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A B S T R A C T
Trigger-Action Platforms (TAPs) empower users to automate tasks involving smart devices, allowing
them to either create rules from scratch or access a catalog of existing user-defined rules. Users
can explore the catalog and find rules based on their interests, relying on the so-called User-defined
descriptions (UDDs) provided by the rules’ creators. However, TAPs lack a mechanism to verify or
regulate these descriptions, resulting in potential inaccuracies or errors. This poses challenges for
users when seeking relevant rules, as descriptions may present misleading or irrelevant information.

In this paper, we propose a novel approach to semantically validate the consistency between a
rule’s UDD and its trigger-action components. To accomplish this objective, we used rules derived
from a widely used TAP, i.e., If-This-Then-That (IFTTT). From the automation rules, we constructed a
dataset of 20,000 samples, and we assigned them labels representing four distinct classes of semantic
consistency. For two of these classes, we leveraged the capabilities of a Large Language Model (LLM)
to edit the user descriptions, significantly reducing manual effort while ensuring coherent samples.
In order to evaluate the semantic consistency, we employed three NLP-based classification models,
fine-tuned on the dataset we created. This allowed us to assess the effectiveness of our proposed
approach. Among the models, the BERT-based model demonstrated superior performance, achieving
an accuracy value of 99%.

© 2023 KSI Research

1. Introduction
The Internet of Things (IoT) has revolutionized various

industries and aspects of daily life by connecting physical
devices and enabling data exchange through sensors and net-
work connectivity [20]. Intelligent IoT systems and devices
enable the automation of tasks and efficient data manage-
ment, leading to the emergence of "smart devices" that en-
hance user experiences. Trigger-Action Platforms (TAPs)
[13, 34] are crucial pieces of software in IoT systems, as they
allow users to create automation rules that trigger specific
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actions based on conditions, such as turning on the light au-
tomatically at a certain time. TAPs are particularly valuable
in End-User Development (EUD) [19, 26], as they empower
users to define their automation tasks without the need for
extensive programming knowledge in a very simple and in-
tuitive way. This user-friendly approach opens up endless
possibilities for customization and tailoring automation to
individual needs and preferences.

Each rule is composed of a trigger component, defining
the event that activates the rule, and an action component,
detailing the operation to be executed to achieve the desired
behavior. Additionally, TAPs often allow users to provide
rule-specific information in the form of a textual descrip-
tion, known as the User-defined description (UDD), which
succinctly summarizes the rule’s behavior.

The If-This-Then-That (IFTTT) 1 platform serves as the
primary and most widely used TAP in the market. Since its
inception in 2010, the platform has garnered a substantial

1https://ifttt.com

bbreve@unisa.it (B. Breve); gcimino@unisa.it (G. Cimino);
deufemia@unisa.it (V. Deufemia); anelefante@unisa.it (A. Elefante)

ORCID(s): 0000-0002-3898-7512 (B. Breve); 0000-0001-8061-7104 (G.
Cimino); 0000-0002-6711-3590 (V. Deufemia); 0009-0001-7141-6105 (A.
Elefante)

DOI reference number: 10.18293/JVLC2023-N2-035
1

www.ksiresearch.org/jvlc
https://ifttt.com


B. Breve et al. / Journal of Visual Language and Computing (2023) 1–14

Create a post on 
Facebook for any 
new tweet

Figure 1: An rule’s example with the associated UDD

and ever-growing community of followers. A notable ad-
vantage of IFTTT is its extensive catalog of rules, known
as applets, shared by community members. In this context,
UDDs play a crucial role in helping users comprehend rule
behaviors while browsing the catalog. Figure 1 presents an
example of an IFTTT rule from the catalog (with the author’s
name blurred for privacy), with the rule’s behavior summa-
rized through its UDD. In this specific instance, the rule au-
tomates the synchronization of any new tweet published by
a user on Twitter to his/her personal Facebook Page.

Sadly, the utilization of TAPs and automation rules in-
troduces security and privacy risks [10, 16, 38], as they may
grant access to sensitive data and be misinterpreted in their
behavior. The presence of IoT devices also poses potential
risks, as they could be exploited by malicious individuals
for cyber attacks [1, 25]. Additionally, users’ interactions
with TAPs can inadvertently introduce cybersecurity threats
[33]. The creation of rules through TAPs may carry inher-
ent risk, particularly due to the average user’s level of tech-
nical knowledge, which may not be sufficient to fully com-
prehend the potential consequences of seemingly innocuous
rules [11, 30]. For instance, a rule like "If the last family
member leaves the house, then turn off the lights" could in-
advertently disclose valuable information to malicious indi-
viduals, providing insights into when the user’s home will
be empty. To address these challenges, researchers have pro-
posed tailor-made solutions to safeguard users’ privacy and
security within intelligent environments [3, 9, 35].

