R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc

Enhancing API Retrieval through Multi-Source information
Knowledge Graph Construction

Weiwei Wang®, Zijie Che?, Ruilian Zhao?, Zhan Ma’ and Ying Shang®*

College of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, P.R.China

b College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P.R.China

ARTICLE INFO

Article History:

Submitted 7.20.2024
Revised 8.31.2024

Second Revision 9.28.2024
Accepted 10.30.2024

Keywords:

API knowledge graph
Multi-source fusion
Knowledge extraction
API recommendation
API retrieval

ABSTRACT

API-related knowledge is typically dispersed across various sources of information, including API
documentation, Q&A forums, and other unstructured texts. This fragmentation of knowledge makes
it challenging for developers to effectively query and retrieve APIs. In this paper, an API knowledge
graph construction method based on multi-source information fusion is proposed to overcome these
issues and enhance API retrieval. Specifically, the API-related knowledge is acquired from multi-
ple sources, including API documentation and Stack Overflow, where API documentation describes
the function and structure of APIs from designers’ perspective, and Stack Overflow provides insights
into the purpose and usage scenarios of APIs from users’ perspective. They complement each other
and together provide support for API query and retrieval. By analyzing API documentation, the cor-
responding APIs and domain concepts are extracted as entities and relationships between them are
identified. Moreover, to extract Q&A entities from Stack Overflow, machine learning is adopted to
classify the purpose of the question and performs the summary generation for its answers. Since there
exists a gap between the entities from API documentation and Stack Overflow, a fusion method is
raised to establish connections between them, constructing a more comprehensive API knowledge
graph. To verify the effectiveness of our API knowledge graph construction method, we evaluate it
in terms of the accuracy of knowledge extraction and API recommendation. The experimental results
demonstrate that our API knowledge graph can significantly improve the efficiency and effectiveness
of API recommendation.

© 2024 KSI Research

1. Introduction

APIs based on API documentation and the Stack Overflow
(S0O). In contrast, BIKER utilizes semantic similarity by com-

API (Application Programming Interface) plays a crit-
ical role in software development. According to statistics,
87% of developers frequently leverage APIs to address di-
verse programming issues[4]. However, retrieving and find-
ing suitable APIs is still a challenging task. To improve the
efficiency and quality of API retrieval, researchers have built
corresponding API recommendation systems from various
resources to assist developers in solving programming issues
related to APIs.

Currently, several typical API recommendation systems
have been developed, such as RASH[25], BIKER[4], RACK
[14] etc. RASH leverages lexical similarity to recommend

%9 wangweiwei@bipt.edu.cn (W. Wang); 747938871@qq. com (Z. Che);
rlzhao@mail.buct.edu.cn (R. Zhao); shangy@mail.buct.edu.cn (Y. Shang)

DOI reference number: 10-18293/JVLC2024-N1-027

11

bining API documentation and SO to recommend APIs. RACK
establishes relationships between keywords in titles of SO
and API to recommend APIs. These methods have enhanced
retrieval efficiency in contrast to conventional API retrieval.
However, they solely concentrate on valid APIs utilized in
resolved problems and overlook the interconnection between
APIs. In fact, different types of relationships between APIs,
such as inheritance between classes and invocation between
methods, may have varying impacts on API recommenda-
tion. Additionally, APIs that resolve identical problems may
possess functionally similar relationships with one another,
which could enhance the effectiveness of API retrieval. Nev-
ertheless, the previous API recommendation techniques have
not fully leveraged such relationships.

The Knowledge Graph is a knowledge network that can

www.ksiresearch.org/jvlc

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

effectively represent the semantic association between infor-
mation, which is suitable for expressing API-related knowl-
edge. For example, Liu et al.[10] constructed an API knowl-
edge graph by extracting relevant knowledge from API doc-
umentation and Wikipedia, while Li et al.[5] constructed an
API warning knowledge graph by extracting warning state-
ments from API documentation and API tutorials. Ling et
al.[9] constructed an API knowledge graph based on open-
source projects, which took APIs involved in projects as en-
tities, and the calls, returns and implementations between
APIs as relationships. As can be seen, API documentation
can provide the dependency between APIs, Wikipedia can
provide the concept of software engineering, and open-source
projects can provide the relationship (call, return, implemen-
tation etc.) between APIs. However, all of them lack de-
scriptions on actual API usage scenarios, which hinders the
practical use of API knowledge graphs in solving real pro-
gramming issues.

Stack Overflow is an IT technical Q&A website for pro-
grammers. It aims to help solve the actual problems of de-
velopers, and provide information about the purpose of API
usage and real usage scenarios[19]. If the actual usage sce-
narios of APIs in SO are incorporated into the knowledge
graph, it will greatly facilitate API retrieval for users. But
SO suffers from a lack of clarity of purpose and informa-
tion overload. The statistics show that more than 37% of SO
questions contain more than one answer, with an average of
more than 789 words per answer[13]. This makes it more
difficult to capture useful knowledge from SO.

Thus, this paper proposes an API Knowledge Graph con-
struction based on Multi-Source Information Fusion (AKG-
MSIF), which synthesizes APIs and usage scenarios from
API documentation and stack overflow. In particular, it en-
tails extracting API and domain concepts as entities from
API documentation and establishing relationships, such as
inclusion, inheritance, and overloading, between them. More
importantly, for SO, to extract its Q&A entities, our method
uses machine learning to classify the purpose of the ques-
tion and performs the summary generation for its answers.
On this basis, multi-source knowledge is integrated to con-
struct an API knowledge graph. Since there exists a gap be-
tween the entities from API documentation and SO, a fusion
method is raised to establish connections between them. To
validate the effectiveness and efficiency of our method, the
constructed API knowledge graph is evaluated from two per-
spectives: knowledge extraction accuracy and recommenda-
tion effect. The experimental results show that compared
with existing studies, our AKG-MSIF approach improve the
API recommendation effectiveness and efficiency.

Our contributions are as follows:

1. A novel API knowledge graph is constructed by inte-
grating information from both API documentation and
SO, facilitating API retrieval for users.

