
D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

Graphical Animations of an Autonomous Vehicle Merging Protocol⋆
Dang Duy Buia, Minxuan Liua, Duong Dinh Trana and Kazuhiro Ogataa,∗
aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

ART ICLE INFO
Article History:
Submitted 3.21.2023
Revised 3.30.2023
Accepted 4.3.2023

Keywords:
state machines
graphical animations
Maude
autonomous vehicle merging protocol
state picture template
Gestalt principles
lockout freedom property
counterexample visualization

ABSTRACT
State machine graphical animation (SMGA) is a tool that takes a state picture template and a state
sequence of a state machine as inputs and generates a graphical animation of the state machine by
replacing each state in the sequence with the corresponding state picture made from the state picture
template as an output. SMGA helps humans to discover characteristics of state machines. r-SMGA
is an integration of SMGA and Maude, a formal specification language/tool. Maude is equipped
with various functionalities, such as a reachability analyzer (the search command) and an LTL model
checker. r-SMGA makes it possible to use such Maude functionalities inside r-SMGA. We suppose
that we understand a system/protocol so that we canwrite a formal specification of the system/protocol.
Thus, we know some characteristics of the system/protocol, such as the values that characterize each
state of the state machine. Characteristics that can be observed through the formal specification of
a system/protocol are called shallow characteristics. Even shallow characteristics positively affect
the quality of state picture templates. In this paper, we use an autonomous vehicle merging protocol
as an example to demonstrate the claim. We also rely on some Gestalt principles to design state
picture templates. Based on our design and Gestalt principle, we describe how to discover deeper
characteristics of the statemachine that formalizes the protocol with r-SMGAand how to filter out false
characteristics with the search command available in r-SMGA if characteristics are likely invariant
properties. In addition to invariant properties, there are some other important classes of properties
with respect to state machines, such as leads-to properties. We change the behavior of each vehicle
(such change does not affect the essence of the protocol) and find that the protocol does not enjoy a
leads-to property with the model checker available inside r-SMGA, finding a counterexample. The
loop part of the counterexample is graphically animated, which makes us comprehend reasons why
the protocol does not enjoy the property and come up with a revised version that enjoys the property.

© 2023 KSI Research

1. Introduction
Statemachine graphical animation (SMGA) [20] is a tool

to visualize a system/protocol formalized as a state machine.
The input of SMGA is a state picture template (designed by
humans) and a state sequence (generated from a formal spec-
ification of a system/protocol by Maude, a formal specifica-
tion language/tool [17]). The output is a graphical animation
of the state machine by replacing each state in the sequence
with the corresponding state picture made from the state pic-
ture template. SMGA can aid humans in discovering charac-

⋆The present paper is an extended and revised version of the paper [6]
presented at DMSVIVA 2022

∗Corresponding author

teristics of systems/protocols [2, 7, 9, 18] through observing
their graphical animations. r-SMGA [10] is an integration of
SMGA and Maude. Maude is equipped with various func-
tionalities, such as a reachability analyzer (the search com-
mand) and an LTL model checker, were LTL stands for lin-
ear temporal logic. r-SMGA makes it possible to use such
Maude functionalities inside r-SMGA, and to automatically
generate a state sequence from a Maude specification. The
present paper reports on a case study in which r-SMGA is
mainly used. Because designing state picture templates is
the key task in r-SMGA [9], it is worth investigating this
task. In this paper, we describe how to design state pic-
ture templates for r-SMGA by using a concrete non-trivial
example, a revised version [16] of the autonomous vehicle
merge protocol proposed by Aoki and Rajkumar [1]. The
original protocol proposed by Aoki and Rajkumar is called

bddang@jaist.ac.jp (D.D. Bui); liuminxuan@jaist.ac.jp (M. Liu);
duongtd@jaist.ac.jp (D.D. Tran); ogata@jaist.ac.jp (K. Ogata)

ORCID(s): 0000-0002-2700-1762 (D.D. Bui); 0000-0001-7092-2084
(D.D. Tran); 0000-0002-4441-3259 (K. Ogata)
DOI reference number: 10-18293/JVLC2023-N1-027

9

www.ksiresearch.org/jvlc

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

the AR protocol, while the revised version is called the r-
AR protocol. The AR protocol depends on realtime infor-
mation, while the revised version does not. The reason why
Liu, et al. [16] made the revised version non-realtime was
because they would like to focus on more basic mechanisms
that have nothing to do with realtime and to this end, it would
be reasonable to remove any realtime information on which
the AR protocol relies. The goal of the AR protocol is to
control autonomous vehicles to avoid crashing each other at
a merge point where two lanes (a through lane and a non-
through one) are merged, and so does the r-AR protocol.