The existence of fields like UDDs also raises significant
concerns for users [2, 7], yet this aspect has received limited
attention in the literature. TAPs such as IFTTT lack active
control over the content authors may input as UDDs, grant-
ing them the freedom to write anything to describe the be-
havior of their rules. This unrestricted approach may give
rise to several issues. Firstly, rule creators may enter UDDs
that are completely unrelated not only to the rule’s behav-
ior but also fail to conform to the typical characteristics of a

description, such as “10 Things You Need To Know!”. Con-
sequently, such rules become virtually impossible for users
to discover. Secondly, rules with imprecise UDDs might sur-
face in search results for other types of rules, making it even
more challenging for users to find rules that suit their re-
quirements accurately. Moreover, poor UDDs may lead to a
lack of understanding of the rules’ intended behavior, as the
UDD serves as a showcase for the rule’s purpose. Finally,
TAPs with shared rule catalogs can potentially expose users
to risks if malicious authors hide harmful behaviors behind
misleading descriptions. For instance, consider the rule’s
UDD in Figure 1, but assume that its trigger and action com-
ponents instead are “If anyone in your area publishes a new
tweet” and “then create a post on Facebook”, respectively.
The combination of these components could potentially re-
sult in the malicious posting of embarrassing and unwanted
texts. As a consequence, such information may automat-
ically be published on Facebook and shared with an even
wider audience without the user’s consent or awareness, un-
like what the UDD might suggest. Since both the UDD and
the actual trigger-action components involve the same ser-
vices, i.e., Twitter and Facebook, users might be deceived
into activating such a rule, unaware of the potential harm.
These concerns emphasize the need for attention and possi-
ble solutions in this domain.

To mitigate this risk is crucial to preserve the seman-
tic consistency between a rule’s behavior and its UDD. This
should be done by means of approaches that analyze UDDs
to identify potential misalignments, safeguarding users from
potential threats that may arise due to deceptive or mislead-
ing rule descriptions. Furthermore, maintaining semantic
consistency between a rule’s behavior and its UDD is im-
portant also for those approaches relying on the analysis of
UDDs to identify potential user privacy or security-related
harm caused by rules [5, 15, 31].

In response to the mentioned concerns, this paper pro-
poses a novel approach that addresses the identified issues
effectively. In previous work [6], we proposed a Bidirec-
tional Encoder Representations from Transformers (BERT)-
based model evaluating the semantic consistency between
UDDs and the trigger-action components of rules accord-
ing to two consistency classes, i.e., either complete consis-
tency between a UDD and its trigger-action component, or
complete inconsistency. In this paper, we further extend our
methodology by considering two additional classes of se-
mantic consistency, i.e., trigger-side inconsistent only and
action-side inconsistent only. Furthermore, we also com-
pared the BERT-based model [14] with two other transformer-
based NLP ones: the Generative Pre-trained Transformer 2
(GPT-2) model [28], which is a decoder-only model, and the
Text-To-Text Transfer Transformer (T5) model [29], which
combines both encoder and decoder components.

To obtain the samples to be considered for the training
following the new distribution of classes, we constructed a
dataset encompassing all conceivable scenarios related to
the generation and sharing of UDDs associated with automa-
tion rules. Leveraging a Large Language Model (LLM) [24],
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we significantly reduce manual efforts while ensuring dataset
heterogeneity. The resulting dataset contains 20,000 sam-
ples, where the actual behavior of each rule is represented
by a textual pattern derived from its components. These pat-
terns, along with the rule’s UDDs, serve as inputs for the
classification models, which calculate a semantic similarity
score between the two texts. The results demonstrated the
effectiveness of these models in categorizing semantic con-
sistency, achieving an overall accuracy rate of approximately
99%, 97%, and 91% respectively.

The paper is organized as follows: Section 2 discusses
the state of the art on semantic analysis of automation rules.
Section 3 presents an overview of the overall methodology,
detailing the model’s general architecture and outlining the
dataset construction process. Moving on to Section 4, we
describe the process of generating the dataset, encompassing
all possible types of UDDs that a user might define. For the
task of checking the semantic consistency between a rule’s
UDD and its trigger-action components, Section 5 provides
an in-depth explanation of the NLP classification models
employed. In Section 6, we present the results of the experi-
mental evaluation, assessing the effectiveness of the classifi-
cation models. Finally, Section 7 concludes the manuscript
and provides future directions for our proposal.

2. Related Work
This section presents an overview of the main research

endeavors in the world of semantic analysis of trigger-action
rules. Previous studies in the literature have primarily con-
centrated on language-to-code approaches, extracting exe-
cutable code from rule descriptions. Alternatively, there have
been efforts to improve user experience by developing ad-
vanced graphical interfaces or employing sequence-to-sequence
models for the automatic generation of rule components, stream-
lining the rule creation process for users.

Utilizing natural language to program computers has the
potential to enhance accessibility to modern technology, es-
pecially for inexperienced users [22]. One approach to achieve
this is through the development of language-to-code transla-
tors, which aid in creating trigger-action rules tailored to user
needs. By employing a semantic parser, natural language
descriptions can be converted into executable code, stream-
lining the process of rule customization and making it more
user-friendly for a broader audience. In [27], Quirk et al.
designed a language-to-code approach for natural language
programming. They collected a significant number of rule-
description pairs from the IFTTT website and used them to
train semantic parser learners capable of effectively inter-
preting natural language descriptions and mapping them to
executable code. The IF-THEN statements were represented
using Abstract Syntax Trees (ASTs), with each node denot-
ing a specific text construct and capturing its structural and
content-related details. The constructed ASTs were then fed
to several classifiers, which iteratively searched for the most
likely derivation, refining the training data to achieve desired
performance. Another study [21] by Chen et al. proposed a

neural network architecture for automatically translating nat-
ural language descriptions into IF-THEN rules. They intro-
duced an attention mechanism called Latent Attention, which
computed the importance of each word in the description
to predict rule components in a two-stage process. Addi-
tionally, Yusuf et al. presented RecipeGen, a deep learning-
based approach that utilizes a Transformer sequence-to-sequence
architecture to generate IF-THEN rules from natural language
descriptions [37]. This model treated the problem as a se-
quence learning and generation task, effectively capturing
implicit relations between rule components. To enhance gen-
eration performance, RecipeGen relied on autoencoding pre-
trained models to initialize the encoder’s parameters in the
sequence-to-sequence model.