Due to unclear purpose and information overload in
S0, amachine learning-based method is raised to clas-
sify the purpose of the question and performs the an-

12

swer summary generation to obtain the Q&A entities.
In addition, a knowledge fusion methods are raised to
bridge the gap between entities of API documentation
and SO.

To validate our approach, a series of experiments are
conducted, and the experimental results show that com-
pared with existing API recommendation systems, our
novel knowledge graph has enhanced the recommen-
dation effectiveness and efficiency.

The rest of this paper is organized as follows: Section 2
introduces the background of related techniques. Section 3
describes our method in detail. Section 4 verifies the validity
of the approach. Section 5 summarizes the whole paper.

2. Backgrounds

We briefly describe PyTorch-related APIs, API docu-
mentation and APIs from Stack Overflow for readers to bet-
ter follow the content of the paper

2.1. PyTorch-related APIs

PyTorch is an open-source machine learning library that
is primarily used for building deep neural networks. It was
developed by Facebook’s Al research team and has become
a popular choice among researchers and developers due to its
ease of use and flexibility. The official PyTorch API docu-
mentation is abundant and specific. Further, there are many
Q&A related to PyTorch in SO. Thus, this paper focuses on
PyTorch-related APIs.

2.2. APIs Documentation

API documentation refers to the document that provides
information on how to use a particular API. It generally con-
tains the functional description and the structure of the API,
including the functions, methods, parameters, and endpoints
of an API, as well as any relevant code examples and us-
age guidelines. This documentation is used by developers
who want to integrate the API into their software or applica-
tions, and it helps them understand how to make requests to
the API and receive responses. The API documentation is
the most effective resource for extracting the knowledge of
APIs.

2.3. APIs from Stack Overflow

Stack Overflow is a question and answer community web-
site for programmers. It was launched in 2008 and has since
become a popular platform for developers to ask and an-
swer technical questions related to programming. It starts
from users’ practical problems and obtains comprehensive
answers for different application scenarios. The API-related
Q&A information aims to solve practical problems, which
is not available in API documentation. So, in recent years,
many researchers have used Stack Overflow to make up for
the shortcomings of API documentation. The SO website
has become another important resource for developers to learn
about the knowledge of APIs.

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

2.4. Entity Extraction Techniques

Entity extraction refers to the process of extracting key
information from data sources that are not uniformly struc-
tured and converting them into structured data through rele-
vant techniques. In the field of software engineering, there
are several approaches based on different principles of entity
extraction.

2.4.1. Rule-based entity extraction

Ye et al.[23] proposed a rule-based entity extraction method,

which mostly uses keywords, central words, superlatives,
subordinate words, punctuation marks and other features in
the text. And these features are combined to construct rules.
With these rules, pattern matching and string matching can
be used to complete entity extraction. This approach relies
on the creation of a complete knowledge base and lexicon.

2.4.2. Template-based entity extraction

Stephen et al.[16] proposed an approach for entity extrac-
tion through natural language processing (NLP) and pattern-
matching to classify Stack Overflow sentences. This ap-
proach also requires the design of extraction rules. Unlike
the rule-based approach, it takes the syntax and grammar of
the text as the focus, converts it into a syntactic dependency
tree through NLP techniques and analyzes its dependencies,
thereby obtaining the structural parts of the text such as noun
phrases and verb phrases. For example, Lin et al.[8] man-
ually defined 157 grammatical templates for the language
style of the Stack Overflow. It can be seen that this method
works better for texts with more uniform content formatting.

2.4.3. Statistical-based entity extraction
Statistical-based methods mainly use maximum entropy,
support vector machines, and conditional random fields to
train feature sets selected from texts as a way to automati-
cally label and extract entity types[3]. Ye et al.[22] proposed
a semi-supervised entity extraction method for software en-
gineering forum content, which is oriented to Stack Over-
flow, labeled with different types of software-specific enti-
ties and used CRFs to statistically model their sequential data
annotation, and finally designed a software-specific entity
extraction system. This method not only solves the challenge
of defining comprehensive rules in rule-based methods, but
also avoids the problem of unreliable dictionary matching.

3. API Knowledge Graph Construction Based
on Multi-Source Information Fusion

In this paper, we propose an API knowledge graph con-
struction based on multi-source information fusion, where
the API-related knowledge derives from API documentation
and SO. The framework of our approach is shown in Fig.1,
which mainly consists of knowledge acquisition and knowl-
edge fusion. Concretely, in knowledge acquisition, APIs and
corresponding domain concepts are extracted from the API
documentation and taken as entities. And relationships be-
tween them, such as inclusion, inheritance, and overloading,
are established. Furthermore, Q&A and API concepts are

13

identified from SO by using machine learning and regarded
as entities. And relationships between Q&A and API con-
cepts are built. In knowledge fusion, multi-source knowl-
edge from API documentation and SO is integrated to con-
struct a more comprehensive API knowledge graph based
on these entities and relationships. Since there exists a gap
between the entities from API documentation and SO, the
relationship between them is established by various fusion
strategies. In the following, we will detail each part of our
approach.

3.1. Knowledge Acquisition of API Documentation

API documentation provides functional descriptions and
structural information (such as method, parameters and re-
turn values etc.) for APIs. This part focuses on the knowl-
edge representation and extraction of API documentation
about the PyTorch framework.

3.1.1. Knowledge representation

The structural information of the API refers to modules,
classes, methods/functions, etc., which are related to each
other by inclusion, inheritance, overloading, etc. Moreover,
the functional description in API documentation implies the
application domains of the API, which indirectly reflect the
relationship between the API and application domain. Both
the functional description and structural information can pro-
vide useful guidance in API retrieval. Thus, we use the do-
main concept and API modules, classes, methods/functions
to express the API knowledge in the document. Further, the
APIs and domain concepts can be associated through "refer
to", which means that the description of an API mentions the
corresponding domain concept. So, this paper regards the
API and domain concepts as entities in the API documenta-
tion and their "refer to" as the relationship between them.

