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A B S T R A C T

Most existing recommendation models based on knowledge graphs and contrastive learning employ 

random augmentation schemes to enhance the data in knowledge graphs; however, noise in 

knowledge graphs can lead to inaccurate recommendation results. Furthermore, most contrastive 

learning methods are only applied between one or two views, thereby failing to exploit the semantic 

information in the data fully. Therefore, this model proposes a recommendation model, MVKGCL, 

which integrates knowledge graphs and contrastive learning mechanisms. Firstly, it incorporates 

random noise into attention weights to conduct contrastive learning among different attention 

weights, and subsequently introduces a novel automatic masking mechanism to augment the 

Knowledge Graphs, performing local contrastive learning on the derived user and item embeddings. 

Secondly, it employs Graph Attention Network to encode the user-item-entity graph, yielding 

representations for users and items. Lastly, global level contrastive learning is conducted between 

the locally learned user and item embeddings and the node embeddings from the user-item-entity 

graph, uncovering comprehensive graph features and structural information. Experiments 

demonstrate that the model outperforms others on the Amazon-book and Yelp2018 datasets. 

 © 2024 KSI Research 

1. Introduction

As networks have rapidly advanced and 

contemporary tech products have become widespread, 

humanity has entered the epoch of big data, giving rise 

to colossal volumes of data in everyday life. The 

capability of users to handle information lags 

significantly behind the pace at which information 

disseminates, a dilemma termed the issue of 

information overload. Recommendation models 

automatically assist users in pinpointing pertinent 

information amidst this sea of data, furnishing them 

with tailored data services. Fundamentally, 

collaborative filtering recommendation algorithms 

hinge on scrutinizing user conduct, item characteristics, 

and the historical interplay between users and items 

[1,2]. By doing so, they distil the traits of users and 

items, facilitating individualized recommendations 

tailored to diverse users. Even though these algorithms 

endeavor to model intricate dynamics between users 

and items, numerous models grounded in collaborative 

filtering grapple with sparse data complications and the 

cold start predicament. Knowledge graphs (KG), 

brimming with substantial entities and relational 

insights, can potentially augment the semantic 

depictions of both users and items. Consequently, 

incorporating KG as supplementary data into 

recommendation frameworks serves as a remedy for 

these hurdles and bolsters overall efficacy [3]. 

Nonetheless, KG is beset by issues about noise and a 

shortage of dense supervisory cues [4]. 

Inspired by contrastive learning’s approach of 

mining supervisory signals from the data itself, this 

model focuses on exploring a multi-view contrastive 

learning mechanism to alleviate the challenges above. 

The main contributions of this model are as follows 

(shown in Figure 1): 

• Incorporates random noise into attention weights to

conduct contrastive learning among different
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attention weights, and introduction of a novel 

automatic masking mechanism for data 

augmentation of KG, enhancing the consistency of 

KG-augmented subgraphs to fortify user-item 

interaction graphs. 

• Implementation of local-level contrastive learning

between KG and user-item graphs, fostering a

detailed contrastive understanding at the granular

level.

• Employment of graph attention mechanisms for

high-order semantic encoding of user-item-entity

graphs, assigning varying weights to nodes,

thereby generating embeddings for users and items

that reflect their unique roles and relationships.

• Conduction of global-level contrastive learning

between locally embedded nodes and the node

embeddings within the user-item-entity graph,

yielding more nuanced node embeddings. This

process enriches representations and mitigates

issues of data sparsity and noise prevalent in

recommendation models.

2. Related work

2.1 Knowledge-aware recommendation 

The embedding based method [5] uses Knowledge 

Graph Embedding (KGE) [6,7] to preprocess KG, and 

then incorporates the learned entity embeddings and 

relationship embeddings into recommendations. 

Collaborative Knowledge Base Embedding (CKE) [8] 

combines the CF module with project structure, text, 

and visual knowledge embedding in a unified Bayesian 

framework. KTUP [9] considers the incompleteness of 

knowledge graphs when using them for 

recommendation algorithms, and combines learning 

recommendation and knowledge graph completion. 

