et al. Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap[J]. Lecture Notes in
Computer Science, 2013, 5525:1-32.

[2] Frank D. Macías-Escrivá,Rodolfo Haber,Raul del Toro,Vicente
Hernandez. Self-adaptive systems: A survey of current approaches,
research challenges and applications[J]. Expert Systems With
Applications,2013,40(18).

[3] Baader F. Ontology-Based Monitoring of Dynamic Systems[J]. 2014.

[4] Paola A D. An Ontology-Based Autonomic System for Ambient
Intelligence Scenarios[M]// Advances onto the Internet of Things.
Springer International Publishing, 2014:1-17.

[5] C. K. Chang, K. Oyama, H. Jaygarl and H. Ming, "On Distributed Run-
Time Software Evolution Driven by Stakeholders of Smart Home
Development (Invited Paper)," 2008 Second International Symposium on
Universal Communication, Osaka, 2008, pp. 59-66.

[6] Jin Y. Management of composite event for active database rule
scheduling[C]// IEEE International Conference on Information Reuse &
Integration. IEEE, 2009:300-304.

[7] J. Lang, M. Jantošovič and I. Polášek, "Re-usability in complex event
pattern monitoring," 2012 IEEE 10th International Symposium on
Applied Machine Intelligence and Informatics (SAMI), Herl'any, 2012,
pp. 265-270.

[8] Okamura H, Dohi T. A Generalized Bivariate Modeling Framework of
Fault Detection and Correction Processes[C]// IEEE, International
Symposium on Software Reliability Engineering. IEEE Computer Society,
2017:35-45.

[9] Yang Q , Jian Lü, Li J , et al. Toward a fuzzy control-based approach to
design of self-adaptive software[M]. 2010.

[10] Xu L , Wang X L , Wang X F . Fast Method of Compound Event
Probability Calculation Based on Binary Tree[C]// Fifth International
Conference on Natural Computation. IEEE Computer Society, 2009.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

set1 set2 set3 set4 set5 set6

E
rr

o
r

ra
te

Perception data set

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

2% 4% 6% 8% 10% 12% 14% 16%

A
cc

u
ra

cy

Error rate tolerance

50%

60%

70%

80%

90%

100%

set1 set2 set3 set4 set5 set6

R
ec

al
l

Perceptual data set
Rule reasoning method of this paper