3.1.2. Knowledge extraction
To extract API entities, the API documentation is ana-

lyzed. And we found that API documentation is semi-structured

data, where different HTML tags represent different types of
API entities, such as functional descriptions, parameters, re-
turn values, and return value types etc. Thus, API entities
are recognized through HTML tags. Further, the relation-
ships between API entities include inclusion, inheritance,
overloading. According to the declaration rules of the class,
regular expressions are used to extract the inheritance rela-
tionship, and syntax analysis is employed to extract the in-
clusion and overloading relationship.

Furthermore, each API corresponds to a functional de-
scription, and the functional description implies domain con-
cepts. Thus, for the application domain in API function de-
scriptions, we use existing domain concept dictionary[20]
and NLP to match and recognize them. And the "refer to"
relationship between the API and the domain concept can be
extracted from this corresponding structure. For example,
the functional description of API “torch.normal” contains
the domain concept “standard deviation”. When the domain
concept “standard deviation” is identified, a "refer to" rela-
tionship can be established between the API "torch.normal"

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

S

ource of Knowledge Knowledge Acquisition

API Entity Acquisition
Based on Rule

&

API Entity

Relationship
Building

@lti-source Knowledge Fusio}

—>

API II
Documentation

Domain Concepts Acquisition
Based on Dictionary Matching

API Concepts Entity
Acquisition Based on Data
Driven

'API Concepts Entity

—

A@J

Domain Concepts Entity

API Knowledge
Based on
Documentation

Build Relationship between API
Concepts and Domain Concepts
Based on Semantic Similarity

Build Relationship between API
and API Concepts Based on
Word Co-occurrence

API Knowledge
Graph

Build Relationship between API

Relationship
Building

BN

Q&A Entity Acquisition
Based on Type Recognition
and Summary Generation

@
0
I Stack Overflow

— J

Q&A Entity

—

and Q&A Based on Heuristic
K Method /

API Knowledge
Based on SO

Figure 1: The Framework of APl Knowledge Graph Based on Multi-Source Information Fusion

and the domain concept "standard deviation".

3.2. Knowledge Acquisition from Stack Overflow

Stack Overflow provides many information (such as ti-
tle, the body of the question, label, accepted answer etc.)
which contains specific application scenario information of
the API. This part mainly focuses on the knowledge repre-
sentation and extraction on the Q&A tagged by "PyTorch"
on the Stack Overflow.

3.2.1. Knowledge Representation

The Q&A information of SO contain terms related to the
API, where these terms are related to software development,
without being limited to a specific field. Intuitively, these
terms implicitly abstract and summarize the functional role
of a specific API. Thus, these terms are adopted to express
the API-related knowledge and regarded as API concept en-
tities.

What’s more important, the Q&A in SO describe the ac-
tual problems encountered by developers and provide an-
swers about its usage scenario as well as the purpose of APL
So the Q&A is critical in API retrieval. But the Q&A in
SO suffers from problems of unclear purposes and informa-
tion overload. The unclear purpose refers to the difficulty for
Q&A to grasp the reason behind a user’s question and find
the corresponding answer. And information overload refers
to the fact that a single question may have multiple long an-
swers. Statistics show that over 37% of Q&As include more
than one answer, and each answer has an average of over 789
words[13], making it challenging to obtain critical informa-
tion from the Q&A.

Thus, in this paper, we propose a questions’ purpose iden-
tification method through classifying the Q&A automatically.
Further, the answers are summarised based on the features of
Q&A to alleviate the issue of information overload. And the
simplified Q&As that consists of the purpose of questions

14

and summary of answers are referred to as Q&A entities.
Besides, the “refer to” relationship between Q&A entities
and API concept entities can be established.

3.2.2. Knowledge extraction

The APIin SO is usually labeled with <code> tags. Thus,
API can be recognized through matching the element la-
beled with this tag with the API name in the API documen-
tation. For the concepts of API in SO, they often appear in
the same sentence, paragraph, or Q&A with the API. Since
the API concept may be a multi-word concept, such as "con-
volutional layer", this paper proposes a frequency-based API
concept recognition method. Concretely, we look for words
that often appear consecutively but not often separately in
SO through NLP, and take them as API concepts. NLP is
used to segment and remove stop words from SO Q&A to
form single-word concepts. According to the frequency of
consecutive words, we calculate the phrase score and extract
the API concept. The phrase score is shown in formula (1):

count(wiwj))

ey

score(wiwj) =
count(w;) X count(wj)

Where count(w;w;) represent the number of times two
consecutive words w; and w; appear in the whole documen-
tation. count(w;) and count(w j) represent the number of
times the words w; and w; appear. 6 is a threshold. When
the frequency of the two consecutive words w; and w; is less
than 6, w; and w ; cannot form a two-word phrase. When a
two-word concept is formed, formula (1) can be repeated to
detect three-word phrases. Since API concepts consisting of
more than three words are uncommon, this paper only rec-
ognizes phrases of up to three words as API concepts.

To extract the Q&A entities from SO, this paper employs
machine learning to classify the purpose of the questions and
obtain the purpose type. Based on this, the answer summary
generation based on feature extraction is performed.

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

Table 1

Semantic template of indicating prominent Paragraphs
Number Sentence Number Sentence ‘ Number Sentence
1 Please check XX 9 I'd recommend XX 17 If you want to XX
2 Pls check XX 10 In summary, XX 18 Simply out XX
3 You should XX 11 Keep in mind that XX 19 If you use XX
4 You can try XX 12 | suggest that XX 20 What's important XX
5 You could try XX 13 You can use XX 21 When you call XX
6 Check out XX 14 | prefer XX 22 By popular demand XX
7 In short, XX 15 XX needs to be called 23 You would need to XX
8 The most important is XX 16 Note that XX 24 You must XX

In more detail, based on the categorization of SO Q&A
by Stefanie Beyer et al.’s [1], this paper divides the Q&A
into seven categories based on the purpose of question as
follows: (1) “API USAGE” class is to seek suggestions for
implementing a feature or API; (2) “DISCREPANCY” class
is to request Code segments to resolve unexpected results;
(3) “ERRORS?” class is to request a bug fix or handle an ex-
ception; (4) “REVIEW? class is to request the best solution;
(5) “CONCEPTUAL” class is to ask about the rationale or
background of the API; (6) “API CHANGE” class is to seek
solutions to issues arising from API version changes prob-
lems; (7) “LEARNING” class is to ask for documentation or
tutorials to learn a tool or language.