Prior studies have mainly focused on interactions that in-
volve a user’s request and the system’s response in the form
of interpretation. However, it is essential to engage the user
in an interactive dialogue to validate and refine their inten-
tions, leading to the creation of complete and accurate rules.
Addressing this aspect, Corno et al. proposed HeyTAP [12],
a conversational and semantic-powered platform that can map
abstract user needs to executable IF-THEN rules. HeyTAP
utilizes a multimodal interface to interact with the user and
extract personalization intentions for various contexts. An
exploratory experiment involving 8 users demonstrated Hey-
TAP’s effectiveness in guiding participants from abstract needs
to concrete IF-THEN rules, which can be executed by con-
temporary TAPs. In contrast, Yao et al. [36] presented an
approach that introduced an interactive element to seman-
tic analysis. They relied on a Hierarchical Reinforcement
Learning framework to translate natural language descrip-
tions into IFTTT rules. The approach involved training an
agent with a hierarchical policy to maximize parsing accu-
racy while minimizing the number of questions asked to the
user, making the process more efficient and user-friendly.
Additionally, Huang et al. [18] conducted an in-depth analy-
sis of the potential implications of incorporating natural lan-
guage interfaces to assist users in customizing and automat-
ing their personal devices. They introduced Instructable-
Crowd, a crowd-powered system enabling users to program
their devices via a natural language interface. The system
focuses on creating simple programs that are easy to use
and employs human crowd workers to operate the natural
language interface. By incorporating more than one sen-
sor/effector, InstructableCrowd addresses key problems with
device customization and automation, offering a promising
approach for programming devices in the future.

Unlike the approaches that concentrate on generating ex-
ecutable rules from natural language descriptions [12, 21,
27, 36, 37], or aim to enhance the rule definition process
through user interactions [18], we address a different prob-
lem. We focus on checking the semantic consistency of a
UDD against the actual rule behavior before its dissemina-
tion. This ensures that the UDD accurately represents the
intended behavior of the rule and reduces the risk of mis-
leading or deceptive rule descriptions.
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Figure 2: Proposed process for constructing the dataset and evaluating NLP-based models for checking the semantic consistency
of a rule’s UDD with respect to its trigger-action components. (a) Dataset construction. (b) Models training. (c) Models testing.

3. Methodology
In this section, we outline the approaches undertaken to

build a comprehensive dataset encompassing UDD samples
and to identify the most suitable NLP classification model
for our specific objectives. In particular, Figure 2 illustrates
the step-by-step process leading to the creation of the dataset
and the establishment of effective supervised models to ac-
curately examine the semantic relationships between UDDs

and the synthesized patterns of their trigger-action compo-
nents.

This process involves three main phases:
a) Building and Labeling the Dataset: The primary ob-

jective of this step is to prepare the labeled dataset
required for training the NLP classification models.
However, before initiating this procedure, it is essen-
tial to establish a pattern that effectively synthesizes
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the behavioral aspects of a rule based on its trigger-
action components. This pattern will serve as a refer-
ence for analyzing the corresponding UDD.
Furthermore, it is imperative to define the possible
consistency classes for the UDD-pattern pairs and their
associated labels. These classes categorize the UDDs
into different types based on their alignment with the
synthesized patterns. To achieve this, we first worked
with the original dataset and partitioned it into four
distinct samples. Each sample corresponds to differ-
ent types of UDDs that a user might define for their
rule, resulting in a diverse representation of descrip-
tions across various consistency scenarios. By doing
so, we ensure that each sample represents a consistent
class, simplifying the labeling process significantly.
To account for various real-world scenarios, it was
crucial to introduce shuffling mechanisms during the
construction of three of these samples. These shuf-
fling mechanisms (depicted as "Sr", "St", and "Sa"
in Figure 2) introduce negative and partially negative
samples of UDDs, considering that users might de-
fine descriptions that are inconsistent with the trigger
component, the action component, or both. As a re-
sult, the shuffling mechanisms randomly modify one
or both components of the rules in these samples, al-
lowing us to incorporate samples of inconsistent and
partially inconsistent UDDs.
Finally, all the samples are consolidated to create a
labeled dataset that includes all types of samples re-
quired for training the NLP classification models. The
dataset now comprises a large set of rules labeled ac-
cording to their respective consistency classes, provid-
ing a solid foundation for the subsequent model train-
ing and evaluation stages.

b) Training NLP Classification Models: This stage fo-
cuses on training classification models using the la-
beled UDD-pattern pair dataset, referred to as the train-
ing set. The features used for training the models en-
compass the textual representation of the UDD, along
with the corresponding synthesized pattern. By lever-
aging NLP techniques, we can extract crucial seman-
tic information from these components, which the clas-
sification models can utilize to discern and distinguish
among various consistency classes.
To ensure the effectiveness and accuracy of the classi-
fication models, we carried out a meticulous phase of
dataset construction. As a result, we achieved a bal-
anced training set, wherein each consistency class is
evenly represented by 5,000 samples. This balanced
distribution eradicates the issue of some classes being
more frequent than others, preventing potential bias
and ensuring that the models are equally well-trained
on all consistency scenarios.

c) Testing NLP Classification Models: In this phase, our
main objective is to thoroughly evaluate the perfor-

mance of the NLP classification models. This evalu-
ation is accomplished by providing the classification
models with a carefully selected set of labeled UDD-
pattern pairs, which serves as the input for testing their
capabilities in determining semantic consistency.
To measure the effectiveness and accuracy of the mod-
els, we employ well-known evaluation metrics, i.e.,
Precision, Recall, F1-score, and Accuracy. By using
these widely recognized evaluation metrics, we can ef-
fectively assess and compare the performance of the
NLP classification models in the context of semantic
consistency checking. These metrics provide valuable
insights into the models’ strengths and weaknesses, al-
lowing us to make informed decisions about their suit-
ability for real-world applications.