To handle the goal of the r-AR protocol, the authors [16]
use statuses for each vehicle. Let us briefly describe how
each vehicle changes its status in the protocol. Each vehi-
cle on each of the through and non-through lanes is initially
in the running status, meaning that it is enough far from the
merge point and it may go over the vehicles running in front
of it. When it gets enough near the merge point, its status
changes to the approaching one. When a vehicle is in the
approaching status, we suppose that it never goes over the
vehicles running in front of it. The vehicle on each lane just
in front of the merge point will pass through the merge point
or stop just before the merge point. In other words, if the
former occurs, the vehicle’s status changes to crossing; oth-
erwise, it changes to stopped. Finally, when a vehicle passed
the merge point, its status changes to crossed from the cross-
ing status.

In the paper, we describe graphical animations of the r-
AR protocol, where the main idea is to visualize each vehi-
cle’s status with its lane (i.e., through or non-through) based
on Gestalt principles. We design state picture templates of
the r-AR protocol based on these ideas and shallow charac-
teristics of the protocol (obtained via its specification). By
observing graphical animations, we conjecture some deep
characteristics of the r-AR protocol to show that Gestalt prin-
ciples is one factor affecting the design of state picture tem-
plate.

In the formal verification of the r-AR protocol, we sup-
pose that a small number of vehicles participate in the r-AR
protocol, and each vehicle on each of the through and non-
through lanes passes through the merge point once; and only
consider invariant properties as desired properties. There are
some more non-invariant desired properties of the r-AR pro-
tocol. One such possible property is that vehicles approach-
ing the merge point or stopping just in front of the merge
point on each lane will eventually pass through the merge
point. The property belongs to a class of liveness properties,
precisely leads-to properties, and is called the lockout free-
dom property in this paper. We use the Maude LTL model
checker (integrated into r-SMGA) such that the r-AR pro-
tocol enjoys the lockout freedom property; and do not find
any counterexamples. The result is not surprising because
a small number of vehicles participate in the r-AR proto-
col and each vehicle passes through the merge point once.
Thus, we modify the formal specification of the r-AR proto-
col such that each vehicle repeatedly tries to pass through the
merge point. In other words, when each vehicle running on

each lane has passed through the merge point, it goes back
to the running status and repeatedly runs following the pro-
tocol’s behavior. When we model check that such version
enjoys the lockout freedom property, we find a counterex-
ample whose form is a finite sequence of states plus a finite
loop of states. We newly design the state picture template for
the modified formal specification of the r-AR protocol. We
also revise r-SMGA so that it can handle the finite loop of
states in a counterexample. By observing the graphical ani-
mation of the finite loop of states, we notice reasons why the
modified version does not enjoy the lockout freedom prop-
erty. We then revise the r-AR protocol and model check that
the revised version of the r-AR protocol enjoys the lockout
freedom property, finding no counterexamples.

The present paper is an extended and improved version
of the paper [6] accepted by DMSVIVA 2022. New con-
tributions of the present paper that are not described in the
DMSVIVA 2022 paper [6] are as follows:

• The formal specification of the r-AR protocol is mod-
ified such that each vehicle repeatedly tries to pass
through the merge point;

• The state picture template is newly designed for the
modified specification and new tips for designing state
picture templates are discovered;

• A counterexample is found for the lockout freedom
property for the r-AR protocol under the assumption
that each vehicle tries to pass through the merge point
repeatedly;

• r-SMGA is revised so that it can deal with the finite
loop of states in a counterexample;

• By observing the graphical animation of the finite loop
of states, we find reasons why the lockout freedom
property is broken for the r-AR protocol under the as-
sumption; and revise the r-AR protocol so that the lock-
out freedom property is satisfied under the assump-
tion.

The rest of the paper is structured as follows. Section 2
mentions state machines, Maude, r-SMGA, andGestalt prin-
ciples as preliminaries. Section 3 introduces the r-AR pro-
tocol and its specification in Maude. In Section 4, we de-
scribe in detail how to design the state picture template of the
r-AR protocol. By observing graphical animations gener-
ated based on the state picture template, we then guess some
characteristics (likely invariant properties) of the r-AR pro-
tocol; and confirm them with the Maude search command
integrated into r-SMGA in Section 5. Section 6 describes
how we modify the formal specification of the r-AR proto-
col, model check the lockout freedom property of the mod-
ified protocol, show graphical animations of the counterex-
ample, and explain reasons why the modified protocol does
not enjoy such property. In Section 7, we revise the modified
protocol so that it can enjoy the lock out freedom property.
Section 8 mentions some related work. Finally, we conclude
the present paper in Section 9.