This method proposes a TUP (translation based user 

preference) model combined with knowledge graph 

learning, and utilizes multiple implicit relationships 

between users and items to reveal user preferences. 

KTUP combines TUP and TransH [10] for joint 

learning, enhancing project and preference modeling by 

transferring entity knowledge and relationships. 

RippleNet [11] is a classic recommendation algorithm 

based on knowledge graph propagation mechanism. In 

RippleNet, the items that users interact with are called 

seeds, and each seed propagates in the knowledge graph, 

spreading to other entities, thereby extending and 

expanding user interests. The embedding based method 

demonstrates high flexibility in utilizing KG, but the 

KGE algorithm focuses more on modeling strict 

semantic correlations (e.g. TransE [12] assumes 

head+relation=tail), which is more suitable for link 

prediction rather than recommendation. 

The method of graph-based information aggregation 

mechanism neural networks (GNNs) [13,14] integrates 

multi hop neighbors into node representations to 

capture node features and graph structures, thus 

simulating long-range connectivity. KGCN [15] 

combines knowledge graph and graph convolutional 

neural network to effectively capture local 

neighborhood information and consider neighbor node 

weights for recommendation. This model samples the 

neighboring nodes of candidate items in the knowledge 

graph, and then iteratively samples the neighboring 

nodes for each entity, using a linear combination of 

neighboring node information to characterize the 

neighborhood information of the nodes. KGAT [16] 

combines the user item interaction matrix with the 

knowledge graph in the Collaborative Knowledge 

Graph (CKG) embedding layer and obtains the graph 

item vector representation through embedding. Then, in 

the attention embedding propagation layer, the item 

representation is enhanced by passing the propagation 

vector back to neighboring multi hop nodes. By 

calculating the relationship weights based on the 

attention mechanism of the knowledge graph, the node 

vector representation is completed after aggregating 

information. Finally, in the prediction layer, the user 

click probability is calculated and normalized through 

vector calculation, and recommendation is achieved. 

KGIN [17] models each intention as a combination of 

relationships in the knowledge graph to achieve better 

modeling capability and interpretability. In addition, 

this method proposes an added information aggregation 

scheme that recursively integrates the relationship paths 

of remote connections. KGIN provides interpretability 

for predictions by identifying influential intentions and 

relationship paths. 

2.2 Contrastive learning 

The contrastive learning approach [18,19] acquires 

node representations by differentiating between 

positive and negative examples. Initially, DGI [18] 

incorporated Infomax into graph representation 

learning, focusing on contrasting local with global node 

embeddings. Following this, GMI [20] proposed 

contrasting central nodes with their adjacent nodes, 

considering both node attributes and structural positions. 

In a similar vein, MVGRL [21] generates node and 

graph-level representations of neighborhoods and graph 

propagation from two distinct structural perspectives 

(including first-order graphs), and contrasts the encoded 

embeddings across these two views. More recently, 

HeCo [19] introduced learning node representations 

from both network pattern and meta path perspectives, 

conducting contrasting learning between them. KGCL 

[22] employs a KG augmentation scheme to mitigate

noise in information aggregation. It also leverages

additional supervisory signals from the KG

enhancement process to guide cross-view contrastive

learning, further suppressing noisy user-item 

interactions. However, KGCL only performs 

contrastive learning between the KG and user-item 

views, which not consider the complete semantic 

information in the CKE view. 
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Figure 1: Main characteristics of geospatial rules. 

3. Method

3.1 Preliminaries 

In a recommendation scenario, we typically have 

historical user-item interactions such as purchases and 

clicks. Here, we represent this interaction data as a 

bipartite graph between users and items, defined as {(u, 

Yui, i) | u ∈ U, i ∈ I}, where U and I denote the sets of 

users and items respectively, and a connection Yui = 1 

signifies an observed interaction between user u and 

item i; otherwise, Yui = 0.  