XGBoost(eXtreme Gradient Boosting) is one of machine
learning algorithms, which have the capability of fast learn-
ing and prediction[15]. Therefore, in this paper, XGBoost
algorithm is used to train classifiers for SO questions to deter-
mine the purpose of questions. The main steps include: (1)
Label SO Q&A into one of the seven categories. (2) Convert
questions into corresponding word lists through NLP includ-
ing as segmentation, stop word removal, and lemmatization.
(3) The TF-IDF reflects the importance of a word by its fre-
quency, where TF (term frequency) measures the frequency
that a term appears in a document and IDF’ (the inverse doc-
ument frequency) estimates the ratio of total documents to
the documents that contain the term. In this paper, the TF-
IDF of a question is used as its textual feature and fed into
the XGBoost algorithm to identify the type of the question.

Furthermore, to address information overload in answers
of SO, this paper generates summaries for answers based on
the relevant paragraphs in the answers. That is, based on
the characteristics of SO, the relevance of each paragraph
to the question is calculated by combining question-related
features, content-related features, and user features, and the
top M paragraphs are selected as the summary of the answer.
The concrete feature analysis is as follows:

(1) Question-related feature: if a paragraph contains key
words from the question, it is considered to be related to
the question. The more key words a paragraph contains, the
higher its relevance. In this paper, tags of SO are used as the
set of key words. And the relevance of each answer para-
graph and the question is calculated based on the ratio of the
key words involved in them.

(2) Content-related feature: This feature evaluates the

15

importance of content of paragraphs from three sub-features:
the API occurrence, information entropy, and semantic tem-
plates. For the API occurrence, if at least one API appears in
the paragraph, this sub-feature value is set to 1. Otherwise,
it is set to 0. For information entropy, the inverse documen-
tation frequency (IDF) value of a word can be used to mea-
sure its information entropy, which can be calculated using
formula (2), where p represents the total number of para-
graphs and p’ represents the number of paragraphs contain-
ing a particular word. The higher the IDF value, the lower
the occurrence frequency of the particular word, indicating
greater importance. The entropy value of a paragraph can be
represented by the sum of its words’ IDF values, normalized
to (0,1]. For semantic templates, this paper expands the tem-
plates proposed by Xu et al.[21] by combining the sentence
structure features of API recommendation and summaries,
which are shown in Table 1. If a paragraph conforms to at
least one semantic template, the sub-feature value is set to 1.
Otherwise, it is set to 0. The feature value of the content is
the sum of the three sub-feature values.

P ©)

IDF =1
og(p’+1

(3) User feature: In SO, each answer has a correspond-
ing vote, and the higher the vote, the higher the quality of
the answer. Therefore, the number of votes for the current
answer indicates the importance of the paragraph in this an-
swer, which can be regarded as the user feature.

For the above three features, we add a smoothing factor
of 0.0001 to avoid the feature score of 0. All features are
normalized to (0,1], and the normalized values of each fea-
ture are multiplied together to obtain the total score of each
paragraph. Finally, the top M paragraphs are selected as the
summary of the answer.

By identifying the type of question and generating the
answer summary, an valid Q&A entity can be obtained. Fur-
thermore, since a Q&A usually mentions multiple API con-
cepts, a "refer to" relationship can be also established be-
tween the API concept and the Q&A entities.

3.3. Knowledge Fusion from API Documentation
and Stack Overflow
To construct a complete API knowledge graph, the API
knowledge from API documentation and SO Q&A website

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

should be integrated. As there is a gap between entities from
the API documentation and SO, a fusion method is proposed
to establish a link between them. As mentioned above, enti-
ties about APIs and corresponding domain concepts are ex-
tracted from the API documentation. And entities about API
concepts and Q&A are extracted from SO. Since domain
concepts are not directly related to Q&A entities, it is not
mandatory to establish a connection between them. Thus,
this paper performs knowledge fusion between entities about
API and API concept, API concept and domain concept, and
API and Q&A.

3.3.1. Fusion between entities of API and API
concepts based on word co-occurrence
Intuitively, API concepts abstract and summarize the func-

tional role of a specific API. Thus, semantic relationships ex-
ist between them. In fact, API and API concepts usually co-
occurs in the same paragraph, so word co-occurrence can be
used to link them. Co-occurrence frequency can evaluate the
degree of correlation between API and API concepts, which
refers to the number of times the API and API concepts ap-
pear in the same paragraph. Therefore, this paper captures
the semantic relationship between API and API concepts
by calculating their co-occurrence frequency. Its formula is
shown in formula (3), where freq(A; — Ac;) represents the
co-occurrence frequency between API A; and API concept
AC;, and a is the threshold. If the co-occurrence frequency
is not lower than the threshold a, a "refer to" relationship can
be established between API A; and API concept AC;.

freq(A; — ACj) >a 3

3.3.2. Fusion between entities of API concept and
domain concept based on semantic similarity

The relationship between API concepts and domain con-
cepts can help establish indirect connections between the
API, which can help improve the possibility of retrieving rel-
evant APIs. Thus, it is necessary to build the links between
them. Since API concepts and domain concepts are com-
posed of phrases, their relationship can be determined by
combining lexical and semantic similarity. When the simi-
larity between them is higher than the given threshold, their
"related to" relationship can be established.

In more detail, the lexical similarity sim,,, can be cal-
culated using Jaccard similarity, as shown in formula (4),
where T oken(n) represents the words that make up the con-
cept. The semantic similarity between n; and n, is calcu-
lated using formula (5), where Vp(n 1) represents the vector
of the concept entity, and sim,,, represents the cosine sim-
ilarity between the two vectors. In this paper, based on SO
Q&A and API documentation corpora, we use word2vec[12]
to train a word embedding model and convert concepts into
word vectors. Based on the lexical and semantic similarity,
a weighted similarity calculation formula is raised, which is
shown in formula (6). Generally, semantic similarity is more
important than lexical similarity, so w; < w, is set.

|Token(ny) () Token(n,)|
|Token(ny) | Token(n,)|

“

sim,, (ny,ny) =

16

simgo (V,(n1), V,(np)) + 1
sim,,,(ny,ny) = ®))

2

sim(ny, ny) = wyXsimy,, (nq, ny)+wyXsim,,,(n, n,)(6)

Formula (4) measures the similarity between domain con-
cepts and API concepts in terms of both lexical and seman-
tic aspects, where n; and n, represent the candidate domain
concept and API concept, respectively.