In the following sections, we provide a comprehensive
description of the steps involved in constructing the labeled
dataset tailored to serve our specific objectives. This dataset
forms a crucial foundation for our research, facilitating the
training and evaluation of the NLP classification models em-
ployed in our task.

4. Dataset Construction
As mentioned above, this section aims to outline the pro-

cess of dataset construction and labeling, which serves as the
foundation for training classification models dedicated to as-
sessing the semantic consistency between the trigger-action
components of an IFTTT rule and the accompanying nat-
ural language description. Our focus is on presenting both
the starting dataset employed during analysis and the techni-
cal mechanisms involved in generating a new dataset specif-
ically tailored for semantic consistency evaluation.
4.1. IFTTT Rule Dataset

In our study, we utilized the dataset proposed by Mi et
al. [23], which provides a collection of IFTTT rules ob-
tained from crawling the IFTTT.com website. The dataset
contains important information such as the rule’s title (Ti-
tle), a description explaining the rule behavior (Desc), the
event that triggers the rule (TriggerTitle) defined through a
specific channel (TriggerChannelTitle), the action to be per-
formed (ActionTitle) selected from the corresponding chan-
nel (ActionChannelTitle), and the name of the rule creator
(Creator Name).

Exploiting the valuable information provided by IFTTT,
we embarked on a novel approach for building a new dataset
by devising a specialized pattern for synthesizing UDDs.

These patterns were meticulously designed to ensure a
coherent and precise representation of a rule’s behavior, cap-
turing essential details about its trigger and action compo-
nents presented in the original dataset. These structured pat-
terns played a pivotal role in our research, serving two sig-
nificant tasks.

The first task centered around the core objective of our
study: the semantic consistency checking task. By employ-
ing the synthesized patterns, we were able to assess the se-

5



B. Breve et al. / Journal of Visual Language and Computing (2023) 1–14

mantic alignment between a rule’s trigger-action components
and the corresponding UDD.

The second task involved harnessing the potential of Large
Language Models (LLMs). By generating new random pat-
terns using our structured approach, we presented these pat-
terns as input to the LLM. This enabled us to generate sam-
ples of erroneous descriptions that users might write, en-
compassing incorrect triggers, actions, or even both com-
ponents. This allowed for a comprehensive examination of
potential user errors, broadening the scope of our analysis
beyond just consistent samples.

In the final stage, we carried out dataset labeling by cate-
gorizing each UDD-pattern pair into its defined consistency
class. This critical process significantly enhanced the effi-
ciency of data organization and analysis. By accurately la-
beling the pairs, we ensured that our dataset encompassed
a diverse representation of consistency scenarios, including
complete consistency, complete inconsistency, and partial
consistency of a UDD.
4.2. Synthesizing a UDD from the components of a

rule
In our earlier study, we devised a structure that func-

tions as a natural language description to evaluate the coher-
ence between a UDD and the real behavior of a rule. This
structure incorporates essential rule elements such as trig-
ger, trigger channel, action, and action channel. The spe-
cific pattern used for generating the synthesized UDD is as
follows:

IF TriggerTitle (TriggerChannelTitle) THEN Ac-
tionTitle (ActionChannelTitle)

The adoption of this standardized format offers a concise
and comprehensive representation of the core elements and
occurrences associated with a specific rule. To illustrate this,
we provide an example using an IFTTT rule that consists of
the following components:

• TriggerTitle: “Any new SMS received”
• TriggerChannelTitle: “Android SMS”
• ActionTitle: “Send me an email”
• ActionChannelTitle: “Email”
The synthesized pattern for this rule is as follows:

IF Any new SMS received (Android SMS) THEN
Send me an email (Email)

This pattern offers a succinct and clear representation of
the rule’s components and their corresponding values, mak-
ing it easy to understand the intended functionality. This
holds true even after examining the original description:

When a text message arrives, forwards it to your
email.

4.3. Sample Generation
To configure an effective model, we undertook the cre-

ation of a new dataset, encompassing all possible types of
UDDs that a user could generate for their automation rules.
These UDD types fall into three distinct macro categories:

• Completely Consistent UDDs: These UDDs are co-
herent, aligning perfectly with both the trigger and ac-
tion components.

• Completely Inconsistent UDDs: In contrast, these UDDs
lack coherence with both the trigger and action com-
ponents.

• Partially Consistent UDDs: This category includes
UDDs that exhibit coherence with either the trigger
component or the action component, but not both.

To achieve this UDD diversification, we utilized the syn-
thesizing strategy described in the previous section. Before
delving into the strategy’s adoption, we first defined the de-
sired final structure of the dataset. Our objective was to con-
struct a random sample of 20,000 entries, each comprising
three key features: the UDD (description component), the
synthesized pattern, and the corresponding label indicating
the class of consistency between the UDD and its pattern.