10

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

2. Preliminaries
We briefly describe state machines, Maude, r-SMGA,

and some Gestalt principles for readers to better follow the
content of the paper.
2.1. State Machines and Maude

A state machineM is defined as ⟨S, I, T ⟩, where S is a
set of states, I ⊆ S is the set of initial states, and T ⊆ S ×S
is a binary relation over states. We call (s, s′) ∈ T a state
transition, where s, s′ ∈ S. The set of reachable states with
respect to M is inductively defined as follows: (1) I ⊆ R
and (2) if (s, s′) ∈ T and s ∈ R, then s′ ∈ R. A state
predicate p is an invariant property with respect toM if and
only if p(s) holds for all s ∈ R. A finite sequence of states
s0,… , si, si+1,… , sn is called a finite computation of M if
s0 ∈ I and (si, si+1) ∈ T for each i = 0,… , n − 1.

There are many possible ways to express a state s ∈ S.
In the paper, we use a braced associative-commutative col-
lection of name-value pairs. Associative-commutative col-
lections are called soups, and name-value pairs are called ob-
servable components. Then, a state is expressed as a braced
soup of observable components and the juxtaposition opera-
tor is used as the constructor of soups. Suppose oc1, oc2, oc3
are observable components, and then oc1 oc2 oc3 is the soup
of those three observable components. A state can be ex-
pressed as {oc1 oc2 oc3}. There are also many possible
ways to specify state transitions. One possible way is to use
Maude [17], a programming/specification language based on
rewriting logic, to specify them as rewrite rules. A condi-
tional rewrite rule (or just a rule) is in the form as follows:
crl [lb] : l => r if … /\ ci /\ …

where lb is the label given to the rule and ci is a part of thecondition, which may be an equation lci = rci. The negationof lci = rci could be written as lci =/= rciMaude provides the search command for reachability anal-
ysis that allows finding a state reachable from one state init
such that the state matches the pattern p and satisfies the con-
dition c. The command can be expressed as follows:
search [n,m] in MOD ∶ init =>* p such that c .
where n and m are a number of solutions and a bounding
depth of a state space of a state machine under analysis, re-
spectively; n is often 1 whilem is often omitted meaning that
the depth under traversal is not fixed; MOD is the name of
the Maude module specifying the state machine; init, p, and
c are the starting state, the pattern, and the condition, re-
spectively. init typically is an initial state of a state machine
under verification. The search command can be used as an
invariant model checker. The patten p and the condition c
are used to express the negation of an invariant property or
a state predicate under verification.

Maude is also equippedwith an LTLmodel checker, where
LTL stands for linear temporal logic. We suppose that read-
ers are familiar with LTL and Kripke structures [11]. We
need to use the LTL model checker so as to formally ver-
ify that a system/protocol formalized as a Kripke structure,

an extension of state machines, enjoys a liveness property
that can be expressed as an LTL formula. Note that invari-
ant properties can be expressed as LTL formulas. When we
would like to formally verify that such a system/protocol,
where init is the only initial state, enjoys a liveness property
expressed as an LTL ', the following command is used:
reduce modelCheck(init, ') .

Maude returns true if the system/protocol satisfies '. Other-
wise, a counterexample is returned, which has the form of a
finite sequence of states and a finite loop of states. When a
system/protocol has multiple initial states, it suffices to con-
duct the model checking experiment for each initial state so
that we can model check that the system/protocol enjoys the
property.
2.2. Revised State Machine Graphical Animation

(r-SMGA)
Bui, et al. [10] have integrated SMGA and Maude, ex-

tending/revising SMGA. The extended/revised version of SMGA
is called r-SMGA. Some functionalities of Maude, such as
the search command and the LTLmodel checker, can be used
inside r-SMGA. For r-SMGA, inputs are a formal specifica-
tion of a system/protocol in Maude and a state picture tem-
plate. r-SMGA allows human users to flexibly generate finite
computations and store them as a list. For example, human
users can give the depth of each finite computation being
generated and generate the graphical animation of one of the
finite computations generated before. r-SMGA also makes it
possible to extract states from multiple finite computations
generated so far by using a given associative-commutative
(AC) pattern. Furthermore, r-SMGA allows human users to
use some interactive features when observing graphical an-
imations, such as focusing on some observable components
that users are interested in.

r-SMGA uses DrawSVG [14] as SMGA does. Thus, r-
SMGA as well as SMGA requires human users to design
state picture templates. We suppose that a formal specifica-
tion of a protocol/system under consideration has been writ-
ten by a human user. Thus, a braced soup of observable com-
ponent, how to express/formalize each state, can be used to
design a state picture template. Our approach to designing a
state picture template or visualizing a state is as follows. As
mentioned, a state is formalized as a braced soup of observ-
able components, such as {oc1 oc2 oc3}. Thus, it suffices to
visualize each observable component (such as oc1, oc2, oc3)
to visualize a state. Then, we design a visualization template
for each observable component to design a state picture tem-
plate. Multiple instances of an observable component may
be used, and even if that is the case, it suffices to design a vi-
sualization template for each observable component but not
for each instance of it, where an observable component cor-
responds to a type and its instances correspond to values of
the type. Fixing values used in an observable component, an
instance of the observable component is made, and then a vi-
sualization template for an observable component becomes
a concrete visualization object. Basically, there are two pos-
sible ways to visualize observable components: (1) textual

11

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

instruction turn_left

Figure 1: An example of an observable component traffic-sign,
where the left-hand side is the state picture template and the
right-hand side is one concrete state picture

Figure 2: An example before applying gestalt principles

display and (2) visual display. Note that an instance of an
observable component can be displayed in both (1) and (2).
Option (1) displays values of an observable component in-
stance as texts, while option (2) displays them as visual ob-
jects where such visual objects (such as circles and arrows
designed by humans) correspond to the values.