In addition to user-item interactions, our model 

incorporates side information for items, comprising 

attributes and external knowledge that enriches item 

descriptions. This supplementary data involves real 

world entities interconnected through various 

relationships, effectively profiling each item. To bridge 

the gap between items in our primary dataset and 

entities within KG, we establish a mapping referred to 

as item-entity alignments, represented by the set A = {(i, 

r, e)|i ∈ I, e ∈ E, r∈ R}. Each pair (i, e) in a signifies 

that the item i corresponds directly to an entity e within 

KG, thereby integrating domain-specific knowledge 

into our recommendation framework. 

The concept of the Comprehensive Knowledge 

Graphs (CKG) is  introduced, merging  user  behaviors  

and item knowledge into a unified graph. Each user 

action is depicted  as a triplet (u, Yui, i),  signifying  an 

    

 

 

  

3.2 CKG based graph attention n

'Interact' relation between user u and item i when Yui = 

1.Leveraging item-entity alignments, the user-item

graph integrates smoothly with KG, forming a unified

graph G = {(h, r, t)|h, t ∈E', r∈R'}, where E' combines

entities E from KG with users U (E' = E∪U), and R'

expands relations R with Yui (R' = R∪{Yui}).

etwork 

Firstly, the TransR [23] method is used to generate 

the embedding representations of CKE. Consider entity 

h, represented by Nh = {(h, r, t) | (h, r, t) ∈ G}, which 

denotes the set of triples with h as the head entity. To 

characterize the first-order connectivity structure of 

entity h, this model calculates a linear combination of 

h’s neighborhood Nh. 

𝐸𝑁ℎ
= ∑  

(ℎ,𝑟,𝑡)∈𝑁ℎ

𝜋(ℎ, 𝑟, 𝑡)𝑒𝑡 (1) 

𝜋(ℎ, 𝑟, 𝑡) = (𝑊𝑟𝑒𝑡)⊤𝑡𝑎𝑛ℎ((𝑊𝑟𝑒ℎ + 𝑒𝑟))  (2) 

Where π(h,r,t) represents the weight parameters 

associated with the tail entity, and tanh is a non-linear 

activation function. 

Following the aggregation of information for entity 

eh and its neighborhood combination representation eNh, 

we obtain eh= f(eh, eNh), where f serves as the aggregator. 

We further explores higher-order connection 

information by gathering signals propagated from 

higher-hop neighbors and concatenates multi-hop 
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vectors to achieve a final global-level representation for 

users and items: 

𝑒ℎ
(𝑙)

= 𝑓 (𝑒ℎ
(𝑙−1)

, 𝑒𝑁ℎ

(𝑙−1)
)  

𝑒𝑢
𝑔𝑙𝑜

= 𝑒𝑢
(0)

|| ⋯ || 𝑒𝑢
(𝐿)

,  𝑒𝑖
𝑔𝑙𝑜

= 𝑒𝑖
(0)

|| ⋯ ||𝑒𝑖
(𝐿)

 

3.3 Automatic masking m

(3)

(4)

echanism 

Firstly, calculate the different weights between 

project i and the entity e which is connected to in KG: 

𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑟𝑒,𝑖

⊤ 𝑊[𝑥𝑒||𝑥𝑖]))

∑  𝑒∈𝑁𝑖
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑟𝑒,𝑖

⊤ 𝑊[𝑥𝑒||𝑥𝑖]))
 (5)

Then, noise is added to the attention weights 

𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖): 

  𝑔′(𝑒, 𝑟𝑒,𝑖 , 𝑖) = 𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) − 𝑙𝑜𝑔(−𝑙𝑜 𝑔(𝜖)) (6)

𝜖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (7) 

where 𝜖 is a random variable sampled from a uniform 

distribution. Treat the representation learned for item i 

from KG as one contrastive view, and consider the 

representation of item i' after adding random noise as 

another contrastive view. 

