
H.G. Fareed et al. / Journal of Visual Language and Computing (2023) 54-60

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

GraPH: Graph Partitioning Based on Hotspots
Hiba G. Fareeda, Isam A. Alobaidib,c,∗, Jennifer L. Leopoldd and Andrea E. Smithd

aMathematics Department, Mustansiriyah University, Baghdad, Iraq
bSchool of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
cDepartment of Computer Engineering, Al Farabi University College, Baghdad, Iraq
dDepartment of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA

A R T I C L E I N F O
Article History:
Submitted 10.25.2023
Revised 11.5.2023
Accepted 12.5.2023

Keywords:
graph partitioning
graph data mining
structures
hotspot.

A B S T R A C T
Graphs have long been used to model relationships between entities. For some applications, a single
graph is sufficient; for other problems, a collection of graphs may be more appropriate to represent
the underlying data. Many contemporary problem domains, for which graphs are an ideal data model,
contain an enormous amount of data (e.g., social networks). Hence, researchers frequently employ
parallelized or distributed processing. But first the graph data must be partitioned and assigned to the
multiple processors in such a way that the work load will be balanced, and inter-processor communi-
cation will be minimized. The latter problem may be complicated by the existence of edges between
vertices in a graph that have been assigned to different processors. Herein we introduce a strategy
that combines vocabulary-based summarization of graphs (𝑉 𝑜𝐺) and detection of hotspots (i.e., ver-
tices of high degree) to determine how a single undirected graph should be partitioned to optimize
multi-processor load balancing and minimize the number of edges that exist between the partitioned
subgraphs. We benchmark our method against another well-known partitioning algorithm (𝑀𝐸𝑇𝐼𝑆)
to demonstrate the benefits of our approach.

© 2023 KSI Research

1. Introduction
Graphs are frequently used as an abstraction to model

the real-world data; such as in chemical, or biological net-
works. The nature of the application problem will determine
whether these data will be represented in a single or a collec-
tion of graphs. This diversity has contributed to the proper
representation of the underlying data. Some of these graphs
may contain an enormous amount of data (e.g., social net-
works). Hence, parallelized or distributed processing often
is employed. Before the analysis commences, typically the
graph dataset is partitioned, and a subset of data is assigned
to each processor. The partitioning should be done in such

∗Corresponding author

a way that the ensuing work load will be balanced and inter-
processor communication will be minimized. These tasks
can be particularly challenging for a single graph; consider-
ation must be given to which vertices are assigned to which
partitions (i.e., processors) and what edges originally existed
between those vertices.

Ideally, partitions should be of approximately equal size,
and the number of edges between vertices that are in differ-
ent partitions should be minimized. The problem of finding
good partitions in these respects has been studied in graph
theory. Despite the numerous algorithms that have been pro-
posed and implemented, the complexity of this problem is
still considered 𝑁𝑃 -complete.

In general, most graph partitioning algorithms utilize ei-
ther edge-cut partitioning or vertex-cut partitioning. Edge-
cut partitioning splits the vertices of a graph into disjoint sets
of approximately equal size considering the minimum num-
ber of cut-edges (e.g., PowerGraph [3], Spark GraphX [4],
and Chaos [14]). In contrast, vertex-cut partitioning splits
the edges of a graph into equal-sized sets. In this approach,
the partitioning of a single graph must satisfy two require-

hf_math@uomustansiriyah.edu.iq (H.G. Fareed);
ialobaidi@nwmissouri.edu (I.A. Alobaidi); leopoldj@mst.edu (J.L.
Leopold); aes7dc@mst.edu (A.E. Smith)

https://uomustansiriyah.edu.iq/e-learn/profile.php?id=5609
(H.G. Fareed); https://www.nwmissouri.edu/csis/directory/alobaidi.htm
(I.A. Alobaidi); https://cs.mst.edu/people/faculty-directory/ (J.L. Leopold)

ORCID(s): 0000-0002-6508-2495 (H.G. Fareed); 0000-0001-6329-2440
(I.A. Alobaidi)

DOI reference number: 10-18293/JVLC2 023-N2-039
54

www.ksiresearch.org/jvlc
https://uomustansiriyah.edu.iq/e-learn/profile.php?id=5609
https://www.nwmissouri.edu/csis/directory/alobaidi.htm
https://cs.mst.edu/people/faculty-directory/

H.G. Fareed et al. /Journal of Visual Language andComputing(2023)54-60

ments: the quality graph partitioning criterion (which guar-
antees no lost data) and load balancing. Many studies have
shown that edge-cut partitioning produces more accurate re-
sults on large real-world graphs [3, 4].

Herein we introduce a novel vertex-cut partitioning
strategy that determines how a single, undirected graph
should be partitioned to optimize multi-processor load
balancing and minimize the number of edges that exist
between the partitioned subgraphs. Our approach, 𝐺𝑟𝑎𝑃 𝐻 ,
first uses vocabulary-based summarization [9] to identify
the most highly connected structures that exist in the graph
(e.g., cliques, stars, and chains). We then find the vertices
in those structures that have the highest degree; these are
called hotspots. The hotspots become the starting points
from which subgraph partitions are formed.