For example, let us consider an observable component
(traffic-sign: instruction), where traffic-sign is the name
and instruction is the value that can be one of turn_left,
go_straight, and turn_right. Therefore, there are the three
instances: (traffic-sign: turn_left), (traffic-sign: go_straight)

and (traffic-sign: turn_right). The observable compo-
nent simulates a traffic sign that orders a vehicle to turn left,
go straight or turn right. The left-hand side of Figure 1 shows
a possible state picture template of the observable compo-
nent, while the right-hand side shows the state picture of the
instance (traffic-sign: turn_left). For the state picture,
the observable component is displayed in both (1) and (2) as
seen.
2.3. Gestalt Principles

Gestalt principles [24, 25] are a collection of principles,
such as the common region and the similarity principles, re-
lated to visual perception of humans about grouping. Let us
use some concrete examples to describe the two principles
in Gestalt principles. Taking a look at Figure 2, we can rec-
ognize that there are one group including six hearts. Based
on the common region principle (grouping elements that are
in the same closed region), Figure 3 can help us to recog-
nize that there are three groups where each group contains
two hearts. Similarly, based on the similarity principle (hu-
mans tend to build a relationship between similar elements
via basic elements, such as color and size), Figure 4 and Fig-
ure 5 can also help us to recognize that there are three groups
where each group contains two hearts, where Figure 4 uses
color while Figure 5 uses size.

3. The r-AR Protocol
In this section, we first describe the r-AR protocol and its

specification in Maude. We then introduce the observable
components that are used to visualize the protocol.

Figure 3: An example after applying the common region prin-
ciple

Figure 4: An example after applying the similarity principle
(using color)

Figure 5: An example after applying the similarity principle
(using size)

Merge
point

through lane

non-through lane

Figure 6: A merge point

3.1. Protocol Descriptions
S.Aoki andK. Rajkumar [1] have proposed an autonomous

vehicle merging protocol (called the AR protocol) with two
lanes called through and non-through lanes as depicted in
Figure 6. The horizontal line refers to the through lane, the
diagonal line refers to the non-through lane, and the intersec-
tion of those two lanes is called the merge point. Vehicles on
both lanes are supposed to run toward the merge point and
in one direction only. At the merge point, vehicles are con-
trolled so that they never collide with each other. In other
words, the protocol guarantees at most one vehicle located
at the merge point.

In the original protocol, there are two versions corre-
sponding to two traffic environments: (1) only autonomous
vehicles on the traffic (homogeneous traffic), and (2) autonomous
vehicles and human-driven vehicles on the traffic (heteroge-
neous traffic). Liu, et al. [16] have revised the first version
such that the revised version (called the r-AR protocol) does
not rely on any real-time information, such as speed of vehi-
cles running on both lanes. There are two modes in the r-AR
protocol: prioritized and fair. In the prioritized mode, vehi-
cles on the non-through lane (or non-through lane vehicles)
cannot enter the merge point if some vehicles on the through
lane (or through lane vehicles) are approaching the merge
point. Basically, there are three situations in the prioritized

12

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Merge
point

through lane

non-through lane
sto

p!

Figure 7: A case that a non-through lane vehicle stops before
the merge point because of having some through lane vehicles
approaching the merge point

Merge
point

enough
space

Wait u
ntil t

here is

enough sp
ace!

through lane

non-through lane

Figure 8: A case where there is enough space on the through
lane for a non-through lane vehicle to enter the merge point

mode:
1. If some through lane vehicles are approaching themerge

point and there is not enough space between any of
two adjacent vehicles, then non-through lane vehicles
must stop before the merge point until all through lane
vehicles have passed through the merge point. Fig-
ure 7 is an example of this case.

2. If no through lane vehicle is approaching the merge
point, non-through lane vehicles can enter the merge
point.

3. If there is enough space between two adjacent through
lane vehicles, then non-through lane vehicles can use
the space to enter the merge point. Figure 8 is an ex-
ample of this case.

When the traffic of the through lane becomes congested, the
prioritized mode changes to the fair mode. In the fair mode,
through and non-through lane vehicles can enter the merge
point alternately. If the traffic of the through lane becomes
less congested, themode changes back to the prioritizedmode.

In the r-AR protocol, each vehicle is assigned one of the
following five values as its status:

• running: when a vehicle is far away from the merge
point, its status is running.