3.3.3. Fusion between entities about API and Q &A
based on heuristic algorithm

The relationship between API entity and Q&A entity en-
ables the integration of the general knowledge of the API
(such as functional description, parameters, return values,
etc.) with their specific knowledge in concrete usage sce-
narios (such as how to solve specific problems), which pro-
vides developers with a more comprehensive API informa-
tion. Thus, a fusion strategy is raised to establish the rela-
tionship between them.

However, APIs mentioned in SO Q&A are not always
in the form of fully qualified names. For example, the API
"forward()" is mentioned in SO in answer to the question
"what does model.train() do in PyTorch". But "forward()"
can be associated with multiple APIs. In order to establish
an unambiguous correlation between Q&A entities and cor-
responding API entities, we design a heuristic strategy. In
general, in SO Q&A, the appearance of code elements has lo-
cality, i.e., APIs mentioned in the same Q&A usually belong
to the same module or class. By parsing the tag in HTML,
we can identify the module or class of the API mentioned in
the Q&A. By specifying regular expressions to identify the
module or class in the code block, their APIs can be deter-
mined. Once unambiguous APIs are identified, a "refer to"
relationship can be established between the Q& A entity and
the API entity.

4. Experimental Analysis

In order to verify the validity of our AKG-MSIF approach
for API retrieval, we conduct a series of experiments on Py-
Torch API documentation and 7043 API Q&A on Stack Over-
flow, and the effectiveness and efficiency are evaluated on
the basis of these experiments. To assess our approach, three
research questions are raised as below.

RQI1. Can the API knowledge be accurately extracted from
multi-source information?

RQ2. Can our integrated API knowledge graph obtained by
fusing API documentation and SO improve the effec-

tiveness of API retrievals?

RQ3. How effective is our AKG-MSIF approach in the API
recommendation? How much improvement can be

achieved compared to baseline methods?

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

¢ refer fo m
ETE Q

gherts A D

has rhethod

@ has function
has method

exteénd

refento w

has

has Elass

refef to

related to

en @ damain-specific
has Aethod
referto

Figure 2: The API knowledge graph based on multi-source information fusion

4.1. Experimental Subject

In this paper, we extracted questions and answers marked
as "PyTorch" from the official SO data (data released as of
June 2022). We extracted 7043 questions and answers la-
beled as "PyTorch" as the subjects. In order to ensure the
quality of the Q&A, we excluded the Q&A with no answer
and those with arating of less than 1 (indicating that the con-
tent of the answer was not accepted), and finally collected
3361 Q&A with good quality. Besides, we develop a crawler
script based on scrapy framework, and obtain information
about the API by crawling the official API documentation
of PyTorch. In total, 27 modules, 314 classes, 1570 func-
tions or methods and their corresponding basic description
information are extracted. The fully qualified names of these
API classes and functions/methods are used to build the API
dictionary of PyTorch.

The final constructed API knowledge graph includes 28730

entities and 142,578 relations. Among them, there are 1912
API entities, 16216 API concepts, 7116 domain concepts,
3361 Q&A entities. Fig.2 is a partial abstract representation
of the API knowledge graph.

4.2. Experimental Design

When extracting API concepts, the threshold 6 of the fre-
quency of the two consecutive words was set to 5 to avoid the
recognition of uncommon phrases. Furthermore, when inte-
grating API and API concepts, the co-occurrence frequency
threshold is set to 3 to capture the semantic association be-
tween entities about API and API concept. And when inte-
grating API concepts and domain concepts, considering that
semantic similarity is more important than lexical similarity,
weights w; and w, were set to 0.3 and 0.5 respectively.

Besides, in order to create experimental queries for re-
trieving knowledge graph, the following selection criteria
were used: 1) The questions had arating atleast 1. 2) The an-
swer to the question contains the explicit and exact API and
the title of the question does not contain the API. Based on
them, 10 questions were randomly selected from the PyTorch-
related questions in SO as the queries for the experiment, and
the corpus for constructing the knowledge graph did not con-
tain these 10 questions in order to ensure that the search of
API knowledge graph was valid.

The API knowledge graph constructed in this paper is
stored in a Neo4j graph database. For queries, correspond-
ing keywords are extracted by syntactic analysis using the
StanfordCoreNLP[21]. And for each keyword, we search
a semantically similar concept entity in the API knowledge
graph. The API entity with a "refer to" relationship with the
concept entity is used as a candidate AP, and the Q& A asso-
ciated with the candidate API is information about the spe-
cific usage scenario. Since there may be multiple candidate
APIs, they are ranked according to their semantic relevance
to the query. That is, the APIs are ranked by calculating the
semantic similarity (formula(5)) between the query and each
candidate API function description, and the top K APIs are
recommended to users.

The related APIs obtained by searching the API knowl-
edge graph are further analyzed, so as to verify the effective-
ness of API recommendation based on our knowledge graph.
In particular, we invite 10 masters from the same lab with
two years of experience in using PyTorch to analyze the ac-
cepted or highly rated responses to these questions together
with the authors themselves. When disagreements arose,
consistent conclusions were drawn by analyzing the official
API documentation. The final 10 experimental queries and
the number of correct APIs for them are shown in Table 2.

4.3. Experimental Results and Analysis
This part conducts experimental analysis on three research
questions to verify the effect of our method.

4.3.1. Results for RQ1

The focus of this experiment is to demonstrate the ef-
fectiveness of knowledge extraction from the perspective of
entities and relationships extraction. Thus, the accuracy of
entities and relationships extracted from the API documen-
tation and SO is evaluated.

