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A B S T R A C T 

Detecting small text objects has been a key focus in object detection research due to their unique 

characteristics: small size, limited semantic information, susceptibility to interference in complex 

scenes, and tendency to be easily obscured, among others. At present, there are still two common 

issues in representative object detection models: First, small objects are easily interfered by the 

background or other objects, and second, multi-layer feature networks cause the loss of small object 

feature information. To address these challenges, this paper proposes an improved version of the 

DBNet model by introducing two modules: the contextual information fusion module SPP-CIF and 

the multi-scale feature enhancement module DA-MSFE. SPP-CIF fuses global and contextual 

information, by replacing the pooling layer of a pyramid with two sequentially concatenated dilated 

convolutions of small expansion rates, to encode semantic information of high-level features at 

multiple scales. DA-MSFE employs spatial attention and channel self-attention to select critical 

features at different scales and locations, and mines and exploits the correlations between channels 

to enhance and dynamically aggregate multi-scale features. Extensive experiments were conducted 

on the publicly available datasets MSRA-TD500 and ICDAR2015. The experimental results show 

that compared to the baseline model, the proposed model exhibits significantly superior performance 

in terms of the evaluation metrics.  

© 2019 KSI Research 

1. Introduction

As an important carrier of information exchange and 

perception, text exists widely in daily life, such as 

advertising logos, promotional slogans, traffic signs, etc. 

Text object is quite unique, as it often located at the 

edges of images, far away, or in small fonts. 

Additionally, the factors such as varying aspect ratios, 

lack of clear closed contours, complex backgrounds, 

and lighting variations make small text difficult to 

detect. Consequently, small text object detection has 

become an important and challenging research topic. 

In recent years, researchers have proposed various 

methods for text detection. Tian et al. [1] introduced a 

text detection framework with a vertical positioning 

mechanism called CTPN, which detects text lines 

within fine-grained text proposals in the convolutional 

feature map and extracts contextual information, 

effectively spotting deeply blurred text. Shi et al. [2] 

designed a directed text detection method, SegLink. It 

decomposes text into locally detectable segments and 

links, and enables full convolutional neural networks to 

perform dense detection at multiple scales through end-

to-end training. Zhou et al. [3] proposed the EAST 

model, which employs multi-scale feature fusion to 

adaptively handle text of different sizes and predict 

words or text lines in arbitrary directions and 

quadrilaterals in complete images. Li et al. [4] 

introduced PSENet that utilizes a progressive scale 

expansion network to generate different scale kernels 

for each text instance, addressing the localization of 

arbitrarily shaped text. To alleviate the problem of poor 

detection of curved text, Long et al. [5] proposed a scene 

text representation, TextSnake, which better handles the 

detection of curved text. DBNet [6] improved the 

segmentation effects by using adaptive threshold maps 
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for training and introducing differentiable binarization 

to solve the gradient non-differentiability problem. 

More recently, the model Transformer has also been 

introduced into this field to tackle curved or polygonal 

scene text detection [7,8]. 

However, as one of the representative models for text 

detection, DBNet still suffer from two significant 

drawbacks: 

Figure 1:  An image where small texts are disturbed by the 
background. 

Small text can easily be disturbed by the background, 

as shown in Figure 1. In natural scenes, the background 

of text images is complex and cluttered, and noise such 

as lighting interferes with the text detector, reducing the 

precision of the model and affecting the overall 

detection precision. 

Figure 2:  An image with text regions of different shapes. 

Text regions with variable shapes are prone to omission. 

The aspect ratio and size of different text objects in the 

same image vary greatly, small-sized text is easily 

missed, and long text is difficult to detect completely. 

An image with text regions of different shapes is shown 

in Figure 2. 

To address these issues, this paper proposes an 

improved model on the basis of DBNet, which 

introduces a Spatial Pyramid Pooling-based Context 

Information Fusion Module (SPP-CIF) and a Dual 

Attention-based Multi-Scale Feature Enhancement 

module (DA-MSFE) to the original model. The main 

contributions are summarized as follows: 

SPP-CIF module: It replaces the pooling layer of the 

pyramid by applying a tandem dilated convolution in 

the last layer of the feature extraction network, to 

semantically encode the high-level features at multiple 

scales, and fuses the global and contextual information 

via the global pooling operation, which significantly 

reduce the interference of background noise. 