• approaching: when a vehicle gets close to the merge
point, its status changes from running to approaching.

• stopped: when a vehiclemeets some conditions, it stops
before the merge point and its status changes from
approaching to stopped.

• crossing: if a vehicle has just entered the merge point,
its status changes from approaching or stopped to crossing.

• crossed: when a vehicle has passed the merge point,
its status changes from crossing to crossed.

Each vehicle whose status is running or crossed on each
lane may go over those running on the same lane in front
of it, while we suppose that each vehicle whose status is
approaching never does so. Note that each vehicle whose
status is stopped or crossing does not do so if the proto-
col works as intended. Therefore, we formalize the vehi-
cles whose statuses are approaching, stopped, or crossing on
each lane as a queue. In what follows, we will write that
the through lane and the non-through lane are formalized as
queues, which means that the vehicles on each lane whose
statuses are approaching, stopped or crossing are maintained
by putting them into a queue. The queue that consists of
through lane vehicles is called the queue of the through lane
or the through lane queue, while the queue that consists of
non-through lane vehicles is called the queue of the non-
through lane or the non-through lane queue. The through
lane queue may consists of dummy vehicles. Congested traf-
fic is defined as follows: the number of through lane vehicles
whose statuses are approaching or stopped becomes greater
than a specific number, making themode fair. Otherwise, the
mode is prioritized. In the fair mode, there is a turn for the
through lane and the non-through lane. If the turn is through
lane, then through lane vehicles have a higher priority to en-
ter the merge point. If the turn is non-through lane, then
non-through lane vehicles have a higher priority to enter the
merge point. The turn is basically alternately changed be-
tween through lane and non-through lane in the fair mode.
Therefore, vehicles on both lanes can enter the merge point
alternately in the fair mode based on the turn.

The left-most flowchart in Figure 9 shows how statuses
of through lane vehicles are changed. The changes between
vehicle statuses, e.g., from running to approaching, are rep-
resented by arrows, possibly with some conditions that are
not shown in the figure. The following describes in detail
the conditions for changing the status of through lane vehi-
cles. A vehicle status changes from running to approaching if
the through lane vehicle gets close to the merge point. The
status of a through lane vehicle approaching the merge point
changes from approaching to stopped, which means that the
vehicle must stop just before the merge point, if either:

• there is another vehicle at the merge point, or
• when the protocol is in the fair mode and currently the

turn is non-through lane.
The status of a through lane vehicle approaching the merge
point changes from approaching to crossing, which means
that the vehicle enters the merge point, if either:

• when the protocol is in the prioritized mode and there
is no vehicle at the merge point, or

• when the protocol is in the fair mode, the current turn
is the through lane and there is no vehicle at the merge
point.

13

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

running

approaching

stopped

crossing

crossed

running

approaching

stopped

crossing

crossed

unspace

space

yield

through lane vehicles non-through lane vehicles dummy vehicles/spaces

Figure 9: Transitions of status of through lane vehicles, non-
through lane vehicles, and dummy vehicles (spaces).

The status of a through lane vehicle stopping the merge point
changes from stopped to crossing, which means that the ve-
hicle enters the merge point, if either:

• when the protocol is in the prioritized mode and there
is no vehicle at the merge point, or

• when the protocol is in the fair mode, the current turn
is through lane and there is no vehicle at the merge
point, or

• when the protocol is in the fair mode, the current turn
is non-through lane, there is no vehicle at the merge
point, and there is no non-through lane vehicle in the
non-through lane queue, which implies that there is no
vehicle on the lane just before the merge point.

Vehicle status changes from crossing to crossed if the through
lane vehicle whose status is crossing has passed the merge
point.

Each space is assigned one of the three statuses: unspace,
space, and yield, referring to the space that is not in the
queue, is in the queue, and has just been out of the queue, re-
spectively. Spaces on the through lane are treated as dummy
vehicles running on the through lane, while it is unneces-
sary to explicitly deal with spaces on the non-through lane.
The right-most flowchart in Figure 9 shows how the status
of a space changes. As depicted in the figure, the status
unspace cannot directly change to the status yield. For the
change of the statuses of non-through lane vehicles (the mid-
dle flowchart in Figure 9) and dummy vehicles/spaces (the
right-most flowchart in Figure 9), please refer to [16] in de-
tail.
3.2. Formal Specification of the r-AR Protocol in

Maude
Liu, et al. [16] have formally specified the r-AR proto-

col as a state machine in Maude. Two lanes that are close
to the merge point are formalized as two queues of vehicles.
The non-through lane queue consists of only real vehicles.
Whereas, the non-through lane queue consists of real vehi-
cles and spaces (also called dummy vehicles in this paper).
The observable components used to formalize the r-AR pro-
tocol are as follows:

• (lane[l]: q) - l is one of through and nonThrough, cor-
responding to the through lane and the non-through
lane, respectively. q is a queue of (possibly dummy)
vehicle IDs. Initially, q is empq (denoting the empty
queue) for both lanes.