𝑥𝑖
(𝑙)

= 𝑒𝑖
(𝑙−1)

+ ∑

(𝑒,𝑟,𝑖)∈𝑁𝑖

𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖)𝑥𝑒
(𝑙−1) (8) 

𝑥
𝑖′

(𝑙)
= 𝑒𝑖

(𝑙−1)
+ ∑

(𝑒,𝑟,𝑖)∈𝑁𝑖

𝑔′(𝑒, 𝑟𝑒,𝑖 , 𝑖)𝑥𝑒
(𝑙−1) (9) 

The contrastive loss  ℒ𝑛𝑜𝑖𝑠𝑒   after adding random noise:

 ℒ𝑛𝑜𝑖𝑠𝑒 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠(𝑥𝑖

(𝑙)
, 𝑥

𝑖′
(𝑙)

)/𝜏)

∑  𝐼
𝑖=0 𝑒𝑥𝑝(𝑠(𝑥𝑖

(𝑙)
, 𝑥

𝑖′
(𝑙)

)/𝜏)
 (10) 

Where s is the similarity function, and τ is the 

temperature parameter. 

𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) = {
𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) ∈ 𝑡𝑜𝑝 − 𝑘 (𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖)) 

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(11)

 

 

Where LeakyReLU serves as the activation function, 

and W represents trainable parameters. 

Secondly, unlike the random data augmentation 

scheme employed by the KGCL model, this model 

leverages the function 𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖)  to generate 

enhancement operators 𝑀𝑘
1 and 𝑀𝑘

2 for KG triples:

𝑀𝑘
1 = 𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) (12) 

𝑀𝑘
2 = 1 − 𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) (13) 

Where 𝑀𝑘
1  and 𝑀𝑘

2 ∈{0,1}, and finally a specific

selection is made for the neighborhood Ni of item i: 

η
1
(Gk)= ((e,r,i)⊙Mk

1) ,η
2
(Gk)= ((e,r,i)⊙Mk

2) (14)

Wherein, the masking vectors 𝑀𝑘
1  and 𝑀𝑘

2  indicate

whether specific KG triples are selected during the 

sampling process. 

3.4 Local contrastive learning 

Firstly, data augmentation is performed on the user-

item view by leveraging KG to enhance consistency 

among subgraphs: 

𝑐𝑖 = 𝑠 (𝑓𝑘 (𝑥𝑖 , 𝜂1(𝐺𝑘)) , 𝑓𝑘 (𝑥𝑖 , 𝜂2(𝐺𝑘))) (15) 

Where fk denotes the aggregator function, xi 

represents the embedding of items in KG. 

Following this, ci is utilized to generate two masking 

vectors, 𝑀𝑘
1  and 𝑀𝑘

2 , which are derived from a

Bernoulli distribution [24], to perform data 

augmentation on the user-item interaction view: 

𝜑(𝐺𝑢) = (𝑉, 𝑀𝑢
1 ⊙ 𝑌), 𝜑(𝐺𝑢) = (𝑉, 𝑀𝑢

2 ⊙ 𝑌) (16)

Where V  represents the set of nodes in the user-item 

interaction graph, and a random deletion is performed 

on the edge set Y within this interaction graph.  

Following this, the nodes are encoded using the 

LightGCN [25] model: 

𝑒𝑢
𝑙𝑜𝑐 = 𝑒𝑢

(0)
+⋅⋅⋅ +𝑒𝑢

(𝐿)
, 𝑒𝑖

𝑙𝑜𝑐 = 𝑒𝑖
(0)

+⋅⋅⋅ +𝑒𝑖
(𝐿) (17)

ℒloc = ∑

𝑛∈𝑉

− 𝑙𝑜𝑔
𝑒𝑥 𝑝(𝑠(𝑥𝑛

1 , 𝑥𝑛
2)/𝜏)

𝛴𝑛′∈𝑉,𝑛′≠𝑛𝑒𝑥 𝑝(𝑠(𝑥𝑛
1 , 𝑥𝑛

2)/𝜏)
(18) 

Where s is the similarity function, and τ is the 

temperature parameter, (xn
1,xn

2)  are generated from the

enhanced KG and the subgraph of user-item 

interactions mentioned above, ℒ loc denotes the local 

contrastive loss function. 

3.5 Global contrastive learning 

Firstly, the node embeddings are fed into an MLP 

with one hidden layer: 

𝑧𝑐
𝑔𝑙𝑜

= 𝑊(2)𝜎(𝑊(1)𝑒𝑐
𝑔𝑙𝑜

+ 𝑏(1)) + 𝑏(2) (19) 

𝑧𝑐
𝑙𝑜𝑐 = 𝑊(2)𝜎(𝑊(1)𝑒𝑐

𝑙𝑜𝑐 + 𝑏(1)) + 𝑏(2) (20) 

Where W ∈ Rd×d and b ∈ Rd×1 are trainable parameters, 

and σ denotes the sigmoid function. 

