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Abstract—Self-Adaptive Systems (SASs) need to analyze software 

changes accurately and continuously, that is, recognize events 

caused by changes, and adjust structure or behavior. However, 

present event recognition methods frequently monitor events, 

resulting in waste of system resources. And most of them ignore 

the impact of operating environment uncertainty, causing errors 

in recognizing the event and directly affecting the reliability of 

SASs. Addressing the above problems, this paper proposes an 

event recognition method based on "detection-recognition" 

mechanism. Firstly, the Naive Bayesian Classification algorithm is 

used to detect the state of the system. If the system is judged to be 

abnormal, we will combine with rule reasoning and fuzzy 

reasoning to recognize events. The system does not have to monitor 

the occurrence of events from time to time, avoiding the waste of 

system resources. Moreover, the probabilistic reasoning method of 

Bayesian Classification and the introduction of fuzzy reasoning 

can cope with environmental uncertainty and improve the 

accuracy of event recognition. Finally, we exemplify this 

mechanism with the Web system, which proves the effectiveness of 

the methods. 
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I. INTRODUCTION

Self-adaptive Systems (SASs) modify their behaviors or 
structures in response to their perception of the environment and 
the system itself [1]. Adaptation process for SASs generally 
includes monitor, analyze, plan and execution [2]. The Analyze 
is responsible for judging whether the system needs to be 
adjusted by observing the changes information of the Monitor, 
and to recognize accurately the events triggered by the changes. 

At present, there are few researches on changes analysis. 
Some researchers apply ontology to analyze system situation 
[3][4]. The accuracy of ontology reasoning is higher, but the 
ontology has high demand for developers, and it is difficult to 
perform dynamic correction during system running, so we will 
not consider the ontology reasoning method. Some researchers 
use rule methods to recognize environmental events [5], and 
some recognize active database events [6]. The types of events 
recognized in the above studies are single or limited. Nowadays, 
the operating environment or system structure is highly likely to 
change. If the ontology or rules are unchanged, the accuracy of  
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event recognition will be low. 

There are other methods for recognizing events, including 
event listeners [7], a generalized modeling framework of fault 
detection and correction processes [8]. Most methods lack 
research on system state detection, they usually recognize events 
directly. However, software changes do not necessarily trigger 
events, for example, fluctuations and surges of system status 
data will not affect the normal provisioning of system functions 
and system status, so they will not evolve into events as the 
system runs. Such frequent monitoring of events will frequently 
make use of system resources, resulting in waste of resources. 

In addition, if the event is recognized incorrectly, even if the 
system performs a series of adjustments, it may not achieve the 
expected results, or even make the system crash, which seriously 
affects the reliability of the SASs. Nowadays, the dynamic 
operating environment of complex software and the complexity 
of its structure cause the process of event recognition faces 
uncertainties such as environmental complexity and ambiguity 
of demand. Most methods focus on recognizing events in a 
certain environment, its accuracy cannot be guaranteed in the 
dynamic and variable environments. The present ideas of 
processing uncertainty mainly include fuzzy logic and 
probability theory [9][10]. These methods only consider the 
research of design phase, or have specific scenario constraints. 

In response to above issues, this paper proposes a 
“detection-recognition” mechanism, which first judge the 
system state, if it is abnormal, then recognize the event. In the 
“detection” stage, we establish the Naive Bayesian 
Classification model to judge system status quickly by 
analyzing the probability value. In the “recognition” stage, we 
combine the rule reasoning and fuzzy reasoning to recognize 
the event, which can improve the accuracy of event recognition 
and migrate this method to other systems through the addition 
and modification of rules. 

This paper is organized as follows: section Ⅱ provides the 

detail of our event recognition method; section Ⅲ introduces 

our experiment and some discussions; conclusion is discussed in 
section IV. 



II. THE EVENT RECOGNITION METHOD 

We propose the "detection-recognition" mechanism to 
analyze events triggered by the changes. It contains two stages 
of abnormal state detection and event recognition. 

A. Abnormal State Detection 

Abnormal state definition: the system's functional or non-
functional requirements are affected due to system events. To 
detect accurately and quickly the abnormal state of the system 
running, we apply the Naive Bayesian Classification model to 
judge the system status. 

First, we convert the numerical data collected in the system 
log into character data by conversion threshold. The processed 
log is divided into the training set and the test set by the 4-fold 
cross-validation method.  

Second, the frequency of occurrence of features or categories 
in the training set is counted to estimate the probability of 
occurrence. We adopt the Laplace transformation method to 
avoid the situation where the probability value is 0.  

Then, we get the error rate of the model by operating the test 
set. If the error rate is higher than the preset tolerance, we will 
return to data processing process, and dynamically adjust the 
threshold of the converted numerical data. In general, the 

tolerance is set to 8%, this value will be verified in Section Ⅲ. 

