
Recover and Optimize Software Architecture
Based on Source Code and Directory Hierarchies

Tong Wang, Yelian Zhang, Xufang Gong, Bixin Li
School of Computer Science and Engineering

Southeast University, Nanjing, China

Abstract—Software architecture helps developers understand
and maintain software, so how to obtain accurate architecture is
critical. The architecture recovery technique is a widely used
method for obtaining architecture. In order to improve the
accuracy and efficiency of the architecture recovery technique,
we propose a method for recovering and optimizing software
architecture based on source code and directory hierarchies. Our
method consists of three steps: first, we extract architecture-
related information from source code and directory hierarchies
and construct a file dependency graph; then, we preprocess and
cluster code elements to construct a preliminary architecture;
finally, we optimize architecture by clustering code elements
based on the structural similarity and renaming components.
We perform our method on four representative open source
projects and compare our method with representative architec-
ture recovery techniques. The experimental results show that
the architectures recovered by our method has higher accuracy
with higher efficiency than the compared architecture recovery
techniques.

Index Terms—architecture recovery; clustering; architecture
optimization

I. INTRODUCTION

Software architecture provides a high-level abstraction view
to developers, so it is useful for understanding software to
make evolution plans, reduce development costs, improve
software performance [1] and improve software quality [2],
[3], so how to obtain accurate software architecture is a hotspot
issue.

The automated recovery technique mainly includes two
phases, information extraction and information-based recov-
ery. In the information extraction phase, the data sources
commonly include source code and directory hierarchies [4].
The directory hierarchy is set by developers, so it reflects the
logical relations between files [5]. These data sources provide
valid information for software architecture recovery. However,
most architecture recovery techniques usually only use one of
them to recover architecture resulting in the low accuracy. In
the information-based recovery phase, there are many types of
recovery algorithms. However, there is a huge amount of code
elements in large scale programs, so how to improve efficiency
is also an important problem.

In summary, the current automated architecture recovery
technique has the following problems. a) The data source is
single. When information is missing, the accuracy would be
reduced. b) In a large scale program, the number of code

B. Li is the corresponding author. E-mail: bx.li@seu.edu.cn
DOI reference number:10.18293/SEKE2019-045

elements is huge, so it will take a long time to recover
architecture.

In order to solve the above problems, we propose the
method for architecture recovery and optimization based on
source code and directory hierarchies (ARO). The main con-
tributions of this paper are mainly reflected in the following
three aspects.

• The architecture-related information is extracted from
source code and directory hierarchy to improve accuracy.
The information of source code reflects the specific
implementation of the architecture. The information of
directory hierarchies is related to developers’ design.

• The file dependency graph is preprocessed to improve
efficiency. The file dependency graph is preprocessed
to reduce the number of clustered code elements for
reducing the time consumed, then we perform K-center-
hierarchy algorithm to cluster code elements around the
core code.

• The architecture is optimized. We optimize architecture
by clustering based on the structural similarity and re-
naming components.

II. RELATED WORK

The automated recovery technique mainly includes two
phases, information extraction, and information-based recov-
ery.

Mainstream data sources contain the following types. a)
Source code. Text analysis or feature localization of the source
code of the program by constructing a platform similar to
lexical analysis and grammar analysis, and the use of infor-
mation retrieval technology to discover associations between
documents. b) Documents. Documents related to software are
collected, such as software design documents, UML diagrams,
code comments, user manuals, etc., to establish the concept
[6]. c) Directory hierarchy. Some methods consider the infor-
mation to identify components, that is, it is a supplement to
the information obtained by other methods and improves the
accuracy of partitioning components [4].

Mainstream methods of information-based recovery contain
the following types. a) Domain knowledge. Domain-based
methods are performed in a top-down process or a bottom-
up process. In the top-down process, the documents related to
architecture materials are used to recover architecture. In the
bottom-up process, according to the comments, the declaration
of variable names, etc., using domain knowledge to recover

architecture [7]. b) Clustering. This type of method uses math-
ematical methods to study and process the classification [8]. c)
Machine Learning. The information of code elements is trained
to recover architecture. Machine learning-based methods are
generally not used alone, but as a supplement to clustering
algorithms to improve the accuracy of clustering. d) Pattern
Matching. The recovery process is modeled as a mapping
between the high-level abstraction and the code elements. It is
a semi-automated technique that requires manual participation,
and graph matching also requires a lot of computer resources
and time [9].

According to the above analysis, we find that only the
clustering algorithm and the machine learning method do not
require additional manual intervention. However, it is diffi-
cult to obtain the training set [10]. Therefore, the clustering
algorithm is more widely used in the automatic recovery
architecture technique.