 

The sampling scheme for positive and negative 

examples is as follows: for any node in one view, the 

embedding of the corresponding same node learned in 

the other view serves as a positive example, while 

embeddings of all other distinct nodes are regarded as 

negative examples：

ℒ glo

𝑒𝑠(𝑧

=− 𝑙𝑜𝑔
𝑐
𝑔𝑙𝑜

,𝑧𝑐
𝑙𝑜𝑐)/𝜏

𝑒𝑠(𝑧𝑐
𝑔𝑙𝑜

,𝑧𝑐
𝑙𝑜𝑐)/𝜏 + ∑  𝑘≠𝑐 𝑒𝑠(𝑧𝑐

𝑔𝑙𝑜
,𝑧𝑘

𝑔𝑙𝑜
)/𝜏 + ∑  𝑘≠𝑐 𝑒𝑠(𝑧𝑐

𝑔𝑙𝑜
,𝑧𝑘

𝑙𝑜𝑐)/𝜏
(21)

positive pairs    negative pairs within   negative pairs between  

the view    the view 

To combine the recommendation task with the self-

supervised task, we adopt a multi-task training strategy 
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to optimize the entire model. Firstly, the BPR [26] loss 

ℒ BPR is constructed, therefor, the primary function after 

introducing the contrastive loss is as follows: 

ℒMVKGCL=ℒBPR+β(a(ℒloc + ℒnoise) + (1 − 𝑎)ℒglo)

+𝜆||𝛩||2
2 (22)

Wherein, a  and β are parameters respectively for 

regulating the weights of local-global contrastive loss 

and overall contrastive loss, while λ is the parameter 

that controls regularization. Details of the contrastive 

learning strategy are illustrated in Figure 2 below. 

Figure 2: Contrastive learning strategies. 

4. Experiments

4.1 Dataset 

The experiment selects two datasets, Amazon-Book 

(for product recommendation) and Yelp2018 (for 

business venue recommendation) [27], which exhibit 

different levels of interaction sparsity and KG 

characteristics. Detailed statistical information on the 

datasets is provided in Table 1 below. 

Table 1: Statistics of the datasets used in experiments 

Amazon-

book 

Yelp2018 

User-Item 

Interactions 

#Users 70679 45919 
#Items 24915 45538 

#Interactions 846434 1183610 

KG 

#Entities 29714 47472 
#Relations 39 42 
#Triples 686516 869603 

4.2 Evaluation metrics 

To evaluate the Top-N recommendation results of 

different models, we select two commonly used metrics 

for recommendation model, including Recall and 

Normalized Discounted Cumulative Gain (NDCG). 

4.3 Evaluation protocols 

The recommendation model is implemented using 

the Pytorch deep learning framework, with the 

embedding vector dimension fixed at 64 for all methods. 

Model optimization is carried out with a learning rate of 

1e−3 and a batch size of 2048. The initial Top-k is set to 

20, with both Recall and NDCG metrics considered for 

model evaluation. This model also conducts grid search 

over relevant parameters: adjusting the Top-k value 

within {5, 10, 20, 50, 100}, setting local contrastive loss 

weights to {0, 0.2, 0.4, 0.6, 0.8, 1}, and contrasting 

learning weights to {1, 0.1, 0.01, 0.001} respectively.  

4.4 Baselines for comparison 

In the experiments, we contrast the MVKGCL with 

several SOTA recommendation models, which can be 

divided into three categories: 

• The first category comprises recommendation

models based on traditional collaborative filtering

methods: BPR [26]and GC-MC [28].

• The second category comprises recommendation

models based on graph neural networks: LightGCN

[25] and SGL[29].

• The third category comprises recommendation

models based on knowledge graphs: CKE[8],

RippleNet[11], KGCN[15], KGIN[17], CKAN[30],

MVIN[31], and KGCL[22].