This paper is organized as follows. In Section 2 we
briefly discuss some of the related work in graph partition-

ing. We present the 𝐺𝑟𝑎𝑃 𝐻 algorithm in Section 3, and
include a discussion of the 𝑉 𝑜𝐺 summarization algorithm.
In Section 4 we experimentally evaluate our proposed
algorithm (𝐺𝑟𝑎𝑃 𝐻) to expound its benefits. Concluding
remarks and a discussion of future work are provided in
Section 5.

2. Related Work
In this section, we briefly review some of the research

that has been done in graph partitioning. Despite the nu-
merous sequential, distributed, and parallel algorithms that
have been developed, the complexity of this problem is still
considered to be 𝑁𝑃 -complete. One of the most significant
challenges of the problem continues to be minimizing the
loss of information (from the original graph dataset) when
the partitions are formed; that is, the goal is to minimize
the number of edges (from the original graph) that exists
between vertices that are in different partitions, a situation
which is more likely to occur as the number of partitions in-
creases.

Some heuristic methods for sequential graph partition-
ing of a single graph are discussed in [6, 2]. One offline
method (wherein the entire graph is resident in memory),
𝑀𝐸𝑇𝐼𝑆, is proposed in [6]. This method produces high-
quality partitions in terms of uniformity of partition size and
minimization of “lost” edges. However, because of the of-
fline setting, it cannot handle large graphs. The 𝑀𝐸𝑇𝐼𝑆
algorithm consists of three phases: coarsening, partitioning,
and refinement. During each phase, a sequence of special-
ized algorithms is applied. These algorithms help in select-
ing the maximal matchings in the coarsening phase, parti-
tioning of the coarse graph in the partitioning phase, and
projecting the graph back to the original graph in the refine-
ment phase. An extension to𝑀𝐸𝑇𝐼𝑆 (Streaming𝑀𝐸𝑇𝐼𝑆
Partitioning method (𝑆𝑀𝑃)) is proposed in [2], replacing
the offline setting of 𝑀𝐸𝑇𝐼𝑆 by an online setting. 𝑆𝑀𝑃
provides the ability to adjust the memory capacity, and sub-
sequently decrease computational requirements by applying
the partitioning method to small subgraphs.

Some graph partitioning techniques are designed for spe-
cific application problems. Another technique for local (i.e.,
memory-resident, sequential processing) graph partitioning
[1] specifically targets fixed cardinality problems such as k-
densest subgraph and max 𝑘-vertex cover. The authors de-
veloped a fixed parameter algorithm using a greediness-for-
parameterization technique. Clustering systems are used as a
base in [17]. In this research, the authors propose a heuristic
graph edge partitioning strategy, Neighbor Expansion (NE),
with polynomial running time. Their goal was to reduce the
running time and communication cost for some specific ap-
plications such as triangle counting and PageRank.

The graph partitioning problem in a distributed environ-
ment is addressed in [12, 11, 8, 15, 7]. The authors in [12]
propose a fully distributed algorithm called JA-BE-JA. This
algorithm is built on two types of partitioning: vertex-cut
and edge-cut partitioning; the absence of central coordina-
tion and the processing of each vertex independently make
this algorithm well-designed for distributed processing. An-
other distributed algorithm, 𝑃𝐴𝐶𝐶 (Partition-Aware Con-
nected Components), based on graph partitioning for edge-
filtering and load-balancing, is proposed in [11]. The au-
thors of [15] propose a multi-level label propagation (𝑀𝐿𝑃)
method that uses distributed memory of several machines for
partitioning the graphs. Another distributed partitioning al-
gorithm is discussed in [10], PARallel Submodular Approx-
imation algorithm (𝑃𝑎𝑟𝑠𝑎), also configures the partitions to
fit the storage and computation ability of each machine.

One important characteristic of graph partitioning
algorithms is the strategy employed for selecting the vertex
around which the subgraph will be built for each partition.
Many algorithms select such vertices randomly. Our ap-
proach was motivated by 𝑀𝐸𝐿𝑇 [16], MapReduce-based
Efficient Large-scale Trajectory anonymization. The main
objective of that work was to examine paths traveled by
people in a geographical space, and then partition the space
into regions around popular locations (e.g., a coffee house,
an exercise center, etc.); those locations are referred to
as hotspots. As will be discussed later in this paper, the
utilization of hotspots as a basis for forming partitions is a
novel feature of our partitioning strategy.

3. Methodology
In this section, we present the 𝐺𝑟𝑎𝑃𝐻 strategy for

partitioning a single, undirected graph. We begin with some
preliminary definitions that will facilitate this discussion.
An explanation of the vocabulary-based summarization
of graphs (𝑉 𝑜𝐺) technique developed in [9] then follows;
this is a key component for our approach as it is used to
determine subgraphs of high connectivity (e.g., cliques,
stars, and chains). Finally, our complete set of algorithms
is presented, detailing how the vocabulary-based summa-
rization and identification of hotspots lead to the creation of
optimal partitioning.