III. OUR METHOD

Our method contains the following steps: extracting in-
formation, preprocessing and clustering code elements, and
optimizing architecture.

A. Extracting information

The information of source code is extracted by automatical-
ly analyzing source code, such as the dependency information
between code elements and the basic information of code
elements. The process of extracting information from source
code contains two steps. a) Construct an abstract syntax
tree. The source code is converted into an abstract syntax
tree which is an intermediate representation. b) Analyze the
abstract syntax tree. By analyzing the abstract syntax tree, the
information between the code elements is extracted. A code
element is a unit of code, such as a file, a package, and so
on. The dependency between code elements can be divided
into multiple types, such as the reference dependency between
files, the generalization dependency between classes, and so
on. Then we integrate dependency information to construct the
file dependency graph.

The information of directory hierarchies reflects the log-
ical dependencies between files, and it is mainly used in
the following two aspects: a) Aggregating components. In
source code, some files do not have dependencies with other
files, such as test case files. These files are presented as an
independent component in architecture. A large number of
independent components have effects on the understandability,
so we cluster independent files into an independent component.
b) Adjusting components. The relations between files of the
same directory do not strictly comply with the high cohesion
principle and the low coupling principle, so we adjust compo-
nents based on the dependencies between directories.

B. Preprocessing and clustering code elements

Before we perform the clustering algorithm, we preprocess
the file dependency graph to reduce the number of files,
resulting in reducing the time consumed.

In the preprocessing process, independent files are clustered
as early as possible, which is beneficial to reduce the number
of nodes in the dependency graph and to comply with the
high cohesion principle and the low coupling principle. Then,
we preprocess the file dependency graph by clustering code
elements which are related to the types of strong dependency
and the structure of strong dependency. The dependency type
between code elements indicates the degree of the closeness
between them. The common types of strong dependency
between code elements contain the following types: the gen-
eralization dependency, the implementation dependency, the
combination dependency, the definition dependency, and the
declaration dependency. Five dependency structures belong to
the structure of strong dependency. The structure of strong
dependency contains the following structures: the single de-
pendency, the tightly coupled, the closed-loop dependency, and
the open-loop dependency.

After preprocessing the file dependency graph, we cluster
code elements based on the distance between code elements.
The distance is calculated based on the dependence intensity
and the similarity of the directory.

Dependency Intensity(DI) represents the degree of the
closeness between two code elements, and it depends on
the dependency type and the number of dependencies. The
DI between the code element x and the code element y is
calculated as the following formula.

DIab =

∑N
i=1 αiNum(i, A,B)

ln(LOCA)
(1)

where N represents the number of dependency types between
a and b, i represents the ith dependency type, Num(i, a, b)
represents the number of i dependency between a and b, αi

represents the weight of the dependency type.
Directory similarity(DirSim) describes the degree of the

similarity between directories. If two code elements are in
the same directory, the directory similarity is 1. The directory
similarity between the code element a and the code element
b is calculated as the following formula.

DirSim(a, b) =
|Dir(a)| ∩ |Dir(b)|
|Dir(a)| ∪ |Dir(b)| (2)

where DirSim(a, b) is directory similarity between the code
element a and the code element b, the Dir(a) represents the
directory path of a, |Dir(a)| represents the directory depth of
a.

Element distance(ET) is used to describe the distance be-
tween two code elements. We consider the distance between
code elements based on the directory similarity and the de-
pendency strength. The ET between the code element a and
the code element b is calculated as the following formula.

ET (a, b) = DirSim(a, b) ∗DIab (3)

where ET (A,B) is the code element A and the code element
B, DirSim(A,B) represents the directory similarity between
A and B, and DIAB represents the dependence intensity
between A and B.

The clustering efficiency is low when it deals with large
amounts of code elements. Therefore, ARO first performs
the K-center clustering algorithm to reduce the number of
code elements. The K-center clustering algorithm contains four
steps. Firstly, the code elements are sorted according to the
sum of fanin and fanout of them. Secondly, the top K code
elements are the clustered centers. Thirdly, the nearest code
elements of them are clustered into centers. Fourthly, if the
number of code lines is less than the threshold, ARO performs
the first three steps iteratively. The purpose of performing the
K-center algorithm contains the following aspects. Firstly, the
number of code elements is reduced. Secondly, code elements
are clustered around the K centers, and the K centers are the
core code, that is, code elements are clustered around the core
code.