After this, we embarked on generating different types of
UDDs. For the first type of UDD (completely consistent), we
randomly selected 5,000 rules with consistent descriptions
from the initial dataset and synthesized their corresponding
patterns from the rule’s components. For the second type
(completely inconsistent), we took 5,000 random rules and
replaced each one’s correct description with a different de-
scription that includes a distinct combination of trigger and
action components. This shuffling mechanism introduces in-
consistencies in the UDDs. It is important to note that the
shuffling is applied only to the UDDs, while the patterns are
synthesized with the correct components of the user’s rule.

However, the most challenging aspect was defining sam-
ples for the last type of UDDs (partially consistent). To ad-
dress this, we selected 10,000 random rules from the original
dataset and divided them into two separate sets. This divi-
sion enabled us to obtain 5,000 patterns with only the wrong
trigger component (randomized from the other trigger com-
ponents of the dataset) and another 5,000 patterns with only
the wrong action component (randomized from the other ac-
tion components of the dataset). These newly construed pat-
terns were then used as input for the LLM Alpaca-Lora 2
[17, 32] to generate partially correct UDDs.

We adopted this approach due to the difficulty in design-
ing precise instructions for a LLM. Instead, we opted for a
single prompt, instructing the model to generate a textual
description explaining the behavior of the automation rule

2https://crfm.stanford.edu/2023/03/13/alpaca.html
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based on the input pattern containing the trigger and action
components. The instruction prompt is the following:

Given an input sentence containing the trigger and
action components of a trigger-action rule, execute
the following instruction:
"Generate a textual description explaining the be-
havior of the trigger-action rule."

For example, given the following partially consistent pat-
tern:

IF Current condition changes to (RSS Feed), THEN
Post a tweet (Twitter)

The model generates the corresponding UDD:

When the current condition changes to RSS Feed, a
tweet is posted on Twitter.

This prompt was used for both tasks, streamlining the
process and ensuring consistent results. It is worth noting
that, in the final dataset, we have the patterns synthesized
with the correct components of the user’s rule. The described
process was solely for defining samples of partially correct
user descriptions, and the generated UDDs were manually
checked to ensure their correctness.

By incorporating these techniques and expanding the dataset
to include a wide range of UDD types, we achieved a more
robust and accurate set of data for the training phase.
4.4. Data Labeling

For the final stage of dataset composition, we proceeded
to assign the appropriate labels to the UDD-pattern pairs.
Building on our previous work [6], we had initially defined
two semantic similarity classes:

• Contradiction: This label denotes inconsistency be-
tween the UDD and the synthesized pattern, indicat-
ing that the UDD and the pattern do not align in their
descriptions.

• Entailment: This label signifies consistency between
the UDD and the synthesized pattern, implying that
the UDD’s description is in agreement with the pat-
tern.

However, this approach resulted in the exclusion of some
possible scenarios, specifically the partial consistency UDDs,
from the definition of a trigger-action rule description.

To address this limitation, we decided to define more ap-
propriate labels for UDD-pattern pairs, taking into account
the internal division of the dataset. As a result, we delineated
the following four classes:

• “ee”: This class denotes complete consistency between
the UDD and the synthesized pattern, indicating that

both the trigger and action components are accurately
represented in the UDD.

• “cc”: This class denotes complete inconsistency be-
tween the UDD and the synthesized pattern, indicat-
ing that neither the trigger nor the action components
are correctly aligned in the UDD.

• “ec”: This class denotes partial consistency between
the UDD and the synthesized pattern, with a focus on
the trigger component. Specifically, the trigger com-
ponent in the UDD is correct, but the action compo-
nent does not align with the pattern.

• “ce”: This class denotes partial consistency between
the UDD and the synthesized pattern, with a focus on
the action component. Specifically, the action compo-
nent in the UDD is correct, but the trigger component
does not align with the pattern.

With the generation of our new dataset, we no longer re-
quire manual labeling since we have systematically produced
the samples. Through the devised strategy and patterns, we
are able to create diverse UDD-pattern pairs, covering vari-
ous consistency scenarios, including completely consistent,
completely inconsistent, and partially consistent cases.

The use of the LLM Alpaca-Lora enabled us to gener-
ate new UDDs that mimic user-generated descriptions with
errors or partial consistencies. This procedure proved espe-
cially beneficial for creating UDDs falling into the "ec" and
"ce" classes, where either the trigger or the action component
was accurately represented, but the other exhibited inconsis-
tencies. By automating the sample generation process, we
have significantly reduced the manual effort involved in la-
beling the data. The resulting dataset contains a compre-
hensive representation of UDDs, covering a wide range of
semantic similarities with their corresponding synthesized
patterns.

With this augmented dataset, we can now proceed to
train and evaluate our NLP classification models for the se-
mantic consistency checking task more efficiently and effec-
tively. The automated generation of samples not only saves
time but also enhances the dataset’s diversity, contributing
to the overall robustness and accuracy of the trained models.

5. Classification Models
This section details the implementation of models for

classifying the UDD-pattern pairs, the techniques used to
develop each model, and the training phase setup.

We consider three different transformer-based models to
assess the semantic consistency between UDDs and rule be-
haviors:

1. BERT-based model: This model is based on BERT
[14]. The latter is an encoder-only model that uti-
lizes deep bidirectional transformers and has been pre-
trained on a large corpus of data to create a powerful
NLP language representation model.
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2. T5 model: The T5 [29] model adopts a unique ap-
proach as an encoder-decoder model, learning to pre-
dict masked words in sentences through a corrupting
span denoising objective.