55

H.G. Fareed et al. / Journal of Visual Language and Computing(2023)54-60

(a) Full Clique. (b) Near Clique. (c) Full Bipartite. (d) Chain. (e) Star.

Figure 1: Types of Structures.

3.1. Preliminaries
Definition 1. Graph: A graph 𝐺 is a tuple (𝑉 ,𝐸,𝐿) where
𝑉 is a finite set of nodes called the vertex set of 𝐺, and 𝐸 is
a set of 2-element subsets of 𝑉 (𝐸 ⊆ 𝑉 ×𝑉) called the edge
set of 𝐺. The nodes and edges are labeled by the function 𝐿.

Definition 2. Graph partitioning: A graph 𝐺 = (𝑉 ,𝐸) will
be partitioned into 𝑘 subgraphs 𝐺′

𝑠𝑢𝑏 = (𝑉 ′, 𝐸′), 𝑠𝑢𝑏 =
1, ..., 𝑘. Each 𝑉 ′

𝑠𝑢𝑏𝑠𝑒𝑡 ⊂ 𝑉𝑠𝑒𝑡 where 𝑉𝑖 ∩ 𝑉𝑗 = 0 for 𝑖 ≠ 𝑗,
and each 𝐸′

𝑠𝑢𝑏𝑠𝑒𝑡 ⊂ 𝐸𝑠𝑒𝑡.

Definition 3. Full-clique: Let 𝐺 = (𝑉 ,𝐸) be an undirected
graph. A set 𝐹𝐶 of vertices in 𝐺 is called a Full-clique if
any two distinct vertices in 𝐹𝐶 are adjacent in 𝐺, when 𝑘 ≥
1. The Full-clique term may refer to the subgraph in some
cases. If several edges are missing, this will be defined as a
Near-clique.

Definition 4. Full bipartite core: Let 𝐺 = (𝑉 ,𝐸) be an
undirected graph. A set 𝐹𝑏 of vertices in 𝐺 is called Full-
bipartite if two sets of vertices 𝑆1 and 𝑆2, 𝑆1 ∩ 𝑆2 = ∅,
have edges between them, where each vertex in 𝑆1 will be
connected to every edge in 𝑆2 but not within the same set.
When the core is not fully connected this will be defined as
a Near-bipartite core.

Definition 5. Star: A Star consists of one internal vertex in
set 𝑆1 connected to 𝑘 edges of other sets 𝑆𝑖+1 (spokes). A
Star is considered as a special case of a Full bipartite core.

Definition 6. Chain: A Chain is a sequence of vertices such
that all vertices have degree 2, except two of them have de-
gree 1.

Figure 1 shows examples of these structure types.
3.2. VoG Graph Summarization

The ability to summarize information about highly
connected subgraphs contained within a large graph can
greatly facilitate understanding of the graph as a whole.
Vocabulary-based summarization of Graphs (𝑉 𝑜𝐺) [9] is a
formal methodology developed for this purpose. Using a set
of terms (i.e., a vocabulary) like full-cliques, near-cliques,
full-bipartite core, near-bipartite core, stars, and chains,
𝑉 𝑜𝐺 provides a summary of the most highly connected and
frequently occurring structures in a graph. For problem
domains like social networks and communication networks,
these are typically the structures of most interest.

Algorithm 1 outlines the main steps that are performed
in 𝑉 𝑜𝐺; see [9] for a more detailed discussion. Using
graph decomposition methods, candidate subgraphs are first
generated. They are then classified as various connected
structures such as cliques, stars, and chains; if a subgraph
qualifies as more than one of these structure types, a scoring
method (based on minimum description length (𝑀𝐷𝐿)) is
used to determine which structure type that subgraph best
fits. 𝑉 𝑜𝐺 then uses another scoring system to determine
which collection of those structures best characterizes
the graph as a whole. This is called the summary model,
and could include all of the structures (PLAIN), just
the k structures with the best scores (TOP10, TOP100),
or a combination of structures whose total score is best
(GREEDY’nFORGET).
Algorithm 1 VoG

1: Input Graph 𝐺.
2: Output Graph summary 𝑀 , encoding cost.
3: Subgraph Generation. Using graph decomposition

methods, produce a set of candidate subgraphs, which
may overlap with each other.

4: Subgraph Labeling. Characterize each subgraph as
one of the vocabulary structure types.

5: Summary Assembly. From the candidate structures,
select a non-redundant subset to instantiate the graph
model 𝑀 . Utilizing a heuristic model (e.g., PLAIN,
TOP10, TOP100, GREEDY’nFORGET), the set of
structures with the lowest description cost will be se-
lected.