4.5 Performance comparison with SOTA 

Figure 3: The result of Recall@𝐾 in top-𝐾 recommendation. 

Table 2: Performance results obtained 

Model 

Amazonb  Yelp2018 

Recall NDCG Recall NDCG 

BPR 12.44% 0.0658 5.55% 0.0375 

GC-MC 10.33% 0.0532 5.35% 0.0346 

LightGCN 13.98% 0.0736 6.82% 0.0443 

SGL 14.45% 0.0766 7.19% 0.0475 

CKE 13.75% 0.0685 6.86% 0.0431 

RippleNet 10.58% 0.0549 4.22% 0.0251 

KGCN 11.11% 0.0569 5.32% 0.0338 

KGIN 14.36% 0.0748 7.12% 0.0462 

CKAN 13.80% 0.0726 6.89% 0.0441 

MVIN 13.98% 0.0742 6.91% 0.0441 

KGCL 14.96% 0.0793 7.56% 0.0493 

MVKGCL 15.86% 0.0846 7.73% 0.0526 

Table 2  above  presents the  experimental  results of 

all models. Through observing the contrast experiments 

between model MVKGCL and the baseline models, the 

following observations are derived: 

• Overall, in the experiments conducted on the

Amazon-book and Yelp2018 datasets, MVKGCL
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demonstrates superior performance compared to 

other models. In terms of the Recall evaluation 

metric, MVKGCL achieves 15.86% and 7.73%, 

respectively, and for the NDCG evaluation metric, 

it reaches 0.0846 and 0.0526, respectively, 

surpassing the current SOTA model KGCL.  

• In the Top-k recommendation task, our model

MVKGCL surpasses the best baseline models in

Recall@K metrics at multiple different K values.

Among them, the joint recommendation

methodologies (MVKGCL, MVIN, and KGCL)

excel in recommendation effectiveness compared

to embedding-based methods (CKE) and path-

based methods (RippleNet). Specifically, on two

datasets, MVKGCL enhances Recall by 3.5% to

4.4% and NDCG by 2.4% to 2.6% in contrast to

CKE and RippleNet. The rationale behind this is

that the model fully leverages the advantages of

both embedding and path-based approaches,

refining the depiction of entities and their relations

through an iterative updating strategy, thereby

compensating for the limitation of embedding

methods in capturing higher-order semantic

information. For more detailed outcomes, please

refer to Figure 3 above.

• As a joint recommendation model, MVKGCL

performs well, outperforming models such as

KGIN, CKAN, and KGCL on both datasets. The

main reasons for this include: firstly, the

MVKGCL model, through global contrastive

learning, comprehensively considers the complete

structural information within the graph;

furthermore, the automatic masking mechanism

proposed in this paper adequately considers the

varying attention weights between items and

entities, selectively enhancing the data of  KG.

4.6 Ablation study of MVKGCL 

The experiment investigates the model’s 

performance from the perspectives of KG and 

contrastive learning. Ablation experiments can 

verify the functions of different components of the 

model. MVKGCLw/o glo denotes the model 

variant without global contrastive learning, a 

component primarily utilizing an automatic 

masking mechanism to augment KG data. 

Meanwhile, MVKGCLw/o mask signifies the 

model version sans the automatic masking 

mechanism, which employs GAT for embedding 

learning on CKE graphs; subsequently, it 

leverages global contrastive learning to derive 

node embeddings enriched with semantic and 

structural information at the global level. Each 

component in the MVKGCL model contributes 

positively, with the complete MVKGCL model 

outperforming both MVKGCLw/o glo and  

MVKGCLw/o mask across evaluation metrics on 

two datasets. Furthermore, MVKGCLw/o glo 

consistently surpasses MVKGCLw/o mask in all 

metrics, highlighting the efficacy of employing 

attention weights to generate mask vectors for data 

augmentation of KG. The experimental results are 

shown in Table 3 below. 