As is known, API entities and their relationships are de-
rived from semi-structured API documentation. Based on
specific HTML tags and declarations, entities and relation-
ships related to them can be extracted and validated easily.
Therefore, this paper mainly evaluates the extraction accu-
racy of entities from unstructured text, namely API concept,
domain concept and Q&A entities, as well as their relation-

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

Table 2

Queries and the number of standard answers
SO Number Question Number of Related API
44524901 How to do product of matrices in PyTorch? 6
54716377 How to do gradient clipping in PyTorch? 2
48152674 How to check if PyTorch is using the GPU? 7
50544730 How do | split a custom dataset into training and test datasets 1
55546873 How do | flatten a tensor in PyTorch? 4
53841509 How does adaptive pooling in PyTorch work? 4
53266350 How to tell PyTorch to not use the GPU? 2
53879727 PyTorch-How to deactivate dropout in evaluation mode? 2
51136581 How to do fully connected batch norm in PyTorch? 4

ships. Since the number of domain concept entities and re-
lations exceeds tens of thousands, it takes a lot of time to
check all entities and relations. Thus, this paper adopts the
random sampling. In more detail, random samples of 5% of
the entities or relationships from the constructed API knowl-
edge graph is selected with a 95% confidence level, and the
sample estimation accuracy has an error margin of 0.05.

To assess the validity of API concepts and domain con-
cepts, we manually identifying the accuracy of sampling re-
sults.

After random sampling, the accuracy of 356 domain con-
cepts obtained from domain concept entities is up to 95.6%,
and the error mainly comes from the domain concept dictio-
nary itself. The accuracy of 800 API concepts sampled from
API concept entities is 97.8%, and the main reasons affecting
the accuracy are some numerical indicators often mentioned
in SO Q&A, such as "200k images". These terms should not
be identified as API concepts. To evaluate the validity of the
relationship between the API concept and domain concept,
the accuracy of sampling results is also manually identified.
After random sampling, 4000 relationships were obtained
from the API knowledge graph, of which 94.3% of API con-
cepts and domain concept semantics were identified as rele-
vant. The missing relationships are due to API concepts or
domain concepts not being correctly identified.

To evaluate the effectiveness of the Q&A entity extrac-
tion, the accuracy of the classification of SO questions and
the quality of answer summary is measured. For the classi-
fication of SO question, the XGBoost algorithm is used to
classify the question types. Through manual labeling, 326
labeled Q&A were obtained, including 118 "API USAGE",
accounting for 36.2%, and 65 "CONCEPTUAL", account-
ing for 20%; 45 "DISCREPANCY", accounting for 13.9%;
34 "ERRORS", accounting for 10.4%; 24 "REVIEW", ac-
counting for 6.1%. The number of "API CHANGE" and
"LEARNING" is 20, accounting for 6.1%. In this paper, a
10-fold cross-validation method was used to verify the va-
lidity of SO Q&A classification. The classification effec-
tiveness was evaluated using precision, recall, F1 value and
accuracy. To verify the advantages of XGBoost-based clas-
sification, the experiment uses SVM (Support Vector Ma-
chine) and RF (Random Forest), which are commonly used
in the literature[7, 6], as comparison methods. The compari-

18

son of classification effectiveness of different algorithms are
shown in Table 3. The precision of XGBoost is improved
by 14.6% and 5.7% compared to SVM and RF, respectively,
and the accuracy is improved by 5.9% and 4.6%, respectively.
Therefore, it can be seen that the classification for questions
of SO using XGBoost algorithm is better than other methods.

Table 3
Comparison of classification effectiveness of different al-
gorithms

Method Precision Recall F1 Score Accuracy
XGBoost 0.871 0.847 0.834 0.910
SVM 0.760 0.851 0.785 0.850
RF 0.824 0.903 0.849 0.870

Furthermore, to evaluate the quality of summary gener-
ation, this part measures the quality of summary in terms
of relevance, usefulness, and diversity. Relevance indicates
whether the summary is relevant to the question. Useful-
ness indicates whether the summary content can solve the
problem, and diversity indicates whether the question can
be answered from multiple perspectives. In this part, we set
a maximum score of 5 and a minimum score of 1 for each
indicator. To evaluate the quality of the summary, master
students with two years of experience using PyTorch were
invited to participate in the evaluation. Table 4 represents
the evaluators’ assessment of the 10 SO Q&A summaries in
Table 2, where the three evaluation metrics for each query
ranged from 3 to 5, and the average results for the 10 ques-
tions were 3.6, 3.4, and 3.7, respectively, indicating that the
feature extraction-based summary generation method is ef-
fective.

4.3.2. Results for RQ2

To validate whether the integrated API knowledge graph
obtained by fusing API documentation and SO improve the
effectiveness of API retrievals, we compare the retrieval re-
sults based on multi-source API knowledge graph with single-
source API knowledge graph. The single-source API knowl-
edge graph is constructed by extracting API-related knowl-
edge from API documentation and SO Q&A websites, re-
spectively. The single-source APl knowledge graph extracted

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

Table 4

Q&A summary score
Question Relevance Usefulness Variety
How to do product of matrices in PyTorch? 3 3 3
How to do gradient clipping in PyTorch? 2.85 3 3.57
How to check if PyTorch is using the GPU? 4 35 35
How do | split a custom dataset into training and test datasets 3.5 4 35
How do | flatten a tensor in PyTorch? 3.57 2.85 3.57
How does adaptive pooling in PyTorch work? 3.5 3 4
How to tell PyTorch to not use the GPU? 45 4 45
PyTorch-How to deactivate dropout in evaluation mode? 3 3 35
How to do fully connected batch norm in PyTorch? 4 35 4
How to create a normal distribution in PyTorch? 45 4 4
AVERAGE 3.6 3.4 37
from the API documentation includes API entities, domain Table 5

concept entities and the relationships among them; And the
other single-source API knowledge graph extracted from SO
Q&A website includes API entities, API concept entities,
Q& A entities and the relationships among them. Three com-
monly used metrics in information retrieval are selected to
evaluate the effectiveness of API retrieval, namely, HR(Hit
Ratio), MRR(Mean reciprocal rank) and MAP(Mean aver-
age precision). HR evaluates the percentage of correct re-
sults out of all correct results in the top K search results.
MRR is the position where the first correct result appears.
MAP is the ranking of all correct results. Since the number
of the API related to query is less than 10, this paper sets
K=10.