DA-MSFE Module: Spatial attention weights the fused 

feature maps and generates feature map weights at 

different scales, and channel self-attention enhances 

inter-channel correlation through matrix manipulation 

and weight calculation. By selecting and aggregating 

features of different scales and locations, the omission 

rate of variable text region shapes is considerably 

reduced.  

Experimental Validation: Experimental results on the 

publicly available datasets MSRA-TD500 and 

ICDAR2015 demonstrate that the improved model 

significantly outperforms the baseline model in 

precision, recall, and F-measure. Particularly, on the 

MSRA-TD500 Dataset, the improved model achieves 

an increase of 1.4%, 1.6%, and 1.5% in the metrics of 

precision, recall, and F-measure respectively. 

The rest of this paper is organized as follows: Section 

2 provides the overall structure of the improved model, 

Section 3 presents the Spatial Pyramid Pooling-based 

Context Information Fusion Module, Section 4 

introduces the Dual Attention-based Multi-Scale 

Feature Enhancement Module, Section 5 conducts 

experiments and result analysis, and finally Section 6 

concludes the paper. 

2. Model Architecture

Figure 3 illustrates the architecture of the improved 

model, which differs from the original DBNet by 

incorporating two embedded modules SPP-CIF and 

DA-MSFE. The overall architecture consists of three 

parts: a feature extraction network, a feature fusion 

network, and a DBNet detection head. The feature 

extraction network consists of ResNet50 [9] and SPP-

CIF. SPP-CIF is inserted to the last layer of the feature 

extraction network to fuse local contextual information 

and global feature information, obtaining the global 

contextual information of the feature map. The feature 

fusion network is composed of FPN [10] and DA-

MSFE. DA-MSFE is inserted after FPN to enhance the 

fusion of features from four different scales. The loss 

function used in this model is consistent with that of 

DBNet. 

3. Spatial Pyramid Pooling-based Context

Information Fusion

As the depth of the network increases, the semantic 

information contained in the feature maps becomes 

richer. One can effectively capture the contextual 

information of the image by further extracting semantic 

information. PSPNet [11] utilized pyramid pooling to 

fuse features at different scales, thereby reducing the 

loss of contextual information in sub-regions. PANet 

[12] employed pyramid structure to extract and fuse

contextual information, while also utilizing global

pooling to obtain global information. Inspired by these
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Figure 3: The architecture of the Improved DBNet Model with SPP-CIF and DA-MSFE

Figure 4: Spatial Pyramid Pooling-based Context 
Information Fusion Module SPP-CIF. 

methods, this section proposes a Pyramid Pooling (SPP-

CIF), which can extract information of high-level 

features from six different receptive fields. 

The network structure of SPP-CIF is shown in Figure 

4, and the module consists of a global pooling path, a 

convolutional path and a dilated convolutional path. 

The global pooling path is used to acquire global 

information to further improve the detection 

performance of the model. The convolutional path 

retains original feature information. The dilated 

convolution path employs four dilated convolutions 

with different dilation rates (r=1, 2, 3, 4) in parallel, 

increasing receptive fields and obtaining contextual 

information from diverse regions. Within the path, two 

Context Information Fusion Module based on  Spatial 

dilated convolutions with small dilation rates are 

sequentially placed to comprehensively extract 

contextual information from high-level features, 

particularly focusing on small objects and their 

surrounding context. The information collected from six 

different receptive fields are concatenated along the 

channel dimension and then convolved by one layer to 

attain the fused feature map. 

Specifically, the input feature map 𝐹𝑖𝑛 of SPP-CIF is

the output of the last layer of the feature extraction 

network. 𝐹𝑖𝑛  obtains 𝐹𝑖𝑛  information with different

receptive fields from three respective paths. The process 

is as follows: 

(1)The input feature map 𝐹𝑖𝑛(𝐹𝑖𝑛 ∈ ℝ𝐶×𝐻×𝑊) is fed to

the global pooling path where there is a global average

pooling operation, obtaining the global feature

descriptor 𝐹𝑎𝑣𝑔(𝐹𝑎𝑣𝑔 ∈ ℝ𝐶×1×1). Then, a convolution

operation with kernel size 1 × 1 is performed to gain

the global information 𝐹𝑢(𝐹𝑢 ∈ ℝ
𝐶

2
×1×1) . Finally, the 

information is upsampled to achieve 𝐹𝑢
′(𝐹𝑢

′ ∈ ℝ
𝐶

2
×𝐻×𝑊). 