After performing the K-center algorithm, the K clusters are
used to construct the k ∗ k structure, and L(K) denotes the
level of the kth cluster, and the distance between the cluster
(r) and the cluster (s) is represented as d[(r), (s)]. The details
of the clustering process are as follows.

1) There are k clusters in the structure D, and each cluster
is composed by a code entity. Let the number m is 0, and the
L(m) is 0.

2) The minimum of the distance in the D is represented as
min, and the cluster is (r) and (s).

3) (r) and (s) are clustered together into a new code entity
(r, s). Let the number m is m+1, and the L(m) is d[(r), (s)].

4) The D is updated, and the columns and rows of (r)
and (s) are deleted. The new cluster (r, s) is added into
D. Let the distance between cluster k − 1 and (r, s) is
mind[(k), (r)], d[(k), (s)].

5) Step 2 to step 4 are performed iteratively until the number
of code lines of the code elements is greater than the threshold.

The K-center-hierarchy clustering algorithm is shown in
Algorithm 1.

C. Optimizing architecture

The first step of optimizing architecture is clustering code
elements based on the structural similarity. The structural
similarity between the code elements is equal to the average
of the fanin and the fanout. RelativeSim(a, b) denotes the
structural similarity between the code element a and the code
element b. The formula is as follows:

RelSim(a, b) =

{
C

∑|O(a)|
i=1

∑|O(b)|
j=1 ReleSim(Oi(a),Oj(b))

|O(a)||O(b)| a ̸= b

1 a = b
(4)

where O(a) denotes the fanout of a, the parameter C is a
damping factor. If O(a) = O(b) = A, then RelSim(a, b) =
C ∗ RelSim(A,A) = C, so C ∈ (0, 1). If two the structural
similarity between two nodes is higher than the threshold, the
two nodes are clustered into a new node.

The second step is renaming components. The file name
and the directory name are set by developers based on the
function of the source code, so we rename components based
on their corresponding directory names. The renaming process

Algorithm 1 The K-center-hierarchy clustering algorithm
Input:

Preprocessed file dependency graph PFDG
Output:

Component dependency graph CDG
1: Procedure Cluster(PFDG graph)
2: for each node ∈ nodesets do
3: if node is a central node then
4: process the next node
5: end if
6: if node.scale > V alue then
7: process the next node
8: end if
9: for j=i+1;j<nodesets.num;j++ do

10: if min > s(i, j) then
11: min=s(i,j)
12: end if
13: select the min distance s(i,r)=min
14: combine (i)node and (r)node into one cluster
15: Update graph by updating rules(including delete r node and update

nodesets)
16: if node is the latest node then
17: break
18: else
19: i=i-1
20: Until all the clusters beyond the cluster size
21: end if
22: end for
23: end for

contains the following steps: a) Identify the corresponding
component of each directory. b) All files are traversed to find
out whether there is a specific directory contains most files
of the component, if there is, then the component is named
the directory name. c) All code elements are traversed to
find out whether there are three generations of relatives that
contain most of the files in the component, if there is, then the
component is named as their common grandparent directory.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate ARO by comparing it with some
related methods to answer the following research questions:

RQ1: Does our method improve the accuracy of the recov-
ered architecture?

RQ2: Does our method improve the efficiency of the
recovered architecture?

A. Accuracy evaluation

MoJoSim is an indicator of evaluating the similarity be-
tween the recovered architecture and the ground-truth archi-
tecture, and it is used in much related work [11], [12]. In this
paper, we use it to evaluate the accuracy of ARO. MoJoSim
is calculated as follows.

MoJoSim(RA,GA) = (1− mno(RA,GA)

n
) ∗ 100% (5)

where RA is the recovered architecture, GA is the ground-
truth architecture, mno(A,B) is the minimum number of
Move and Join operations of converting A to B, n is the
number of clustered code elements. If MoJoSim is 100%,
it indicates that the two architectures are the same, and 0%
indicates that the two architectures are completely inconsistent.

Table I shows the MoJoSim range of the nine methods and
our method.

TABLE I
THE MOJOSIM RANGE OF EACH METHOD

Data source Method MoJoSim

Our paper Our method 0.55-0.75

Bittencourt and Guerrero et al. [13] EQ 0.20-0.60
KM 0.40-0.80
MQ 0.30-0.70
DSM 0.35-0.75

Wu et al. [17] CL90 0.40-0.48
CL75 0.45-0.52
ACDC 0.28-0.35
SL75 0.10-0.15
SL90 0.07-0.10

As shown in Table I, our method has a higher MoJoSim
value than other methods. DSM, KM, and our method cluster
elements based on the distance, but only KM and our method
cluster elements around the core code. In a word, the archi-
tecture recovered by our method is closer to the ground-truth
architecture, so the accuracy of our method is higher than the
above methods.