• (v[id]: l, vs) - id is a vehicle ID (possibly a dummy
vehicle ID). l and vs are the lane and the status in-
formation, respectively, of the vehicle ID. id is in the
form of either v(i) when it is a real vehicle, or dv(i)
when it is a dummy vehicle, where i is a natural num-
ber distinguishing the vehicle from each other. l is
either through or nonThrough. For real vehicles, vs is
running, approaching, stopped, crossing, or crossed; ini-
tially, vs is running. For dummy vehicles, vs is unspace,
space, or yield; initially, vs is unspace.

• (crossing?: b) - it represents whether there exists a
vehicle crossing the merge point. If so, b is true; oth-
erwise, it is false. Initially, b is false.

• (mode: m) - it represents the mode in the r-AR proto-
col. m is one of prioritized and fair corresponding to
the prioritized mode and the fair mode, respectively.
Initially, m is prioritized.

• (turn: l) - it represents the turn when the system is in
the fair mode. l is one of through and nonThrough corre-
sponding to the turn of through lane and non-through
lane, respectively. Initially, l is through.

• (#uvcs: n) - it represents the number of vehicles that
have not yet passed the merge point. n is a natural
number. Initially, n equals the number of vehicles par-
ticipating in the protocol. It is reduced by one when a
vehicle has just passed the merge point. When n is 0,
all vehicles have crossed the merge point.

• (gstat: f) - it indicates that all vehicles have passed
the merge point. When all vehicles have passed the
merge point, f is fin; otherwise, it is nFin. Initially, f
is nFin.

Suppose that there are two vehicles participating in the non-
through lane, and four vehicles and two spaces participating
in the through lane. If so, the initial state can be expressed
as follows:
(gstat: nFin) (#ucvs: 6) (crossing?: false)

(mode: prioritized) (turn: through)

(lane[through]: empq) (lane[nonThrough]: empq)

(v[v(0)]: through,running) (v[v(1)]: through,running)

(v[v(2)]: through,running) (v[v(3)]: through,running)

(v[v(4)]: nonThrough,running) (v[dv(0)]: through,unspace)

(v[v(5)]: nonThrough,running) (v[dv(1)]: through,unspace)

Asmentioned in the previous sub-section, there are some
specific conditions onwhich a status of a vehicle (including a
dummy one) changes to another. In the formal specification,
rewrite rules in Maude are used to describe state transitions,

14

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

in which such conditions are embedded. We show here one
of the rewrite rules with which the status of a through lane
vehicle changes to crossing from stopped:
rl [enter-fairN-T] :
{(v[v(I)]: through,stopped) (lane[through]: (v(I) ; TQ))

(lane[nonThrough]: empq) (mode: fair)

(turn: nonThrough) (crossing?: false) OCs}

=> {(v[v(I)]: through,crossing) (mode: fair)

(lane[nonThrough]: empq) (turn: nonThrough)

(lane[through]: (v(I) ; TQ)) (crossing?: true) OCs} .

where I, TQ, and OCs are Maude variables of natural numbers,
queues, and soups of observable components, respectively.
The rewrite rule says that if mode is fair, turn is nonThrough,
crossing? is false, the non-through lane queue is empty, and
the top vehicle on the through lane is v(I) whose status is
stopped, then v(I) changes its status to crossing, and crossing?

is updated to true. Meanwhile, in the fair mode, the non-
through lane vehicle v(I) goes into the merge point when no
through lane vehicle is the through lane. The other rewrite
rules can be written likewise. The complete specification of
the protocol is available at the URL1.

4. Designing a State Picture Template of the
r-AR Protocol
Designing state picture templates is the key task in r-

SMGA and also a non-trivial task [9]. If a state picture tem-
plate is too simple (it contains texts only [8]) or too com-
plex (it contains many values for each observable compo-
nent [9]), it takes so much effort to conjecture characteris-
tics when observing graphical animations. This section first
describes how to design the state picture template using the
r-AR protocol as an example. We then show some factors
affecting the design of the state picture template. The state
picture template of the r-AR protocol is finally shown.
4.1. Idea

We suppose that we have formally specified a system/protocol
as a state machine under visualization as described, namely
that each state is formalized as a braced soup of observable
components (precisely observable component instances) and
state transitions are written in rewrite rules. The assumption
implies that we comprehend the system/protocol such that
we can make such a formal specification in Maude. We can
design a state picture template based on observable compo-
nents. Some previous work [7, 8, 9] have pointed out the use-
fulness of their state picture templates and also given some
tips to make a good state picture template. In the present
paper, we mainly use some of such tips for our design and
summarize them as follows:

• Values of observable components should be visual-
ized as much as possible.