This subprocess can be formulated as: 

𝐹𝑢
′ = 𝑈𝑝 (𝐶𝑜𝑛𝑣1×1(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑖𝑛))) (1) 

where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙  denotes global average pooling, and 

𝑈𝑝 represents upsampling operation. 

(2)The input feature map 𝐹𝑖𝑛is input to the convolution

path with kernel size 1 × 1 to obtain the feature map

𝐹′(𝐹′ ∈ ℝ
𝐶

2
×𝐻×𝑊) , preserving some of the original

information of the feature map. The formula for this 

subprocess is as follows: 

𝐹′ = 𝐶𝑜𝑛𝑣1×1(𝐹𝑖𝑛) (2) 

33



Z. Yuan et al. / Journal of Visual Language and Computing (2024) 31-39

where 𝐶𝑜𝑛𝑣1×1  denotes convolution with kernel size

1 × 1. 

(3)The input feature map 𝐹𝑖𝑛  is fed into a parallel

dilated convolution pyramid network. This network 

uses dilated convolutions with kernel size 3 × 3 and 

dilation rates 𝑟 of 1, 2, 3, and 4, respectively. 

Concatenating dilated convolutions with smaller 

dilation rates allows for the extraction of context 

information from different regions and focuses on small 

objects and their surroundings. This subprocess is 

formalized as follows: 

𝐴𝑖
′ = 𝐴𝐶𝑜𝑛𝑣3×3,𝑖 (𝐴𝐶𝑜𝑛𝑣3×3,𝑖(𝐹𝑖𝑛)) , 𝑖 = 1,2,3,4 (3)

where 𝐴𝐶𝑜𝑛𝑣3×3,𝑖  denotes dilated convolution with

kernel size 3 × 3 and dilation rate of 𝑖. 

The feature map with six types of information, 𝐹𝑢
′, 𝐹′,

and 𝐴𝑖
′  where (𝑖 = 1,2,3,4) , are concatenated along

the channel dimension and then fed into a convolution 

with kernel size 1 × 1 for further fusion. The output 

feature map 𝐹𝑜𝑢𝑡 (where (𝐹𝑜𝑢𝑡 ∈ ℝ
𝐶×𝐻×𝑊

)  integrates

both global information extracted from high-level 

feature maps and contextual information. The 

subprocess is expressed as follows 

𝐹𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑢
′, 𝐹′, 𝐴1

′ , 𝐴2
′ , 𝐴3

′ , 𝐴4
′ ))    (4)

where 𝐶𝑜𝑛𝑐𝑎𝑡 denotes concatenation operation along 

the channel dimension. 

4. Dual Attention-based Multi-Scale

Feature Enhancement

The feature fusion network outputs feature maps of 

four different scales, with downsampling factors of 4x, 

8x, 16x, and 32x, respectively. These scale feature maps 

are upsampled to 1/4 of the original image size, and then 

subjected to feature enhancement by DA-MSFE. These 

feature maps have varying degrees of importance at 

different scales, and even within the same scale, the 

importance varies. Attention mechanisms enable the 

model to focus more on object regions with valuable 

information, thereby improving the efficiency and 

generalization capability. Convolutional Block 

Attention Module [13] concatenates channel attention 

and spatial attention to focus on important object 

regions. Liao et al. [14] construct Adaptive Scale Fusion 

to learn weights at different scales and spatial locations 

in the spatial dimension, achieving scale-robust feature 

fusion. Fu et al.[15] introduce self-attention to assign 

weights to each pixel in terms of the relationship 

between input data, thereby capturing dependencies 

between different positions in the sequence. Inspired by 

these methods, this section proposes the Dual Attention-

based Multi-Scale Feature Enhancement Module (DA-

MSFE) to enhance multi-scale features. 