Finally, the model calculates the system state, as in (1). 
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As in (1), FeatureValue refers to the eigenvalues that can 
characterize the state of the system. Category is divided into 
Normal and Abnormal categories in this paper. When 
P(Abnormal|FeatureValue) is greater than 
P(Normal|FeatureValue), we consider that the current system is 
in an abnormal state, and further need to inference the event. 

B. Event Recognition 

We combine the rule-based reasoning and fuzzy reasoning 
to recognize events. The working process is shown in Fig.1. We 
first establish the events library. Then, according to the 
predefined recognition rule base, the event information that 
occurs is reasoned. At the same time, we apply fuzzy reasoning 
to supplement rule reasoning, further achieve feedback and 
correction of the rule base and ensure the accuracy of event 
recognition. 
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Fig.1. Event recognition method working process 

1）Event recognition method based on rule reasoning 

The process of this method is as follows. First, we define the 
corresponding mapping rules for the event. The rules indicate 
the relationship between system status and events, as in (2).  

rule  RuleName 

when Judging condition， then Event information (&& 

action)  
end                                                                                            (2) 

We introduce the mapping rules between system states data 
and " Unit Fault" as an example, as shown in Fig.2. 

rule  UnitFault

         when  SystemState (heartBeatInterval>threshold&&

responseTime>threshold&&errorRate>threshold

&&nodeState==“normal”)

         then   <E0201> && getTime();

end  

Fig.2. UnitFault rule example 

Among them, the rule conditions are the judgment of the 
system status value, and the latter part of the rule is the event ID 
and the time that successfully matches the rule. 

Then, we recognize events based on the mapping rules. We 
match the status information with the conditions of the rules in 
the rule base. If the current status information can match 
multiple rules, the rules will be placed in the conflict set. Conflict 
resolution strategies such as predefined rule priorities or 
definition rule groups are used to resolve conflicts between rules 
in conflict sets. Once the conflicts are complete, the rules will be 
executed in order. Then we will output event information or 
perform corresponding actions. 

This method belongs to the category of precise matching, so 
events that have occurred can be accurately inferred according 
to the rules. 

2)Event recognition method based on fuzzy reasoning 

In this method, we establish fuzzy sets and membership 
function for the state eigenvalues of the system. Then, we 
establish fuzzy rules. In the rule base, the rules include the form 
of the fuzzy set in addition to the above-mentioned form of 
passing the threshold. Finally, the matching degree between the 
current system state and each rule is calculated by (3). We select 
a rule with the largest matching degree, output event or perform 
action in the latter part of the rule.  
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RMatchingDegree  indicates the matching degree between 

the system state and rule A. n indicates the number of system 
state eigenvalues.

imembership
 
indicates that the eigenvalues i 

belongs to the membership of the fuzzy set of eigenvalues in 

rule R, and 
iweight
 
indicates the weight corresponding to the i-

th eigenvalues. 



In summary, the event recognition method based on fuzzy 
reasoning mainly supplements and corrects rule reasoning to 
improve the accuracy of event recognition. 

III. EXPERIMENT

To validate the methods of this paper, we choose BookStore 
System as the case to test the ability and accuracy of "detection-
recognition" mechanism.  

A. Bookstore system

BookStore is a e-commerce system that uses the B/S
architecture to provide users with functions such as registration 
login, product browsing, product payment and so on. Various 
types of events such as server corruption, response timeout, 
network bandwidth change, etc. may occur during system 
running. And the user requirements, computing resources, 
system overhead, etc. in the system are easily affected by the 
open environment, it is not possible to define recognition rules 
for all events during the design phase. Therefore, BookStore can 
be used to test the ability of this method to recognize multiple 
event types and uncertain event. 

B. The experiment for recognizing events

1)Model system status. When detecting the system status, we 
use the three characteristic values of response time, page error 
rate and load to characterize the system status. The node load 
is calculated by (4). 

0 4 0 3 0 3nodeLoad . *CPU . * memory . * disk= + +  () 

2)Establish event library. We use tuples to represent event and 
store it in the event library to facilitate event information 
output during subsequent event recognition, as in (5). 

Event { E _ Id ,E _ Name,E _Value,E _Time,E _ Effect,

E _ Pr iority,E _ Duration }

=

 () 

E_Id is composed of 4 digits. The first two digits indicate 
the event type. "01" refers to the type of node resource 
changes."02" refers to the type of unit resource changes such. 
"03" refers to the type of changes in the business logic layer. 
"04" refers to the type of communication environment changes. 
"05" refers to the type of hardware environment changes. The 
last two digits indicate specific events under a particular type. 