1https://github.com/rSMGA/AVMP/blob/main/avmp.maude

• When an observable component has only two kinds of
values, it should be visually/graphically represented as
a light bulb.

• If a value of an observable component does not change,
it should be expressed as a fixed label.

It is not necessary to visualize all observable components
used. For example, we do not need to visualize the observ-
able component (crossing?: b) (hereinafter referred to as
crossing? and the same for other observable components).
This is because we can easily know its value by checking if
there is a vehicle at themerge point. We can also easily know
the value of the observable component #ucvs by checking if
there exist some vehicles on the two lanes. Hence, we do
not need to visualize such observable component. Each of
the observable components turn, gstat, and mode should be
visualized as a light bulb as described. The lane information
of each vehicle (either through or nonThrough) should be vi-
sualized as a fixed label. The remaining observable compo-
nents needed to be visualized are the observable components
lane[through], the lane[nonThrough], and v[vid].In the rest
of this section, we describe how to visualize them and show
the final version of a state picture template of the r-AR pro-
tocol.

Furthermore, by observing graphical animations based
on earlier drafts of the state picture template of the r-AR pro-
tocol, we comprehend that when the mode is prioritized, the
turn observable component does not affect vehicles entering
the merge point. Note that this shallow characteristic can be
extracted from specification, however, there are many shal-
low characteristics that may be overlooked by human users.
Therefore, we design two observable components turn and
mode following this characteristic. The idea is that when the
mode is prioritized, we do not display the observable com-
ponent turn. Note, to design the state picture template in the
present paper, we use some Gestalt principles [24, 25] (such
as, the common region principle for elements in the queues
of both lanes, and the similarity principle using colors for
the status of vehicles, e.g., stopped). In the next sub-section,
we describe designs of observable components and a state
picture template of the r-AR protocol.
4.2. Designing a State Picture Template

Figure 10 shows fully our proposed state picture tem-
plate. We suppose that there are four vehicles and two spaces
participating in the through lane, and two vehicles participat-
ing in the non-through lane based on the init mentioned in
Section 3. Figure 11 is our idea for visualizing the through
and non-through lanes with vehicles. In the figure, the verti-
cal rectangle and the horizontal rectangle represent the non-
through and through lane, respectively; the red region repre-
sents the merge point; two arrows represent two meanings:
(i) the directions and (ii) the turns of two lanes. The shapes
of the arrows refer to (i) while the colors of the arrows re-
fer to (ii), where the light-yellow color and the light-blue
color indicate the turn of non-through and through lane vehi-
cles, respectively; circles with numbers inside represent ve-

15

https://github.com/rSMGA/AVMP/blob/main/avmp.maude

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 10: A state picture template for the r-AR protocol (1)

Figure 11: An idea of visualization of through and non-through
lanes with vehicles

Figure 12: A concrete example of our proposed visualization
for both lanes with vehicles

hicles with their IDs inside; white (or blank) circles represent
spaces; blue and yellow circles represent through and non-
through lane vehicles, respectively; pink circles represent
vehicles whose status is stopped. Figure 12 shows two lanes
when the value of the observable component lane[through]
is v(2);v(1);dv(1) and the value of the observable compo-
nent lane[nonThrough] is v(5);v(4), where the semi-colon is
used as the constructor of non-empty queues and the left-
most is the top of each queue. In the figure, the status of v(1),
v(2), v(4), v(5), and dv(1) are approaching, approaching, approaching,
stopped, and space, respectively. Note that our design can
help users to recognize a case such that two vehicles on both
lanes collide at the merge point.

In Figure 10, as mentioned, both arrows indicate the turn
of both lanes. In the prioritized mode, the light-blue arrow
(nearing the through lane) and the white arrow (nearing the
non-through lane) are displayed. In the fair mode, the text
“congested!” is displayed and the arrows are displayed fol-
lowing the observable component turn, for example, if the
value of turn is nonThrough, the light-yellow arrow (near-
ing the non-through lane) and the white arrow (nearing the
through lane) are displayed. The rectangle in the left-most

side of Figure 10 contains the vehicles and the spaces whose
statues are crossed and yield, respectively. The rectangle in
the right-most side of Figure 10 contains the vehicles and the
spaces whose statues are running and unspace, respectively.
The oval with the text “Finished” inside refers to the observ-
able component gStat. When the value of gStat is fin, the
oval is displayed; otherwise, it is not displayed.

Finally, our proposed design can be extended for more
vehicles participating in the protocol. Users can designmore
squares when the number of squares can meet a case such
that all vehicles are in the lane at the same time. For example,
there are five vehicles and five spaces participating in the
through lane, we need to prepare 10 positions (excluding the
merge point) for a case that all of them are put into the queue.
We prepare the state picture template shown in Figure 13
for a case in which there are five vehicles and five spaces in
the through lane, and five vehicles in the non-through lane.
Users can utilize it when the number of vehicles is up to five.
Figure 14 shows a case that all through lane vehicles are in
the queue. Note that we fix IDs of vehicles in the through
and non-through lane from 0 to 4 and 5 to 9, respectively.
Therefore, users need to configure the initial state for such
restriction.