The Dual Attention-based Multi-Scale Feature 

Enhancement Module (DA-MSFE), as shown in Figure 

5, takes as input the feature maps at four different scales 

output from the feature fusion network. The feature 

maps at different scales are upsampled to the same scale 

and fed into two sub-modules. Although upsampling 

brings these feature maps to the same scale, the features 

they contain come from differnt Operations such as 

average pooling, convolution, and activation are applied 

to gain the spatial attention weights of the fused feature 

map. These spatial attention weights are then employed 

to weight the fused feature map. Furthermore, 

convolution and activation operations are applied to the 

enhanced fused feature map to obtain spatial attention 

weights for the corresponding four scale feature maps. 

Figure 5: Dual Attention-based Multi-Scale Feature 
Enhancement. 

Finally, these weights are utilized to weight the input 

four feature maps respectively. In the channel self-

attention module, by reshaping the feature maps and 

performing matrix multiplication and weighting 

operations, each channel is assigned a weight that 

measures its relevance to other channels. The global 

information constructed from all channel weights is 

leveraged to enhance multi-scale features. The two sets 

of enhanced feature maps are convolved separately, 

added, and then fused by passing through another 

convolutional layer, to obtain the enhanced feature map. 

The upsampling operation for DA-MSFE is formulated 

as follows: 

Fin
i = UpSample(pi+1), i = 1,2,3,4 (5)

where 𝑝𝑖+1(𝑖 = 1,2,3,4)  represents the feature map

with a scale of 
1

2𝑖+1 of the original image, 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 

denotes upsampling, i.e., nearest-neighbor interpolation. 

The operation of fusing the two enhanced feature maps 

in DA-MSFE is formalized as follows: 

𝐹𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣3×3,𝑅𝑒𝐿𝑢 (𝐶𝑜𝑛𝑣3×3,𝑅𝑒𝐿𝑢(𝐹𝑜𝑢𝑡𝑠)+𝐶𝑜𝑛𝑣3×3,𝑅𝑒𝐿𝑢(𝐹𝑜𝑢𝑡𝑐))(6) 

where 𝐹𝑜𝑢𝑡𝑠 is the feature map output from the spatial

attention module, 𝐹𝑜𝑢𝑡𝑠 is the feature map output from

the channel self-attention module, and 𝐶𝑜𝑛𝑣3×3,𝑅𝑒𝐿𝑢

represents the convolution with kernel size 3 × 3 and 

𝑅𝑒𝐿𝑈 activation. 

The following subsections elaborate on the spatial 

attention and channel self-attention for multi-scale 

feature enhancement, respectively. 

4.1 Generalities About the Model 

For the feature maps of different scales upsampled to 
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the same size, the spatial attention module can capture 

feature information that the model focuses on from 

various perspectives and receptive fields. For instance, 

shallow, large-scale features can accommodate more 

detailed information and small text objects, while deep, 

small-scale features can capture richer high-level 

semantic information. To fuse and enhance features 

from different scales, instead of using simple 

summation, the spatial attention module DA-MSFE 

allows the model to autonomously choose important 

features from different scales and positions, 

dynamically aggregating features to achieve better 

integration. 

Figure 6: Spatial Attention Module. 

The structure of the spatial attention module is shown 

in Figure 6, and its operation process is described below: 

(1) Concatenate the four output feature maps 𝐹𝑖𝑛
𝑖 (𝐹𝑖𝑛

𝑖 ∈
ℝ𝐶×𝐻×𝑊 , 𝑖 = 1,2,3,4)  to obtain 𝐹𝑖𝑛 , then perform

convolution with kernel size 3 × 3 on 𝐹𝑖𝑛   to obtain

the intermediate feature map 𝐹𝑖𝑛
𝑖 (𝐹𝑖𝑛

𝑖 ∈ ℝ𝐶×𝐻×𝑊, 𝑖 =
1,2,3,4). This subprocess is formulated as follows: 

𝐹𝑖𝑛
′ = 𝐶𝑜𝑛𝑣3×3(𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑖𝑛

1 , 𝐹𝑖𝑛
2 , 𝐹𝑖𝑛

3 , 𝐹𝑖𝑛
4 )) (7)

where 𝐶𝑜𝑛𝑐𝑎𝑡 denotes concatenation operation along 

the channel dimension. 

(2) Perform global pooling on 𝐹𝑖𝑛
′  to obtain 

𝐹𝑎𝑣𝑔(𝐹𝑎𝑣𝑔 ∈ ℝ1×𝐻×𝑊), then apply a convolution with

kernel size 3 × 3  to 𝐹𝑎𝑣𝑔  followed by a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

function to obtain the descriptor 𝑀𝑠(𝑀𝑠 ∈ ℝ1×𝐻×𝑊) .