3.3. Proposed Algorithm
Two algorithms have been proposed here one dealing

with Sequential processing while the other dealing with Par-
allel processing
3.3.1. Sequential Algorithm

In 𝐺𝑟𝑎𝑃𝐻 , we first use 𝑉 𝑜𝐺 to identify the most highly
connected, and frequently occurring, subgraphs. That pro-
duces a set of structures (i.e., the model summary), 𝑆. Algo-
rithm 2 is then used to select a subset of 𝑆 which we call the
majority structures, 𝑀𝑎𝑗𝑆. The number of majority struc-
tures depends on the desired number of partitions, 𝑛. The 𝑛
structures in 𝑆 that have the largest number of vertices be-
come the majority structures.

56

H.G. Fareed et al. /Journal of Visual Language andComputing(2023)54-60

For each majority structure, Algorithm 3 is applied to
identify the vertex that has the highest degree; in the case of
a tie, an arbitrary choice between those qualifying vertices is
made. These vertices of highest degree are called hotspots.
Algorithm 2 Select the Majority Structures

1: Input 𝑆 is set of structures produced by 𝑉 𝑜𝐺,
2: 𝑛 is number of desired partitions
3: Output 𝑀𝑎𝑗𝑆 contains 𝑛 structures in 𝑆 that have the

largest number of vertices
4: 𝑆𝑜𝑟𝑡𝑒𝑑𝑆 = Sort structures in 𝑆 in descending order by

number of vertices;
5: for 𝑖 = 1 to 𝑛 do
6: 𝑀𝑎𝑗𝑆[𝑖] = 𝑆𝑜𝑟𝑡𝑒𝑑𝑆[𝑖]
7: end-for
8: return 𝑀𝑎𝑗𝑆

Algorithm 3 Assign the HotSpot
1: Input 𝑆 = (𝑉𝑆 , 𝐸𝑆) is a structure
2: Output 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 is a vertex in 𝑉𝑆 that is the hotspot

vertex for structure 𝑆 = (𝑉𝑆 , 𝐸𝑆)
3: for 𝑖 = 1 to |𝑉𝑆 | do
4: 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] = 0
5: end-for
6: for 𝑖 = 1 to |𝑉𝑆 | do
7: for 𝑗 = 1 to |𝑉𝑆 | do
8: if there is an 𝑒𝑑𝑔𝑒(𝑖, 𝑗) in 𝐸𝑆
9: then 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] = 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] + 1

10: end-if
11: end-for
12: end-for
13: 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 = 1
14: for 𝑖 = 2 to |𝑉𝑆 | do
15: if 𝑑𝑒𝑔𝑟𝑒𝑒[𝐻𝑜𝑡𝑆𝑝𝑜𝑡] <= 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖]
16: then 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 = 𝑖
17: end-if
18: end-for
19: return 𝐻𝑜𝑡𝑆𝑝𝑜𝑡

After assigning the hotspots, the actual partitioning com-
mences. The subgraph that will be assigned to a partition
will consist of all the vertices in a hotspot’s structure unless
that number of vertices exceeds the total number of vertices
in the graph divided by the number of desired partitions; that
is considered the ideal partition size. In Algorithm 4, we
start a depth-first search from a hotspot vertex (denoted as
Hotspot). The 𝑀𝑎𝑗𝑆 denoted in the algorithm is the set of
structures from which the hotspot was selected. There are
two discontinuation criteria for building a subgraph parti-
tion; the expansion will stop when either of those conditions
is satisfied:

1. The current size of a partition subgraph has reached
the ideal partition size.

2. The path length from the current vertex to the hotspot

has reached a maximum threshold (i.e., the total num-
ber of desired partitions).

Some vertices from the original graph may not be in-
cluded in any partition using these conditions. To handle
those cases, we perform a breadth-first search starting from
each hotspot until all nodes are included in some partition.
Algorithm 4 GraPH

1: Input Graph 𝐺 = (𝑉 ,𝐸) and 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 and 𝑀𝑎𝑗𝑆
2: 𝑀𝑎𝑗𝑆 is a set contains structures that have the largest

number of vertices
3: 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 is a vertex in the structure connected to the

largest number of edges
4: 𝑛 is the number of partitions
5: Output All 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎs of 𝐺, where |𝑉 | of each sub-

graph ≥ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒
6: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 = |𝑉 | ∕ 𝑛
7: if |𝑀𝑎𝑗𝑆𝑖| ≤ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 then
8: Include all nodes of 𝑀𝑎𝑗𝑆𝑖 in 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖
9: end-if

10: Perform 𝐷𝐹𝑆 starting from each 𝐻𝑜𝑡𝑆𝑝𝑜𝑡
11: 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐷𝐹𝑆 ← 𝐷𝐹𝑆 result
12: Perform 𝐵𝐹𝑆 starting from each 𝐻𝑜𝑡𝑆𝑝𝑜𝑡
13: 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐵𝐹𝑆 ← 𝐵𝐹𝑆 result
14: 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ ← 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐷𝐹𝑆 ∪ 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐵𝐹𝑆
15: return 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ

3.4. Computational Complexity
The complexity of one well-known partitioning method

that is considered to produce high-quality partitions,
𝑀𝐸𝑇𝐼𝑆 [6] (implemented as kmetis), is approximately
𝑂(𝑉 + 𝐸 + 𝑘 log(𝑘)) where 𝑉 is the number of nodes, 𝐸
the number of edges, and 𝑘 is the number of partitions [5].
In contrast, the complexity of 𝐺𝑟𝑎𝑃𝐻 is approximately
𝑂(𝑉 + 𝐸 + 𝑛 log(𝑛)) where 𝑉 is the number of nodes, 𝐸
is the number of edges, and 𝑛 is the number of structures.
Contributing to the overall complexity of 𝐺𝑟𝑎𝑃𝐻 is the
complexity of 𝐵𝐹𝑆 and 𝐷𝐹𝑆, which are 𝑂(𝑉 + 𝐸), and
the complexity of sorting 𝑛 structures, which is 𝑂(𝑛𝑙𝑜𝑔(𝑛)).
We are not including the complexity of the 𝑉 𝑜𝐺 processing,
which has not been published by its authors.

4. Results and Analysis
In this section we compare the results of partitioning

three datasets using 𝐺𝑟𝑎𝑃𝐻 and another well-known par-
titioning method, 𝑀𝐸𝑇𝐼𝑆, which was discussed in Sec-
tion 2. The 𝐺𝑟𝑎𝑃𝐻 algorithms presented in Section 3.2 and
3.3.1 were (collectively) implemented in Matlab and C++.
A C++ implementation of 𝑀𝐸𝑇𝐼𝑆 was downloaded from
the Karypis Lab website [5]. Our experiments were executed
on an Intel(R) Core(TM) i7-6700 CPU@3.40GHz computer
with 32 GB memory.

57

H.G. Fareed et al. /Journal of Visual Language and Computing(2023)54-60

4.1. Data Description
Three single undirected graphs were used to evaluate our

approach. Table 1 lists descriptive information about the
graphs. One graph was synthetically generated; a second
graph represented a two-dimensional finite element mesh;
the third graph represented a three-dimensional finite ele-
ment mesh. The last three graphs were obtained from the
Network Repository,a large comprehensive collection of net-
work graph data [13].

Table 1

Description of the Graphs Tested

Graph Name Number of Nodes Number of Edges Description

Synthetic 1565 3561 Synthetically generated

4ELT 15606 45878 2D Finite element mesh

COPTER2 55476 352238 3D Finite element mesh

web-wikipedia-link-fr 4.9M 113.1M Power-Law

road-road-usa 23.9M 28.8M Low-Degree

soc-sinaweibo 58.6M 261.3M Long-Tailed

4.2. Experiment and Results
We executed 𝐺𝑟𝑎𝑃𝐻 and 𝑀𝐸𝑇𝐼𝑆 on each of the

graphs listed in Table 1, testing seven different numbers of
partitions for each graph. The results from each test were
analyzed in terms of three different metrics: the number
of interior edges per partition (i.e., edges in a partition’s
graph), the number of exterior edges per partition (i.e.,
edges between vertices in a partition and vertices assigned
to other partitions), and the total number of edges lost (i.e.,
edges from the original graph that were not represented in
any of the partition graphs).

Seven tests were conducted to create 10, 20, 30, 40, 50,
60, and 70 partitions, respectively, of the Synthetic graph.
𝑀𝐸𝑇𝐼𝑆 failed to partition this graph into either 20 or 40
partitions; the program simply failed to return any results.
𝐺𝑟𝑎𝑃𝐻 produced results for all of the tested numbers of par-
titions for this graph. The representation of edges amongst
partitions was not well distributed when 10 partitions were
requested. Specifically, the number of interior edges in one
of those partitions was much higher than in the other parti-
tions, which was not an optimal partitioning. This was likely
due to the fact that when a hotspot is selected from a struc-
ture, if the structure can fit entirely into a partition, all nodes
from that structure automatically will be added to the parti-
tion before the depth-first search algorithm is run. This can
then prevent other partitions from growing during depth-first
search (as would be the case in unconnected components),
encouraging disproportionate partition sizes.

Because the 4ELT and COPTER2 graphs were much
larger than the Synthetic graph, we tested larger numbers
of partitions for those graphs, namely: 100, 200, 300, 400,
500, 600, and 700. For all three of the graphs listed in
Table 1, in the majority of the tests, the partitions produced
by 𝐺𝑟𝑎𝑃𝐻 had a higher number of interior edges in each
partition than the partitions produced by 𝑀𝐸𝑇𝐼𝑆. It
can be seen in Figure 2 that more edges from the original
graph were retained within the partitions produced by

10 20 30 40 50 60 70

GraPH 234.2 57.9 13.1 6.7 3.5 2.4 1.8

METIS 38.4 0 6.1 0 1.84 1.4 1.1

0

50

100

150

200

250

N
u
m
b
er
 o
f
Ed

ge
s

Partition Size

Interior Edges per Partition

GraPH METIS

(a) 1565 Nodes - 3561 Edges.