Table 3: Impact study of MVKGCL model variants 

Model 
Amazon-book Yelp2018 

Recall NDCG Recall NDCG 

MVKGCL 15.86% 0.0846 7.73% 0.0526 

MVKGCLw/o glo 15.66% 0.0829 7.63% 0.0511 

MVKGCLw/o mask 15.60% 0.0820 7.60% 0.0502 

4.7 Impact of local-level contrastive loss w-

eight 

Investigating the impact of local versus global 

contrast weights on model metrics. Specifically, to 

study the effect of the weight parameter a, the 

model varies a’s value within the set {0, 0.2, 0.4, 

0.6, 0.8, 1.0}, leading to the following 

observations: (1) For the Amazon-Book dataset, 

the model achieves its best performance when 

a=0.4; for the Yelp2018 dataset, the optimal 

performance is reached when a=0.2, indicating 

that at these points, a balance between local and 

global contrastive losses is achieved; (2) In the 

case of the Amazon-Book   dataset,   the   worst   

performance typically occurs when a=0, 

highlighting the significance of the automatic 

masking mechanism. For the Yelp2018 dataset, 

poor performance is observed when the parameter 

a is either 0 or 1, suggesting that both levels of 

contrastive loss play a crucial role in the model’s 

functioning. See Figure 4 below for further details. 

  

4.8 

Figure 4: Impact of local-level contrastive loss weight.

Impact of contrastive loss weight 

By adjusting the weights of contrastive learning, we 

explore the role contrastive learning plays in the model 

to uncover the significance of contrastive loss during 

multi-task training. Specifically, we vary the parameter 

β within the set {1, 0.1, 0.01, 0.001}, observing 

performance metrics across different datasets. The 

experimental results indicate that the model performs 

best when the parameter β is set to 0.1. The primary 
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reason for this improvement is the adjustment of the 

contrastive loss to a level comparable with the 

recommendation task loss, thereby enhancing the 

model’s performance. Details are provided in Table 4 

below. 

Table 4: Impact of contrastive loss 

Amazon-book Yelp2018 

Recall NDCG Recall NDCG 

β=1 15.63% 0.0823 7.70% 0.0513 
β=0.1 15.86% 0.0846 7.73% 0.0526 

β=0.01 15.58% 0.0818 7.69% 0.0511 

β=0.001 15.40% 0.0806 7.67% 0.0510 

4.9 Vector embedding representation 

Figure 5: Project Embedding Representation in Amazon- 
Book. 

To evaluate whether the contrast mechanism affects 

the performance of representation learning, this paper 

employs SVD decomposition to embed items into a 

two-dimensional space. As shown in Figure 5, this work 

contrasts the visualization results of MVKGCL, 

MVKGCLw/o glo, and MVKGCLw/o mask on the 

Amazon-book dataset. The following observations can 

be drawn from the figure below: 

• The item node embeddings generated by

MVKGCLw/o mask are mixed to some extent,

while those produced by MVKGCLw/o glo fall

into a narrow cone shape. In contrast, the node

embeddings generated by the MVKGCL model

exhibit a more diverse distribution: specifically,

they are distributed more evenly and sparsely,

thereby capable of representing different node

feature information. This indicates that the

MVKGCL model has superior capabilities in

representation learning and mitigating

representation degradation.

• By contrasting MCCLK and its variants, it is

observed that removing the auto-mask or the global

contrastive learning component makes the

embedding representations less distinguishable. 

This evidence supports that the MVKGCL model 

enhances the effectiveness and robustness of 

representation learning. 

5. Conclusion and future work

The work proposes a recommendation model 

MVKGCL based on KG and contrastive learning: 

firstly, an automatic masking mechanism is introduced 

to augment the data in KG; secondly, by employing 

graph attention neural networks, the complete structural 

information within CKG is mined. The node 

embeddings learned from this process are then globally 

contrasted with node embeddings obtained through 

local contrastive learning, fully exploiting the structural 

and semantic information within KG. Experiments 

constructed demonstrate that MVKGCL outperforms 

other existing models in terms of performance. 

In future work, to address the issue of inadequate 

exploitation of structural views by the model, a new 

paradigm of graph attention neural networks will be 

considered for feature optimization of structural views. 

This enhancement aims to further elevate the model’s 

performance. 
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