3. GPT-2 model: The GPT-2 [28] model is an unsuper-
vised generative language model developed by Ope-
nAI. It operates as a decoder-only model based on the
transformer architecture.

By employing these three transformer-based models, we aim
to thoroughly analyze and compare their performance in de-
termining the semantic alignment between UDDs and rule
behaviors. The first model, based on the BERT architec-
ture, involves an encoder-only approach and a feature ex-
traction layer to represent input tokens. The second model,
T5, utilizes both encoder and decoder components, offering
insights into the performance of combined architectures. Fi-
nally, the third model, GPT-2, allows us to explore the capa-
bilities of a purely generative approach.

In all models, features are treated as text. Moreover,
before training the models, a pre-processing phase is per-
formed to remove noise from UDDs. This includes opera-
tions such as normalization and lemmatization on the textual
values.
5.1. BERT-based Model

The Bidirectional Encoder Representations from Trans-
formers (BERT)-based model’s architecture for classifying
the semantic consistency of UDD-pattern pairs is illustrated
in Figure 3. This model comprises interconnected compo-
nents working together to achieve the objective. The initial
component is the Input Layer, which encodes UDD-pattern
pairs into numerical representations known as dense vectors.
These dense vectors are then processed by the BERT lan-
guage model, consisting of multiple Transformer Encoder
Layers that generate contextual representations of each word
in the input sequence using self-attention. Each layer pro-
duces dense vectors capturing different levels of syntactic
and semantic information.

Next, the sequence obtained from the BERT model is
passed to the Feature Extraction Layer, containing a Bidi-
rectional Long Short-Term Memory (BiLSTM) Layer. The
BiLSTM is designed to store past and future context, and
its output consists of a sequence of vectors representing the
hidden states at each time step. These hidden states are con-
catenated to create a representation capturing global features
and dependencies.

The output from the BiLSTM Layer is processed through
an Average Pooling Layer and a Max Pooling Layer, reduc-
ing dimensionality by aggregating information across the se-
quence. Average pooling calculates the average value of
each feature, providing an overall representation and distri-
bution. On the other hand, max pooling selects the maxi-
mum value from each dimension, highlighting salient fea-
tures. Both pooling operations are concatenated through a
Feature Concatenation module to create a comprehensive
representation that captures overall context and important
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Figure 3: The architecture of the BERT-based model

local details. A Dropout operation is applied before feeding
the concatenated data to the Output Layer, randomly drop-
ping out input features to mitigate overfitting.

The Output Layer utilizes the extracted features to eval-
uate semantic consistency between rule descriptions and cor-
responding patterns. It applies linear transformations to com-
pute the final classification output of the model, determin-
ing whether the UDD-pattern pairs exhibit semantic consis-
tency.
5.2. T5 Model

The architecture of the Text-To-Text Transfer Transformer
(T5) model, designed specifically for the text classification
task, is delineated in Figure 4. T5’s approach to text classifi-
cation is distinct from traditional methods that use separate
encoder and decoder components. Instead, it transforms all
tasks into a text-to-text format, where both the input and out-
put are treated as text sequences. This allows T5 to handle
different tasks by simply modifying the input and output rep-
resentations.

The architecture begins with an Input Layer that takes
the UDD-pattern pairs to be classified as input. The input
text is processed and converted into a sequence of tokens,
with each token representing a word or subword unit. These
tokens are then embedded into a dense, continuous vector
space using an Embedding Layer.

The embedded tokens enter the Encoder Transformer Blocks,
which are responsible for processing the input text. Each en-
coder block consists of a multi-head self-attention layer, a
feedforward neural network layer, and layer normalization.
The self-attention layer allows the model to attend to differ-
ent parts of the input text, capturing the relationships be-
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Figure 4: The architecture of the T5 model

tween words and their context. The Feedforward Neural
Network introduces non-linear transformations, and layer nor-
malization helps stabilize the training process.

The output of the encoder blocks is a sequence of con-
textualized representations, with each token’s representation
containing information about its surrounding context. These
representations are then passed to the Decoder Transformer
Blocks. The latter further process the encoder’s contextual-
ized representations to generate task-specific outputs. Each
decoder block has similar components to the encoder blocks,
such as multi-head self-attention, Feedforward Neural Net-
works, and layer normalization. However, the decoder also
includes cross-attention layers, allowing it to focus on both
the input sequence and the task representation simultane-
ously.

Finally, the Output Layer receives the processed output
from the last decoder block. This layer is customized to the
specific text classification task and further processes the con-
textualized representations. It produces classification scores
for each possible class, determining the predicted class for
the input text based on the highest probability.
5.3. GPT-2 Model

The Generative Pre-trained Transformer 2 (GPT-2) model
was originally designed for generating coherent and diverse
text, but its capabilities have extended to include highly use-
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Figure 5: The architecture of the GPT-2 model

ful applications in text classification tasks as well.
The architecture of GPT-2, as depicted in Figure 5, is

based on the transformer architecture, and it primarily lever-
ages the decoder component of the transformer. Unlike encoder-
decoder models such as T5, GPT-2 does not utilize the en-
coder part of the transformer. This design choice enables
GPT-2 to excel in its primary function of generating text with
contextual understanding.