100 200 300 400 500 600 700

GraPH 269.1 119.5 73.7 51.7 37.6 29 23.9

METIS 185.9 63.1 33.8 21.4 13.6 9.8 5.6

0

50

100

150

200

250

300

N
u
m
b
e
r
o
f
Ed

ge
s

Partition Size

Interior Edges per Partition

GraPH METIS

(b) 15606 Nodes - 45878 Edges.

100 200 300 400 500 600 700

GraPH 1747 779 479.4 338 253 201.3 165

METIS 750 198 204 138.4 114 83 55

0
200
400
600
800

1000
1200
1400
1600
1800
2000

N
u
m
b
er
 o
f
Ed

ge
s

Partition Size

Interior Edges per Partition

GraPH METIS

(c) 55476 Nodes - 352238 Edges.

Figure 2: Interior Edges per Partition.

𝐺𝑟𝑎𝑃𝐻 . As shown in Figure 3, the 𝐺𝑟𝑎𝑃𝐻 partitioning
resulted in fewer exterior edges (between partitions) than
what occurred in the 𝑀𝐸𝑇𝐼𝑆 partitioning. Additionally,
as shown in Figure 4, 𝐺𝑟𝑎𝑃𝐻 outperformed 𝑀𝐸𝑇𝐼𝑆
in terms of reducing the total number of edges lost from
the original graph. It should be noted that as the desired
number of partitions grew, the difference in partition quality
(in terms of the three metrics) obtained from both methods
became less distinct.

Because of the use of two methods (depth-first/breadth-
first search) in𝐺𝑟𝑎𝑃𝐻 for the extension process that include
vertices in/out of partition boundaries, we also evaluated dif-
ferent variations of our method. We ran𝐺𝑟𝑎𝑃𝐻 on the three
test graphs using four different orders of processing:

• Depth-first search extension for vertices inside the par-
tition boundaries followed by breadth-first search ex-

58

H.G. Fareed et al. /Journal of Visual Language and Computing(2023)54-60

10 20 30 40 50 60 70

GraPH 197.5 217.2 195.8 153 126.3 106.2 91.6

METIS 635.4 0 225.2 0 138.76 115.8 99.6

0

100

200

300

400

500

600

700

N
u
m
b
e
r
o
f
Ed

ge
s

Partition Size

Exterior Edges per Partition

GraPH METIS

(a) 1565 Nodes - 3561 Edges.

100 200 300 400 500 600 700

GraPH 1246.3 653.2 447.4 342.6 281.7 239 207

METIS 1412.6 765.6 527.3 403.3 329.6 277.7 243.6

0

200

400

600

800

1000

1200

1400

1600

N
u
m
b
er
 o
f
Ed

ge
s

Partition Size

Exterior Edges per Partition

GraPH METIS

(b) 15606 Nodes - 45878 Edges.

100 200 300 400 500 600 700

GraPH 1368 873 662 540 467 408 366

METIS 2895 1696 1198 927.3 736.3 638 553

0

500

1000

1500

2000

2500

3000

3500

N
u
m
b
er
 o
f
Ed

ge
s

Partition Size

Exterior Edges per Partition

GraPH METIS

(c) 55476 Nodes - 352238 Edges.

Figure 3: Exterior Edges per Partition.

tension for vertices outside the partition boundaries.
• Breadth-first search extension for vertices inside the

partition boundaries followed by depth-first search ex-
tension for vertices outside the partition boundaries.

• Depth-first search extension for vertices inside the par-
tition boundaries followed by depth-first search exten-
sion for vertices outside the partition boundaries.

• Breadth-first search extension for vertices inside the
partition boundaries followed by breadth-first search
extension for vertices outside the partition boundaries.

We found that more consistent partitions were obtained
(in terms of more interior edges and fewer external edges
per partition) when we utilized the depth-first search ex-
tension process for vertices inside the boundaries followed

10 20 30 40 50 60 70

GraPH 987 2171 2937 3060 3156 3183 3206

METIS 3177 0 3378 0 3469 3475 3487

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m
b
e
r
o
f
Ed

ge
s

Partition Size

Edges Lost

GraPH METIS

(a) 1565 Nodes - 3561 Edges.

100 200 300 400 500 600 700

GraPH 62312 65314 67104 68519 70422 71807 72498

METIS 70630 76561 79087 80659 82407 83322 85268

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
e
r
o
f
Ed

ge
s

Partition Size

Edges Lost

GraPH METIS

(b) 15606 Nodes - 45878 Edges.

100 200 300 400 500 600 700

GraPH 68391 87313 99282 107971 116624 122352 127998

METIS 144749 169582 179627 185449 184071 191271 193419

0

50000

100000

150000

200000

250000

N
u
m
b
e
r
o
f
Ed

ge
s

Partition Size

Edges Lost

GraPH METIS

(c) 55476 Nodes - 352238 Edges.