The experimental results are shown in Table 5. It can be
seen that the API recommendation effectiveness of multi-
source API knowledge graph is better than that of single-
source API knowledge graph. This is because that informa-
tion fusion indirectly associates the API related to the ques-
tions through the mentioned concepts, which improves the
recommendation effectiveness. In addition, it is worth not-
ing that there is a large difference between the recommenda-
tion results based on API documentation and those based on
SO Q&A websites. The reason is that the functional descrip-
tions provided by the API documentation do not involve spe-
cific usage scenarios. Thus, itis difficult to match the domain
concepts with the keywords in the specific questions, result-
ing in unsatisfactory recommendation results by using only
the API documentation. In a summary, we can see that our
API knowledge graph is more comprehensive, and enhances
the effectiveness of API retrieval, indicating our AKG-MSIF
approach is effective.

4.3.3. Results for RQ3

To evaluate the effectiveness of our AKG-MSIF approach
in API recommendation, three metrics including HR, MRR
and MAP are also used. Besides, the BIKER recommenda-
tion system also combines two types of data sources (API
documentation and Stack Overflow), and it uses the same
dataset as the approach in our paper. While RACK recom-
mendation system uses only Stack Overflow data sources.

19

Comparison of recommendation results between multi-
source information fusion and single-source information

Method HR MAP MRR
Only SO 0.726 0.490 0.583
Only API Doc 0.322 0.181 0.149
Both 0.774 0.558 0.701

These two techniques are used as our comparison methods.
The experimental results are shown in Table 6. It can be seen
that the HR index of our AKG-MSIF has increased by 49%
compared with BIKER and 87% compared with RACK. The
MRR index has increased by 22% compared with BIKER
and 52% compared with RACK. This indicates that in the
first 10 search results, AKG-MSIF can search more APIs
related to the query, and can find the first correct API ear-
lier than BIKER and RACK. Thus, our AKG-MSIF has im-
proved retrieval efficiency compared with BIKER and RACK.
Besides, Table 7 shows the comparison in terms of time cost.
The construction time of AKG-MSIF is mainly concentrated
in the training of the classifier and summary generation. Al-
though the time cost of the construction of the method in
this paper is higher than that of BIKER and RACK, there is
a significant improvement in the query speed and the recom-
mendation effectiveness of the API. Thus, our AKG-MSIF
approach is more effective in API retrieval.

Table 6
Comparison of recommendation effectiveness by differ-
ent methods

Method HR MAP MRR
AKG-MSIF 0.774 0.558 0.701
BIKER 0.520 0.521 0.573
RACK 0.415 0.420 0.462

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

Table 7

Comparison of time cost by different methods

Method Cost Query Cost
AKG-MSIF 16 min 1s/query
BIKER 5 min 2s/query
RACK 10min 5s/query

5. Related work

API as a common component of software development,
APl retrieval has become a hot topic of current intelligent de-
velopment research. The knowledge graph provides a solu-
tion for the management and efficient retrieval of API knowl-
edge. However, how to build a comprehensive and accu-
rate API knowledge graph with limited resources is still a
hot topic of current research. Currently, API recommenda-
tion systems are mostly used to solve the problem of API re-
trieval. Due to the structured feature of knowledge graph, it
can represent the knowledge from multiple sources through
relationship, and this form of data organization can improve
the shortcomings of traditional API recommendation sys-
tems and thus enhance the efficiency of API retrieval.

5.1. API Recommendation

Zhang and Jiang et al. [25] proposed an API recom-
mendation system RASH based on API documentation and
SO solved historical questions. Ye et al. [24] used word
embedding techniques in their study to compensate for the
problem of semantically identical but lexical mismatch be-
tween query questions and Java API documentation. Based
on Zhang and Ye’s research, Huang et al. [4] combined API
reference documents, Stack Overflow API corpus and word
embedding technology to construct an API recommendation
system BIKER with good recommendation effect. These
recommendation systems do not use very complex models,
but only use the idea of similarity calculation to find similar
questions and answers that have been solved in history, and
then they can get good recommendation results. However,
finding similar questions and answers through similarity cal-
culation in a large number of existing questions and answers
cannot guarantee high computational efficiency.

In addition to the above research on recommending APIs
based on historically solved problems, existing candidate APIs
are selected by lexical similarity measures [2, 11, 18]. Based
on the Stack Overflow Q&A corpus, Rahman and Roy [14]
first established a mapping database of keywords in ques-
tions and APIs in answers, and used two heuristic methods
on keyword-API associations to recommend the sorting se-
quence of APIs for a given query question .

5.2. API Knowledge Graph

The World Wide Web contains a wealth of data infor-
mation. How to quickly and accurately obtain the content
people need from the massive data is a huge challenge for
researchers. The biggest difficulty is that most of the infor-
mation exists in the form of unstructured text, and it is dif-

20

ficult for people to capture key information from scattered
text information. Since Google first proposed the concept
of knowledge graph, this structured form of information has
provided effective support for efficient knowledge acquisi-
tion.

In the existing researches, Li et al. [5] constructed an
API warning knowledge graph by extracting warning state-
ments from API documentation and API tutorials to facil-
itate the retrieval of API warning statements in API refer-
ence documents. Sun et al. [17] constructed a task-oriented
API knowledge graph to output structured API knowledge;
Liu et al. [10] constructed an API knowledge graph by ex-
tracting relevant knowledge from API documentation and
Wikipedia. Ling et al. [9] constructed an API knowledge
graph based on open source projects, and then generate API
subgraphs for API-related issues through graph embedding
technology. Although the current API knowledge graph con-
struction method can improve the retrieval results of the API,
it mainly constructs through information sources such as API
documentation, Wikipedia or open source projects. These
methods lack information on the description of the actual ap-
plication scenarios of the APL. It is not conducive to the fu-
sion and utilization of API practical application knowledge.