Each position would bear a weight, allowing the model 

to learn the importance of each position in the fused 

feature map. This subprocess is formulated as follows: 

𝑀𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣3×3(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑖𝑛
′ ))) (8)

(3) Multiply the spatial descriptor 𝑀𝑠 with the feature

map 𝐹𝑖𝑛, then apply convolution with kernel size 3 × 3
to the result followed by a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function to obtain

the spatial attention 𝐴𝑠(𝐴𝑠 ∈ ℝ𝑁×1×𝐻×𝑊 , 𝑁 = 4). This

subprocess is expressed as follows:

𝐴𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣3×3(𝑀𝑠 ⊗ 𝐹𝑖𝑛
′ )) (9) 

(4) Split the attention weights 𝐴𝑠  into four attention

weights 𝐴𝑠
𝑖  corresponding to the four scale feature

maps 𝐹𝑖𝑛
𝑖 , perform weighting operation for each scale,

and then concatenate them along the channel dimension

to obtain the weighted feature map 𝐹𝑜𝑢𝑡𝑠 ∈
ℝ(𝑁×𝐶)×𝐻×𝑊. This subprocess is formulated as follows:

𝐹𝑜𝑢𝑡𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑠
1 ⊗ 𝐹𝑖𝑛

1 , 𝐴𝑠
2 ⊗ 𝐹𝑖𝑛

2 , 𝐴𝑠
3 ⊗ 𝐹𝑖𝑛

3 , 𝐴𝑠
4 ⊗ 𝐹𝑖𝑛

4 )  (10) 

4.2 Channel Self-Attention for Multi-Scale 

Feature Enhancement 

Figure 7: Channel Self-Attention Module. 

The spatial attention module only considers the spatial 

information but neglects the channel information of 

different scale feature maps. In this section, we 

introduce the Channel Self-Attention Module to capture 

the correlation between the channels of these 

features.The global information consisting of 

correlations between channels is exploited to enhance 

the multiscale features.  

Unlike traditional channel attention, the Channel Self-

Attention Module does not utilize convolution to embed 

the feature maps. Instead, its implements feature 

embedding based on self-attention, which enables to 

fully explore the dependencies between all channels in 

the feature maps. The structure of the Channel Self-

Attention is shown in Figure 7. Its operation process is 

as described below: 

(1) Reshape the concatenated feature map 𝐹𝑖𝑛(𝐹𝑖𝑛 ∈
ℝ(𝑁×𝐶)×𝐻×𝑊)  into three feature maps 𝐴 , 𝐵 , and 𝐶 ,

where {𝐴, 𝐵, 𝐶} ∈ ℝ𝐾×𝑆, (𝐾 = 𝑁 × 𝐶, 𝑆 = 𝐻 × 𝑊).

(2) Transpose feature map 𝐴  and perform matrix

multiplication between feature map 𝐵  and 𝐴𝑇  to

obtain a 𝐾 × 𝐾  matrix 𝑋′ . Apply the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
function to 𝑋′ to obtain the normalized channel

attention weight matrix 𝑋(𝑋 ∈ ℝ𝐾×𝐾). 𝑋𝑖,𝑗 represents

the influence of the 𝑖 channel on the 𝑗 channel in the

feature map, indicating the weight value. A higher

weight value means a higher correlation between the

two channels. This subprocess is formulated as follows:

𝑋 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐵 × 𝐴𝑇) (11) 

(3) Perform matrix multiplication between matrix 𝑋
and feature map 𝐶 to obtain the weighted feature map 

𝐴𝑐. This operation is expressed as follows:

Ac = X × C (12) 

(4) Reshape the feature map 𝐴𝑐  into 𝐴𝑐
𝑇(𝐴𝑐

𝑇 ∈
ℝ(𝑁×𝐶)×𝐻×𝑊), and add it to the input feature map 𝐹𝑖𝑛

to obtain the final output feature map 𝐹𝑜𝑢𝑡𝑐 . This

subprocess is formulated as follows: 

𝐹𝑜𝑢𝑡𝑐 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑐) + 𝐹 (13) 

5. Experimental Results and Analysis

In this section we designed and conducted ablation 

experiments and comparative experiments to validate 

the effectiveness of the proposed model in detection of 
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small text objects. Below, we will introduce the datasets, 

evaluation metrics, implementation details, and analysis 

of the experimental results. 