B. Efficiency evaluation

Bittencourt et al. [12] proposed a cluster-based architecture
recovery method, then Michele et al. [13] introduced fold-
in and fold-out based on Bittencourt’s method. Both of the
above methods have been widely recognized, so we compare
our method with the above two methods to evaluate efficiency
of ARO.
PostGreSQL is an open source project, and it is often used

as an experimental case for architecture recovery. We choose
30 versions as the experimental cases. The time consumed of
the above three methods is shown in Figure 1.

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26

Bittencourt Michele Our method

Fig. 1. The time consumed of the three methods

As shown in Figure 1, the average time consumed of the
above three methods is 835.288 seconds, 495.568 seconds and
81.814 seconds, respectively. Bittencourt’s method takes the
longest time, and our method takes the shortest time. In a
word, compared to the two methods, our method has higher
efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for recovering and
optimizing software architecture based on source code and
directory hierarchies to improve accuracy and efficiency. ARO

extracts specific information about the implementation of
architecture from source code and directory hierarchies to
improve accuracy. Then ARO improves the efficiency by
preprocessing the file dependency graph and the K-center-
hierarchy algorithm. Finally, ARO optimizes architecture. Ex-
perimental results indicate that compared with the represen-
tative architecture recovery methods listed in this paper, the
architectures recovered by ARO has higher accuracy with
higher efficiency.

In our future work, we will extract more information about
architecture to improve accuracy, such as the compiled build
files, architecture documents, and other files.

ACKNOWLEDGEMENTS

This work is supported in part by the National Key R&D
Program of China under Grant 2018YFB1003902, in part by
the Cooperation Project with Huawei Technologies Co., Ltd.,
under Grant YBN2016020009, and in part by National Natural
Science Foundation of China under Grant 61872078, Grant
61572126, and Grant 61402103.

REFERENCES

[1] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko
Koziolek, and Samuel Kounev. Quantitative evaluation of model-driven
performance analysis and simulation of component-based architectures.
IEEE Transactions on Software Engineering, 41(2):157–175, 2015.

[2] Ricardo Britto, Daria Smite, and Lars Ola Damm. Software architects
in large-scale distributed projects: An ericsson case. IEEE Software,
33(6):48–55, 2016.

[3] Koziolek, Heiko, Schlich, Bastian, Becker, Steffen, Hauck, and
Michael. Performance and reliability prediction for evolving service-
oriented;software systems. Empirical Software Engineering, 18(4):746–
790, 2013.

[4] Michele Risi, Giuseppe Scanniello, and Genoveffa Tortora. Using fold-in
and fold-out in the architecture recovery of software systems, volume 24.
2012.

[5] Xianglong Kong, Bixin Li, Lulu Wang, and Wensheng Wu. Directory-
based dependency processing for software architecture recovery. IEEE
Access, 6:52321–52335.

[6] Liu Jing, Zhiming Lui, Xiaoshan Li, Jifend He, and Yifeng Chen. To-
wards the integration of a formal object-oriented method and relational
unified process. Software Evolution with Uml & Xml, pages 101–133,
2005.

[7] Fritz Solms. Experiences with using the systematic method for architec-
ture recovery (symar). In South African Institute for Computer Scientists
and Information Technologists Conference, pages 170–178, 2013.

[8] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software
architecture recovery. IEEE Transactions on Software Engineering,
33(11):759–780, 2007.

[9] Kamran Sartipi. Software architecture recovery based on pattern
matching. In International Conference on Software Maintenance, pages
293–296, 2003.

[10] H Sajnani. Automatic software architecture recovery: A machine
learning approach. In IEEE International Conference on Program
Comprehension, pages 265–268, 2012.

[11] Thibaud Lutellier, Devin Chollack, Joshua Garcia, Lin Tan, Derek
Rayside, Nenad Medvidovic, and Robert Kroeger. Comparing soft-
ware architecture recovery techniques using accurate dependencies. In
IEEE/ACM IEEE International Conference on Software Engineering,
pages 67–69, 2015.

[12] Roberto Almeida Bittencourt and Dalton Dario Serey Guerrero. Compar-
ison of graph clustering algorithms for recovering software architecture
module views. In European Conference on Software Maintenance &
Reengineering, pages 251–254, 2009.

[13] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. A proba-
bilistic based approach towards software system clustering. In European
Conference on Software Maintenance and Reengineering, pages 88–96,
2011.