In the context of text classification with UDD-pattern
pairs as input, GPT-2’s architecture begins with an Input
Layer, which takes a sequence of tokens representing words
or subword units. These tokens are then transformed into
dense, fixed-dimensional vectors using an Embedding Layer.
This mapping process places the tokens into a continuous
vector space, facilitating the model’s ability to capture se-
mantic relationships and similarities between words.

The embedded tokens are then passed through a series
of Decoder Transformer Blocks. Each transformer block is
a stack of layers, consisting of a multi-head self-attention
mechanism, which allows the model to attend to different
parts of the input sequence and capture dependencies be-
tween words in the context of the entire sequence. Addi-
tionally, each block contains a Feedforward Neural Network
Layer, which introduces non-linear transformations to the
token representations, further enhancing the model’s ability
to model complex relationships.

In order to ensure stable training and facilitate faster con-
vergence, each transformer block incorporates a normaliza-
tion phase. This process normalizes the activations in each
layer, enhancing the robustness of the optimization process.

As the input sequence progresses through the stack of
transformer blocks, the model gains a deeper understanding
of the context and relationships between the tokens. The fi-
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nal transformer block produces a sequence of hidden states,
where each hidden state corresponds to the encoded repre-
sentation of its corresponding token.

For text classification tasks, the hidden states are then
passed to the Output Layer, which performs a weighted com-
bination of the hidden states and generates classification scores
for each possible class. The class with the highest score is
selected as the predicted class for the input text.

6. Models Evaluation
In this section, we present an analysis of the performances

of the classification models. Specifically, we provide details
on the experimental setup, the adopted metrics, and the re-
sults obtained from the experiments. The code of the soft-
ware is publicly available on GitHub3.
6.1. Evaluation Setup

In the evaluation phase, we trained the three NLP models
using specific methodologies.

For the BERT-based model, we followed a two-step pro-
cess. Initially, we froze all pre-trained layers and focused
on training only the top layers. This allowed us to extract
features by utilizing the representations of the pre-trained
model. After feature extraction, we proceeded with an ad-
ditional fine-tuning step. During this step, we unfroze the
BERT model and retrained the entire architecture with a sig-
nificantly low learning rate. The objective was to progres-
sively adapt the pre-trained features to the new data, leading
to enhanced model performance.

To pre-train and fine-tune the BERT-based model, we
utilized Python libraries, specifically Keras and TensorFlow.
We chose the “bert-base-uncased” variant, which has 12
transformer blocks, 768 hidden units, and 12 self-attention
heads. It is designed to handle lowercase letters. The train-
ing set consisted of 13,999 samples, encompassing all four
types of consistency classes. To optimize hyperparameters,
we employed a validation set with 4,000 samples. The best
hyperparameter configuration included 4 epochs, a batch size
of 64, an epsilon set to 1e-5, and a maximum text length of
70. The model’s performance was then evaluated using a
test set of 2,001 UDD-pattern labeled pairs.

For GPT-2 and T5, we followed the same libraries and
dataset sizes but made adjustments to hyperparameters. T5
was trained with 6 epochs, a batch size of 24, and a maximum
text length of 70. On the other hand, GPT-2 was trained with
5 epochs, a batch size of 32, and a maximum text length of
60.
6.2. Evaluation Metrics

The performance evaluation of the proposed models in-
volves several metrics, i.e., Accuracy, Precision, Recall, and
F1-score. These metrics are computed based on the values
of True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). The evaluation metrics can
be expressed as follows:

3https://github.com/empathy-ws/TAP-Semantic-Consistency-Checking
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Figure 6: Confusion Matrix of the BERT-based model

• Accuracy is a measure of the overall correctness of a
model’s predictions, expressed as the ratio of the num-
ber of correctly classified samples to the total number
of samples evaluated:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

• Precision is a measure of the proportion of true posi-
tive samples among all samples that the model identi-
fied as positive:

Precision = TP
TP + FP

(2)

• Recall is a measure of the proportion of true positive
samples among all actual positive samples:

Recall = TP
TP + FN

(3)

• F1-score is the harmonic mean of Precision and Re-
call:

F1 = 2 × Precision × Recall
Precision + Recall

(4)

6.3. Results and Discussion
In our investigation, we leveraged three transformer-based

NLP models to evaluate the semantic consistency between
UDDs and rule behaviors. The confusion matrices obtained
from the classification results on the test set for each classifi-
cation model are presented in Figure 6, Figure 7, and Figure
8, respectively. Additionally, Table 1 provides the resulting
values of Accuracy, Precision, Recall, F1-score, and the av-
erage of the per-class metrics for each model.

The BERT-based model achieved the highest accuracy
and precision values (99%), indicating its superior ability to
make correct predictions overall. It excelled in identifying
the ee and ec classes with high recall rates but encountered
challenges in distinguishing class cc, leading to some mis-
classifications where ee was incorrectly predicted as cc. On
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Figure 8: Confusion Matrix of the GPT-2 model

the other hand, the T5 model achieved an accuracy of 97%,
exhibiting strong overall performance. Specifically, it per-
formed well in identifying the ee and ec classes, evident from
their recall values (Table 1). However, akin to the BERT-
based model, the T5 model encountered difficulties concern-
ing class cc, frequently leading to erroneous classification
as an ee class. Finally, the GPT-2 model achieved an accu-
racy of 91% and exhibited the lowest discriminative ability
among the three models. As highlighted by the confusion
matrix (Figure 8), it faced notable challenges in differenti-
ating class cc from other classes, increasing confusion be-
tween ec and ce. Despite these limitations, the GPT-2 model
still produced mostly correct predictions.