5.1 Datasets 

Apparently, the types, scales, quantities, and qualities 

of objects form different datasets can all affect the 

learning performance of small object detection models. 

In the experiments, we utilized the following publicly 

available datasets: 

(1) MSRA-TD500: It is published by Huazhong

University of Science and Technology in 2012,

containing this dataset contains 300 training images and

200 test images, with text boxes labelled as upper-left

coordinates, width and height, and deflection angle.

(2) ICDAR2015: It is published by ICDAR in 2015,

containing this dataset contains 1000 training images

and 500 test images, with text boxes labelled as the four

vertices of the polygon.

5.2 Evaluation Metrics 

Since the text object is singular, three evaluation 

metrics are employed to assess the performance of the 

proposed model: Precision 𝑃, Recall 𝑅, and F-measure 

𝐹 . The formulas for calculating these metrics are as 

follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅

(14) 

where 𝑇𝑃 refers to the number of positive samples that 

the model correctly predicts as positive, 𝐹𝑃 represents 

the number of negative samples that the model 

incorrectly predicts as positive, and 𝐹𝑁  denotes the 

number of positive samples that the model incorrectly 

predicts as negative. Precision measures the model’s 

accuracy in predicting positives, indicating the 

proportion of predicted positive samples that are truly 

positive. Recall measures the model’s coverage of 

positives, the proportion of positive samples that are 

successfully predicted by the model. 𝐹 is the harmonic 

mean of precision and recall, used to balance precision 

and recall. 

5.3 Experiment Setup and Implementation 

We have set up two sets of experiments: 

Ablation Experiments:This set of experiments aims to 

validate the performance of the two modules SPP-CIF 

and DA-MSFE in detecting small text objects. We use 

DBNet as the base model and train the following models: 

Model 1: the base model; Model 2: the base model with 

embedded SPP-CIF module; Model 3: the base model 

with the spatial attention part of DA-MSFE embedded; 

Model 4: the base model with the complete DA-MSFE 

module embedded; Model 5: the proposed model, 

DBNet-SD, i.e., the base model with embedded SPP-

CIF and DA-MSFE modules. 

Comparative Experiments: We compare the proposed 

model DBNet-SD with other commonly used text 

detection models on the ICDAR2015 and MSRA-

TD500 datasets to validate its detection performance. 

Due to the high randomness of the model initialization 

parameters, to accelerate model convergence, the 

backbone feature extraction network pretrained on the 

SynthText dataset is loaded, and then trained and tested 

on the datasets MSRA-TD500 and ICDAR2015. Since 

the dataset MSRA-TD500 has relatively few training 

images, 400 annotated images from HUST-TR400 are 

added to it to create a new training set, allowing the 

model to learn more features and achieve better 

detection performance. 

During training, the input image size is set to 640×640, 

the number of training epochs is set to 1000, the batch 

size is set to 32, and the optimizer used is SGD with an 

initial learning rate of 0.001, following the Poly learning 

rate schedule. In addition to using random rotation, 

cropping, and flipping for image augmentation, we also 

conduct image scaling, skewing, and blurring for 

preprocessing, enhancing data diversity and further 

improving the generalization capability of the detection 

model. 

The experiments were conducted on a platform 

featuring an Intel Gold 6146C CPU and an NVIDIA 

GeForce RTX 3090 GPU, and the operating system 

running on the platform is Linux and the CUDA version 

is 11.0. 

5.4 Experimental Results and Analysis 

(1)Ablation Experiments

Table 1: Results of ablation experiments on the dataset 
MSRA-TD500. 

Number Model P(%) R(%) F(%) 

1 DBNet 86.1 77.0 81.3 

2 DBNet + 
SPP-CIF 

87.2 78.0 82.3 

3 DBNet+DA-
MSFE_SAM 

86.3 78.0 81.9 

4 DBNet + 
DA-MSFE 

86.9 78.3 82.4 

5 DBNet+SPP-
CIF+DA-MSFE 

87.5 78.6 82.8 

The ablation experimental results on the MSRA-

TD500 dataset are shown in Table 1. The precision, 

recall, and F-measure of DBNet are 86.1%, 77.0%, and 

81.3%, respectively.  