6. Conclusion

This paper proposes an API knowledge graph construc-
tion approach based on multi-source information fusion(AKG-
MSIF), which integrates the functional and structural infor-
mation of APIs, as well as the specific usage scenarios of
APIs from documentation and SO Q&A websites. The ex-
periment validated the effectiveness of our approach from
two aspects: information extraction and API recommenda-
tion effectiveness. And the results show that the accuracy of
domain concept identification is up to 95.6%, and that of API
concepts is 97.8%. And 94.3% of relationships between API
concepts and domain concept are correctly identified. Mean-
while, the Q&A entities from SO are identified effectively by
machine learning and summary generation. Furthermore,
compared with existing API recommendation systems, our
API knowledge graph is more comprehensive, enhancing the
effectiveness of API retrieval.

References

[1] Beyer, S., Macho, C., Pinzger, M., Di Penta, M., 2018. Automati-
cally classifying posts into question categories on stack overflow, in:
Proceedings of the 26th Conference on Program Comprehension, pp.
211-221.

[2] Chan, WK., Cheng, H., Lo, D., 2012. Searching connected api sub-
graph via text phrases, in: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineer-
ing, pp. 1-11.

[3] Chen, C., Xing, Z., Wang, X., 2017. Unsupervised software-specific
morphological forms inference from informal discussions, in: 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), IEEE. pp. 450—461.

[4] Huang, Q., Xia, X., Xing, Z., Lo, D., Wang, X., 2018. Api method
recommendation without worrying about the task-api knowledge gap,
in: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 293-304.

R.Zhao et al. / Journal of Visual Language and Computing (2024) 11-21

(5]

(8]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

[21]

[22]

Li, H, Li, S, Sun, J., Xing, Z., Peng, X., Liu, M., Zhao, X., 2018a.
Improving api caveats accessibility by mining api caveats
knowledge graph, in: 2018 IEEE International Conference on
Software Mainte-nance and Evolution (ICSME), IEEE. pp. 183-193.
Li, X.X., Li, B, Tian, L.F., Zhang, L., 2018b. Automatic benign and
malignant classification of pulmonary nodules in thoracic computed
tomography based on rf algorithm. IET Image Processing 12, 1253—
1264.

Liang, S., Sabri, A.Q.M., Alnajjar, F., Loo, C.K., 2021. Autism spec-
trum self-stimulatory behaviors classification using explainable tem-
poral coherency deep features and svm classifier. IEEE Access 9,
34264-34275.

Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M.,
2019. Pattern-based mining of opinions in q&a websites, in: 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE. pp. 548-559.

Ling, C.Y., Zou, Y.Z., Lin, Z.Q., Xie, B., 2019. Graph embedding
based api graph search and recommendation. Journal of Computer
Science and Technology 34, 993—1006.

Liu, M., Peng, X., Marcus, A., Xing, Z., Xie, W., Xing, S., Liu, Y.,
2019. Generating query-specific class api summaries, in: Proceed-
ings of the 2019 27th ACM joint meeting on European software en-
gineering conference and symposium on the foundations of software
engineering, pp. 120-130.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C., 2011.
Portfolio: finding relevant functions and their usage, in: Proceedings
of the 33rd International Conference on Software Engineering, pp.
111-120.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J., 2013.
Distributed representations of words and phrases and their composi-
tionality. Advances in neural information processing systems 26.
Nadi, S., Treude, C., 2020. Essential sentences for navigating stack
overflow answers, in: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE.
pp. 229-239.

Rahman, M.M., Roy, C.K., Lo, D., 2016. Rack: Automatic api recom-
mendation using crowdsourced knowledge, in: 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), IEEE. pp. 349-359.

Ryu, S.E., Shin, D.H., Chung, K., 2020. Prediction model of demen-
tia risk based on xgboost using derived variable extraction and hyper
parameter optimization. IEEE Access 8, 177708-177720.
Soderland, S., 1999. Learning information extraction rules for semi-
structured and free text. Machine learning 34, 233-272.

Sun, J., Xing, Z., Chu, R., Bai, H., Wang, J., Peng, X., 2019. Know-
how in programming tasks: From textual tutorials to task-oriented
knowledge graph, in: 2019 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE. pp. 257-268.
Thung, F., Wang, S., Lo, D., Lawall, J., 2013. Automatic recommen-
dation of api methods from feature requests, in: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
IEEE. pp. 290-300.

Treude, C., Robillard, M.P., 2016. Augmenting api documentation
with insights from stack overflow, in: Proceedings of the 38th Inter-
national Conference on Software Engineering, pp. 392-403.

Wang, C., Peng, X., Liu, M., Xing, Z., Bai, X., Xie, B., Wang, T.,
2019. A learning-based approach for automatic construction of do-
main glossary from source code and documentation, in: Proceedings
of the 2019 27th ACM joint meeting on european software engineer-
ing conference and symposium on the foundations of software engi-
neering, pp. 97-108.

Xu, B., Xing, Z., Xia, X., Lo, D.A., 2017. automated generation of
answer summary to developersz technical questions, in: Proceedings
of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 706-716.

Ye, D., Xing, Z., Foo, C.Y., Ang, Z.Q., Li, J., Kapre, N., 2016a.
Software-specific named entity recognition in software engineering
social content, in: 2016 IEEE 23rd international conference on soft-

21

[23]

[24]

[25]

ware analysis, evolution, and reengineering (SANER), IEEE. pp. 90—
101.

Ye, D., Xing, Z., Li, J., Kapre, N., 2016b. Software-specific part-of-
speech tagging: An experimental study on stack overflow, in: Pro-
ceedings of the 31st Annual ACM Symposium on Applied Comput-
ing, pp. 1378-1385.

Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C., 2016¢. From word em-
beddings to document similarities for improved information retrieval
in software engineering, in: Proceedings of the 38th international con-
ference on software engineering, pp. 404—415.

Zhang, J., Jiang, H., Ren, Z., Chen, X., 2017. Recommending apis for
api related questions in stack overflow. IEEE Access 6, 6205-6219.