The superior performance of the BERT-based model over
the T5 and GPT-2 models can be attributed to the fundamen-
tal differences in their pre-training approach. In particular,
BERT leverages the Masked Language Modeling (MLM)
[14] technique during pre-training, where certain words in
the input text are randomly masked, and the model is tasked
with predicting these masked words based on contextual cues
from the surrounding words. This process equips BERT

Table 1
Classification performances of the models on the test set

Metric cc ce ec ee Avg

BERT
Precision (%) 98 100 100 98 99
Recall (%) 98 100 100 98 99
F1-score (%) 98 100 100 98 99
Accuracy (%) 99

T5
Precision (%) 95 100 100 94 97
Recall (%) 93 100 100 95 97
F1-score (%) 94 100 100 94 97
Accuracy (%) 97

GPT-2
Precision (%) 95 87 87 96 91
Recall (%) 95 81 88 100 91
F1-score (%) 95 84 87 98 91
Accuracy (%) 91

with a solid capability for acquiring contextual representa-
tions of words and comprehending intricate relationships be-
tween them within sentences. On the contrary, T5 adopts an
innovative text-to-text approach [29] during its pre-training
phase, where the input text serves as a description of a spe-
cific NLP task, while the output text represents the corre-
sponding solution or result for that particular task. When
focusing specifically on classification tasks, the MLM ap-
proach of BERT exhibits notable advantages. By predicting
masked words, BERT gains a deeper understanding of how
words are interconnected within a given context, resulting
in the proficient classification of text. Instead, formulating
classification tasks into the text-to-text format for T5 might
not be as straightforward as employing BERT’s masked lan-
guage modeling. Indeed, ensuring that the task descriptions
lead to accurate and effective classification can pose chal-
lenges and may necessitate meticulous formulation and ex-
perimentation to achieve optimal results. Furthermore, it is
essential to consider the trade-off between specificity and
generalization. While BERT’s MLM approach enables it to
focus on the contextual nuances of individual words, T5’s
text-to-text approach emphasizes generalization across di-
verse tasks. As a consequence, T5 might not capture certain
task-specific nuances as effectively as BERT in certain clas-
sification scenarios. Finally, unlike the BERT and T5 mod-
els, the GPT-2 model adopts a unidirectional approach (i.e.,
it processes tokens in a left-to-right manner), which can re-
sult in a less comprehensive understanding of the input text.
This unidirectional nature may have impacted its ability to
effectively differentiate between the classes, particularly in
cases where the context from the right side of the input text
was crucial for accurate prediction.

The promising performance of models in checking se-
mantic consistency between UDDs and rule behavior presents
opportunities for further research and improvements in trans-
former-based NLP classification for similar tasks. Under-
standing the strengths and weaknesses of different transformer
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models helps inform the selection of appropriate models based
on the task requirements. As transformer-based NLP models
continue to advance, they hold great potential in enhancing
the accuracy and efficiency of various natural language un-
derstanding tasks, benefiting a wide range of applications in
the domain of IoT device automation and beyond.

7. Conclusion and Future Work
This paper introduces an innovative approach to tackle

the issue of potential inaccuracies and misleading informa-
tion in UDDs shared on TAPs. We developed a new dataset
that comprehensively covers different types of UDD scenar-
ios, including consistent, inconsistent, and partially consis-
tent descriptions. To achieve this, we leveraged an LLM
to generate samples with partially correct UDDs, which re-
duced the manual workload and increased dataset hetero-
geneity.

The evaluation involved three NLP classification mod-
els: BERT-based, T5, and GPT-2. The BERT-based model
underwent a two-step training process, where initially, the
top layers of the pre-trained model were targeted for train-
ing, and then fine-tuning was conducted with the entire ar-
chitecture. The T5 and GPT-2 models were also trained us-
ing the same dataset size as BERT. The experimental results
on the IFTTT dataset, consisting of 20,000 labeled UDD-
pattern pairs, demonstrated the effectiveness of the proposed
models. The BERT-based model demonstrated remarkable
performance, achieving an overall accuracy of 99%, com-
plemented by precision, recall, and F1-score, all attaining
a value of 99% as well. In contrast, the T5 model exhib-
ited slightly inferior performance, with all evaluation met-
rics registering at 97%. The GPT-2 model yielded the least
favorable results, scoring 91% for all evaluation metrics. This
outcome accentuates the relatively weaker performance of
the decoder-only architecture-based model in performing the
classification task. Nevertheless, it is noteworthy that all
models exhibited a high degree of reliability in discerning
compliant UDDs from unrelated ones, establishing a robust
and dependable method for conducting semantic consistency
checks in TAPs.

In the future, we would like to consider the adoption of
this approach in other TAPs beyond the IFTTT case study.
This broader application would enable us to further validate
the robustness and effectiveness of our classification mod-
els in different environments and contexts. Additionally, we
aim to explore potential enhancements to the models, such
as incorporating more advanced NLP techniques or leverag-
ing larger and more diverse datasets for training. Further-
more, we believe that integrating user feedback and iterative
improvements to the models would be valuable in optimiz-
ing the accuracy and reliability of the semantic consistency
checking process. In addition, providing explainability to
users has already been proven to increase users’ trust in the
systems in several domains [4, 8]. Thus, we think incor-
porating such a module would allow us to contribute to the
evolution of TAPs, in terms of trust, security, and ease of

use in defining automation rules while safeguarding users
against potential risks arising from misleading or deceptive
rule descriptions.
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