The precision, recall, and F-measure of Model 2 are 

87.2%, 78.0%, and 82.3%, respectively. Compared to 

Model 1, the values of the three evaluation metrics 

increase by 1.1%, 1.0%, and 1.0%, respectively. This 

indicates that the introduction of SPP-CIF can integrate 

contextual and global information and, suppress image 

background noise, thus enhancing text detection 

performance and reducing false positives. 
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The precision, recall, and F-measure of Model 3 are 

86.3%, 78.0%, and 81.9%, respectively. Compared to 

Model 1, the values of the three evaluation metrics 

increase by 0.2%, 1.0%, and 0.6%, respectively, 

indicating that the spatial attention module can promote 

the model’s focus on four different scale feature maps, 

achieving multi-scale feature enhancement. 

The precision, recall, and F-measure of Model 4 are 

86.9%, 78.3%, and 82.4%, respectively. Compared to 

Model 1, the values of three evaluation metrics improve 

by 0.8%, 1.3%, and 1.1%, with a comparatively 

noticeable improvement in recall. This indicates that the 

DA-MSFE module can enhance and integrate important 

information from multi-scale feature maps, and 

accurately locate text objects in feature maps of 

different scales, thus alleviating the issue of missed 

detections and improving detection performance.  

The precision, recall, and F-measure of Model 5 are 

87.5%, 78.6%, and 82.8%, respectively. Compared to 

Model 1, the values of three evaluation metrics improve 

by 1.%, 1.6%, and 1.5%, respectively. Moreover, Model 

5 is also superior to Model 2 and Model 4 respectively. 

This indicates that the embedded modules SPP-CIF and 

DA-MSFE can work cooperatively in the base model to 

effectively alleviate the issues of small text object 

susceptible to background interference and feature loss. 

(2) Comparative Experiments

The baseline models involved in the comparative 

experiments include RRD [16], TextBPN++ [17], PCR 

[18], FSG [19], EAST, SegLink, and DBNet. To 

validate the generalization performance of the proposed 

model DBNet-SD, training and testing of the involved 

models were conducted on the ICDAR2015 and 

MSRA-TD500 datasets, respectively. 

Table 2: The experimental results on the dataset MSRA-
TD500. 

Number Model Backbone P(%) R(%) F(%) 

1 RRD VGG-16 87.1 73.0 79.4 

2 TextBPN++ ResNet-50 86.7 80.8 83.6 

3 PCR ResNet-50 86.5 77.1 81.5 

4 FSG ResNet-50 86.9 81.0 83.8 

5 DBNet ResNet-50 86.1 77.0 81.3 

6 DBNet-SD ResNet-50 87.5 78.6 81.3 

The experimental results on the MSRA-TD500 dataset 

are shown in Table 2. The scores of precision, recall, 

and F-measure of DBNet-SD are 87.5%, 78.6%, and 

82.8%, respectively. Compared to RRD, DBNet-SD 

shows increases in precision, recall, and F-measure by 

0.4%, 5.6%, and 3.4%, respectively. Compared to 

TextBPN++, the values of precision increases by 0.8%. 

Compared to PCR, DBNet-SD manifests improvements 

in precision, recall, and F-measure by 1.0%, 1.5%, and 

1.3%, respectively. Compared to FSG, the value of 

precision improves by 0.6%. The experimental results 

on the MSRA-TD500 dataset indicate that DBNet-SD 

has achieved competitive detection performance among 

the involved baseline models, especially in the metric of 

precision. 

Apparently, the recall and F-measure of DBNet-SD are 

a bit lower than that of TextBPN++ and FSG on the 

dataset MSRA-TD500, respectively. This can be 

attributed to its focus on precision with a stricter 

detection criterion, leading to potentially miss some 

true text instances. In contrast, TextBPN++ and FSG 

might utilize a comparatively lower detection threshold, 

allowing them to discover a broader range of text 

instances.  