E_Effect can be divided into local and global categories. 
The local effect refers to an event that affects only one software 
unit, and the global effect refers to an event that affects the 
global system. E_Duration indicates the duration of the event 
from being recognized to the current time, and it can be used 
as a reference to set the sequence of event processing. 

3)Experiment Design and result 
We continuously collect and store the running data of the 

Bookstore, and we set the dataset size as follows: the size of 
data set 1 to set 6 is 300, 500, 700, 900, 1100, 1300 data, 
respectively. The following tests are performed on a computer 
with Inter(R) Core(TM) i5-4570 processors and 8GB RAM.  

We use the "detection-recognition" mechanism to detect the 
state of the BookStore system over a period of time and to 

recognize events, as shown in Table Ⅰ. 

TABLEⅠ 

THE SYSTEM STATUS AND EVENT DISPLAY OF BOOKSTORE 

System 

status 
Id Name Effect Time Priority 

abnormal 0101 
User server 

overload 
global 

11:28 

2018-

10-15 

urgent 

abnormal 0501 

Home 

response 

timeout 

global 

12:05 

2018-

10-15 

urgent 

abnormal 0502 Reduce ads local 

12:43 

2018-

10-15 

general 

abnormal 0201 

Product 

display 

page lost 

local 

13:18 

2018-

10-15 

very 

urgent 

abnormal 0301 
Network 

delay 
global 

13:47 

2018-

10-15 

urgent 

We show the main attributes of the event. The priority refers 
to the urgency of the event to be processed, which is determined 
by the impact of the event on the functional and non-functional 
requirements of the system. We set the priority of events that 
have a large impact on functional or non-functional 
requirements to be very urgent, such as server damage events. 
The priority of a more influential event is set to urgent, such as 
response timeout. The priority of the less influential event is set 
to general, such as the user request to reduce the number of ads. 

From Table Ⅰ we can see that the mechanism of this paper 

can detect the state of the system and further recognize various 
types of events. It shows that the mechanism can effectively 
realize the main tasks of the analyze of the adaptive process. 

To verify the time efficiency of the mechanism, we test the 
time when it processes data sets of different sizes, as shown in 
Fig.3. As the data size increases, the operation time of the 
mechanism increases, but the overall does not exceed 2500ms, 
indicating that the mechanism has higher time efficiency. 

To verify the accuracy of the mechanism, we test the error 
rate of abnormal state detection under the aforementioned data 
sets, as shown in Fig.4. Meanwhile, the Accuracy, Precision and 
Recall of the method are verified under the aforementioned data 

sets, as shown in Table Ⅱ. 

Fig.3. Operation time of the mechanism 
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Fig.4. Error rate of state detection method 

TABLE Ⅱ 

ACCURATENESS OF EVENT RECOGNITION METHOD UNDER 
DIFFERENT DATA SIZES 

Set 

number 
Accuracy Precision Recall 

Set 1 95.33% 99.61% 95.27% 

Set 2 96.2% 99.54% 96.24% 

Set 3 96.85% 99.67% 96.88% 

Set 4 97.33% 99.63% 97.45% 

Set 5 97.64% 99.70% 97.75% 

Set 6 97.76% 99.67% 97.94% 

As shown in Fig.4, as the data size increase, the error rate of 
the detection method is declining and gradually gradual. Since 
the effect of the Bayesian model depends not only on the amount 
of training data, but also on the construction of the classifier and 
the characteristics of the data to be classified, there are inevitable 

errors in the method for state detection. As shown in Table Ⅱ, 

the Accuracy, Precision and Recall of the event recognition 
method are higher in the data sets of different scales, indicating 
that the method proposed in this paper has a better recognition 
effect. 

In the state detection, to select the appropriate error rate 
tolerance, we set different tolerances when realizing detection 
method. Then we recognize events under dataset 6 to obtain the 
accuracy of recognition, as shown in Fig.5. The accuracy has a 
significant continuous decline when the tolerance is greater than 
8%. At 2% to 8%, the decline is lower. If the tolerance is smaller, 
the system will constantly adjust and cause system overhead. 
Therefore, we take 8% as the tolerance. 

We compare the Recall of using only rule reasoning and our 
method under the aforementioned data set, as shown in Fig.6. 
The Recall of this method is higher than that of rule-based 
reasoning. Fuzzy reasoning supplements the rule reasoning 
when encountering an unknown situation. This also verifies the 
effectiveness of the event recognition method in this paper. 

Fig.5. Impact of error rate tolerance on event recognition accuracy 

Fig.6. Comparison of event recognition methods 

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a "detection-recognition 
mechanism, which can effectively avoid the waste of system 
resources, and cope with the uncertainty in the environment, so 
that the accuracy of event recognition is improved. In the future, 
we will further observe the operating characteristics of the 
system, and consider the online dynamic correction method of 
the rules. And we will expand the type of recognition event to 
further enhance the range of recognized events. 
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