Figure 4: Total Edges Lost.

by breadth-first search extension processing for vertices
outside the boundaries. We also tested random assignment
of hotspots. This was found to be unreliable in generating
high-quality partitions. Interestingly, although the number
of internal edges was not balanced across partitions utilizing
randomization, 𝐺𝑟𝑎𝑃𝐻 still outperformed 𝑀𝐸𝑇𝐼𝑆 in
terms of producing partitions with more internal edges and
fewer external edges.

5. Conclusion and Future work
With the proliferation of data in our technological

world and the usefulness of modeling some problems using
graphs, it is becoming increasingly difficult to process an
entire graph dataset in memory. It is more efficient to
partition a single large graph, and process multiple smaller
subgraphs. However, in doing so, the partitioning of what
may be highly interconnected data must be done in such

59

H.G. Fareed et al./Journal of Visual Language and Computing(2023)54-60

as way as to balance the work load amongst the individual
processes, minimize inter-process communication, and
minimize loss of information from the original dataset. The
latter problems can occur if, in the original graph, there is
an edge that exists between vertices assigned to different
partitions.

Herein we have presented an algorithm, 𝐺𝑟𝑎𝑃 𝐻 , for
partitioning a single, undirected graph. Our algorithm

strives to produce quality partitions in terms of: uniformity
of the size of each partition, maximization of the number
of edges from the original graph that are included in each
partition, and minimization of the number of edges from
the original graph that effectively exist between partitions.
Our approach is novel; we first utilize vocabulary-based
summarization (𝑉 𝑜𝐺) to find the most highly connected
structures, and then find the vertices of highest degree
(known as hotspots) within those structures. A benchmark
comparison of 𝐺𝑟𝑎𝑃 𝐻 with another well-known, high-
quality partitioning algorithm (𝑀𝐸𝑇 𝐼𝑆) demonstrated the
benefits of our strategy.

In the future, we plan to explore ways to distribute or
parallelize the 𝐺𝑟𝑎𝑃𝐻 algorithms so that we can process
even larger graphs than those tested for this study. To that
end, we also may explore the use of some approximation
(e.g., sampling) methods that may increase the efficiency of
the assignment of vertices to partitions after identification of
structures and hotspots.

6. Acknowledgments
The authors thank Dr. Danai Koutra for her assistance in

executing the 𝑉 𝑜𝐺 software.

References
[1] Bonnet, É., Escoffier, B., Paschos, V.T., Tourniaire, É., 2015.

Multi-parameter Analysis for Local Graph Partitioning Problems:
Using Greediness for Parameterization. Algorithmica 71, 566–
580. URL: https://doi.org/10.1007/s00453-014-9920-6, doi:10.1007/
s00453-014-9920-6.

[2] Echbarthi, G., Kheddouci, H., 2016. Streaming METIS Partition-
ing, in: Proceedings of the 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM
’16), IEEE Press, Piscataway, NJ, USA. pp. 17–24. URL: http:
//dl.acm.org/citation.cfm?id=3192424.3192429, doi:10.1109/ASONAM.
2016.7752208.

[3] Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C., 2012.
Powergraph: Distributed Graph-parallel Computation on Natural
Graphs, in: Proceedings of the 10th. USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’12), USENIX
Association, Hollywood, CA, USA. pp. 17–30.

[4] Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J.,
Stoica, I., 2014. Graphx: Graph Processing in a Distributed Dataflow
Framework, in: Proceedings of the 11th. USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’14), USENIX
Association, Broomfield, CO, USA. pp. 599–613.

[5] Karypis, G., 2007. Complexity of pmetis and kmetis Algorithms.
http://glaros.dtc.umn.edu/gkhome/node/419. Accessed: 2019-22-01.

[6] Karypis, G., Kumar, V., 1998a. A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs. SIAM Journal on
Scientific Computing 20, 359–392. URL: https://doi.org/10.1137/
S1064827595287997, doi:10.1137/S1064827595287997.

[7] Karypis, G., Kumar, V., 1998b. A Parallel Algorithm for Mul-
tilevel Graph Partitioning and Sparse Matrix Ordering. Journal
of Parallel and Distributed Computing 48, 71–95. URL: http:
//www.sciencedirect.com/science/article/pii/S0743731597914039,
doi:https://doi.org/10.1006/jpdc.1997.1403.

[8] Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., Vassilvitskii, S.,
2014. Connected Components in Mapreduce and Beyond, in: Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC ’14),
ACM, New York, NY, USA. pp. 18:1–18:13. URL: http://doi.acm.
org/10.1145/2670979.2670997, doi:10.1145/2670979.2670997.

[9] Koutra, D., Kang, U., Vreeken, J., Faloutsos, C., 2015. Summarizing
and Understanding Large Graphs. Statistical Analysis and Data Min-
ing: The ASA Data Science Journal 8, 183–202. doi:10.1002/sam.
11267.