Table 3: The experimental results on the dataset 
ICDAR2015 

Number Model Backbone P(%) R(%) F(%) 

1 RRD VGG-16 85.5 78.6 82.1 

2 EAST PVANet 81.1 72.9 76.8 

3 SegLink VGG-16 72.8 77.00 74.8 

4 FSG ResNet-50 87.8 83.3 85.5 

5 DBNet ResNet-50 88.0 82.1 84.9 

6 DBNet-SD ResNet-50 88.6 82.5 85.4 

The experimental results on the ICDAR-2015 dataset 

are shown in Table 3. The scores of precision, recall, 

and F-measure of DBNet-SD are 88.6%, 82.5%, and 

85.4%, respectively. Compared to RRD, DBNet-SD 

shows increases in precision, recall, and F-measure by 

3.1%, 3.4%, and 3.3%, respectively. Compared to 

EAST, DBNet-SD manifests increases in precision, 

recall, and F-measure by 7.5%, 9.6%, and 8.6%, 

respectively. Compared to SegLink, DBNet-SD 

demonstrates improvements in precision, recall, and F-

measure by 15.8%, 5.5%, and 10.6%, respectively. 

Compared to FSG, DBNet-SD improves by 0.8% in 

precision. The results suggest that the improved model 

DBNet-SD can achieve superior small text object 

detection performance among the baseline models in 

scenarios with complex backgrounds.   

Similarly, the recall and F-measure of DBNet-SD are 

slightly lower than that of FSG, which can also be 

attributed to its focus on the metric of precision. 

Figure 8 illustrates some of the detection results of the 

improved model DBNet-SD and the base model DBNet 

on the ICDAR2015 dataset. These images feature 

indoor scenes where text objects are blurred due to light 

pollution. In the first row of pictures, the text objects 

under the second icon are detected on the left side, 

whereas they are missed on the right side. In the second 

row, more blurred texts are detected on the left side but 

overlooked on the right side. In the third row, the word 

“SingTd” in the upper-right corner is found on the left 

side, while it is not detected on the right side. Therefore, 

it is evident that the improved model can effectively 

mitigate the interference from light and other noises, 

demonstrating better detection capability than the base 

model. 
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Figure 8: Examples of detection results on the dataset 
ICDAR2015. The left and right column corresponds to 
DBNet-SD and DBNet, respectively. 

Figure 9: Examples of detection results on the data set 
MSRA-TD500. The left and right column corresponds 
to DBNet-SD and DBNet, respectively. 

Figure 9 shows some of the detection results of the 

improved model DBNet-SD and the base model DBNet 

on the Figure 8: Examples of detection results on the 

dataset ICDAR2015. The left and right column 

corresponds to DBNet-SD and DBNet, respectively. 

MSRA-TD500 dataset. Long text objects are present in 

all images. In the first row of images, the left side 

detects the Chinese texts “ Press Here ”  and 

“Emergency Break” in the images, while the right 

side does not. In the second row, the word “full” is 

detected on the left side, while it is not detected on the 

right side. In the third row, the Chinese word

“corporation” is completely detected on the left side, 

while it is not detected on the right side. Obviously, it 

suggests that the improved model DBNet-SD can 

effectively mitigate the issue that the edges of long text 

objects are frequently undetected in the base model.  

From Figure 8 and 9, it can be summarized that both 

the improved model and the base model exhibit a certain 

degree of text area miss-detection, but the improved 

model shows significant effectiveness in reducing miss-

detections of small text objects compared to the base 

model, which implies that the embedded modules SPP-

CIF and DA-MSFE can promote the performance of 

text object detection, especially for the detection of 

small text objects. 

6. Conclusion

This paper has proposed an improved model DBNet-

SD for small text object detection, which integrates two 

novel modules: SPP-CIF and DA-MSFE into the base 

model DBNet. SPP-CIF merges the global information 

and context information from high-level features to 

promote the capability of understanding the context of 

objects. DA-MSFE enhances the important regions of 

feature maps at four different scales, by using spatial 

attention to dynamically aggregate features and channel 

self-attention to fully explore the dependencies among 

all channels in the multi-scale feature maps. Extensive 

experiments were conducted on publicly available 

datasets MSRA-TD500 and ICDAR2015. The 

experimental results show that the improved model 

significantly outperforms the base model, thus 

alleviating the issues of background interference, 

missed detection, and inaccuracy in small text object 

detection.  

In future work, we shall continue to optimize the model 

DBNet-SD by fine-tuning the network para-meters 

while pursuing the balance between the two evaluation 

metrics precision and recall. 
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