[10] Li, M., Andersen, D.G., Smola, A.J., 2015. Graph Partitioning via
Parallel Submodular Approximation to Accelerate Distributed Ma-
chine Learning. CoRR 1505.04636. URL: http://arxiv.org/abs/1505.
04636.

[11] Park, H.M., Park, N., Myaeng, S.H., Kang, U., 2016. Partition Aware
Connected Component Computation in Distributed Systems, in: Pro-
ceedings of the 16th. IEEE International Conference on Data Mining
(ICDM ’16), IEEE. pp. 420–429. doi:10.1109/ICDM.2016.0053.

[12] Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M., Haridi,
S., 2015. A Distributed Algorithm for Large-Scale Graph Parti-
tioning. ACM Trans. Auton. Adapt. Syst. 10, 12:1–12:24. URL:
http://doi.acm.org/10.1145/2714568, doi:10.1145/2714568.

[13] Rossi, R., Ahmed, N., 2015. The network data repository with in-
teractive graph analytics and visualization. Proceedings of the AAAI
Conference on Artificial Intelligence 29. URL: https://ojs.aaai.org/
index.php/AAAI/article/view/9277.

[14] Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel, W., 2015.
Chaos: Scale-out Graph Processing from Secondary Storage, in:
Proceedings of the 25th. Symposium on Operating Systems Princi-
ples (SOSP ’15), ACM, New York, NY, USA. pp. 410–424. URL:
http://doi.acm.org/10.1145/2815400.2815408, doi:10.1145/2815400.
2815408.

[15] Wang, L., Xiao, Y., Shao, B., Wang, H., 2014. How to Partition a
Billion-Node Graph, in: Proceedings of the 30th. IEEE International
Conference on Data Engineering (ICDE ’14), IEEE. pp. 568–579.
doi:10.1109/ICDE.2014.6816682.

[16] Ward, K., Lin, D., Madria, S., 2017. MELT: Mapreduce-based Effi-
cient Large-scale Trajectory Anonymization, in: Proceedings of the
29th. International Conference on Scientific and Statistical Database
Management (SSDBM ’17), ACM, New York, NY, USA. pp. 35:1–
35:6. URL: http://doi.acm.org/10.1145/3085504.3085581, doi:10.
1145/3085504.3085581.

[17] Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z., 2017. Graph
edge partitioning via neighborhood heuristic, in: Proceedings of the
23rd. ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD ’17), ACM, New York, NY, USA.
pp. 605–614. URL: http://doi.acm.org/10.1145/3097983.3098033,
doi:10.1145/3097983.3098033.

60

https://doi.org/10.1007/s00453-014-9920-6
http://dx.doi.org/10.1007/s00453-014-9920-6
http://dx.doi.org/10.1007/s00453-014-9920-6
http://dl.acm.org/citation.cfm?id=3192424.3192429
http://dl.acm.org/citation.cfm?id=3192424.3192429
http://dx.doi.org/10.1109/ASONAM.2016.7752208
http://dx.doi.org/10.1109/ASONAM.2016.7752208
http://glaros.dtc.umn.edu/gkhome/node/419
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://www.sciencedirect.com/science/article/pii/S0743731597914039
http://www.sciencedirect.com/science/article/pii/S0743731597914039
http://dx.doi.org/https://doi.org/10.1006/jpdc.1997.1403
http://doi.acm.org/10.1145/2670979.2670997
http://doi.acm.org/10.1145/2670979.2670997
http://dx.doi.org/10.1145/2670979.2670997
http://dx.doi.org/10.1002/sam.11267
http://dx.doi.org/10.1002/sam.11267
http://arxiv.org/abs/1505.04636
http://arxiv.org/abs/1505.04636
http://dx.doi.org/10.1109/ICDM.2016.0053
http://doi.acm.org/10.1145/2714568
http://dx.doi.org/10.1145/2714568
https://ojs.aaai.org/index.php/AAAI/article/view/9277
https://ojs.aaai.org/index.php/AAAI/article/view/9277
http://doi.acm.org/10.1145/2815400.2815408
http://dx.doi.org/10.1145/2815400.2815408
http://dx.doi.org/10.1145/2815400.2815408
http://dx.doi.org/10.1109/ICDE.2014.6816682
http://doi.acm.org/10.1145/3085504.3085581
http://dx.doi.org/10.1145/3085504.3085581
http://dx.doi.org/10.1145/3085504.3085581
http://doi.acm.org/10.1145/3097983.3098033
http://dx.doi.org/10.1145/3097983.3098033

	JVLC2023toc.pdf
	JVLC Editorial Board

	x.pdf
	JVLC Editorial Board

	Blank Page
	Blank Page
	paper036.pdf
	Blank Page

	Blank Page
	paper032.pdf
	A B S T R A C T
	1.Introduction
	2.Directional Residual Frame
	2.1Overview
	2.2The calculation process of the DRF
	2.3 S-RSM with DRF

	3.Experiments
	3.1Datasets and implementation details
	3.2Experimental Results

	4.Conclusion
	References