5. Confirmation of Guessed Characteristics of
the r-AR Protocol and Some Lessons
Learned
In this section, we show the usefulness of our proposed

designwith factors (such as Gestalt principles) via conjectur-
ing characteristics of the r-AR protocol. Finally, we confirm
such characteristics by Maude search command integrated
into r-SMGA.
5.1. Guessing Characteristics of the r-AR Protocol

Let us repeat that all examples are generated from the
init as shown in Figure 10. We may recognize some char-
acteristics of a protocol/system when formally specifying it.
Graphical animations of the protocol/system make it possi-
ble to re-confirm such characteristics that are called shal-
low characteristics in the paper. It is worth doing so be-
cause formal specifications and state picture templates are
supposed to be made by human beings who are subject to
errors. Human errorsmay be detected by re-confirming shal-
low characteristics through observing graphical animations.
For example, the following are two such shallow character-
istics of the r-AR protocol that can be re-confirmed by ob-

16

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 13: A state picture template for the r-AR protocol (2)

Figure 14: A state picture of when all through lane vehicles are in the queue

serving graphical animations, such as one of them shown in
Figure 15:

• Characteristic 0.1: The turn is not concerned when the
protocol is in the prioritized mode.

• Characteristic 0.2: There exists a case such that there
is one vehicle whose status is approaching in the non-
through lane, but this status changes to stopped even
no vehicle is in the through lane.

Note that there are two sequences (two consecutive states
for each) shown in Figure 15 obtained from two different
sequences of states generated from the formal specification.

To conjecture some other characteristics, we use some
tips [9]. They say that focusing on one or two observable
components can help us to guess some relations of such ob-
servable components. We concentrate on two lanes and dis-
cover characteristics, some of which are as follows:

• Characteristic 1: There is at most one vehicle whose
status is stopped in each lane.

• Characteristic 2: There are two vehicles whose sta-
tuses are stopped on both lanes, respectively, no vehi-
cle is at the merge point.

• Characteristic 3: There are at most two vehicles whose
statuses are stopped in the protocol.

Figure 15: Some state pictures for Characteristic 0.2

To find the characteristics above, color is the main factor.
Based on the colors designed based on the similarity princi-
ple, we can observe that there exists at most one light-pink
color on each lane shown in Figure 16. Characteristic 3 can
be conjectured based on two characteristics 1 and 2. The
following characteristics are found by focusing on vehicles
whose status is stopped.

17

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 16: A piece of a finite computation

• Characteristic 4.1: If there is one vehicle whose status
is stopped on the non-through lane and some vehicle is
at the merge point, then this vehicle is on the through
lane or the through lane queue is not empty.

• Characteristic 4.2: If there is one vehicle whose sta-
tus is stopped on the through lane and some vehicle
is at the merge point, then this vehicle is on the non-
through lane or the non-through lane queue is not empty.

5.2. Confirmation of Guessed Characteristics
Characteristics guessedwith r-SMGAmay bewrong. The

search command functionality available in r-SMGA makes
it possible to check if there exists a counterexample for each
characteristic. Note that we do not prove each characteristic
and then a guessed characteristic for which no counterexam-
ple is found with the functionality may be wrong. Proof of
characteristics for protocols/systems is out of the scope of
the pater. For those who are interested in the topic, please
refer to [5]. To sum up, when characteristics are confirmed
(no counterexample is found) in the section, they are guar-
anteed for the case whose initial state is expressed as init

as shown in Figure 10. The syntax of the functionality is
the same as what is mentioned in Section 2. The following
command is used to confirm Characteristic 1.
search [1] in AVMP : init =>*

{(v[X:Vid]: l1:Lane, stopped)

(v[Y:Vid]: l1:Lane, stopped) OCs:Soup{OComp}} .

where AVMP is the name of Maude module; X:Vid and Y:Vid

are Maude variables of vehicle IDs; l1:Lane is a Maude vari-
able of lanes; and OCs:Soup{OComp} is a Maude variable of
observable component soups. The search command tries to
find a reachable state from init in which there are two differ-
ent vehicles whose statuses are stopped on one lane. If there
is no such a reachable state from init, Characteristic 1 is
an invariant property for the case whose initial state is init.

It does not return any solution, meaning that no counterex-
ample is found for the characteristic. Note that we use the
Maude search command integrated into r-SMGA as shown
in Figure 17 for Characteristic 1.

To confirm Characteristics 2 and 3, we use two com-
mands as shown in Figure 18 and Figure 19, respectively.
Each search command tries to find a reachable state that sat-
isfies the corresponding pattern. They do not return any so-
lution, meaning that no example is found for the two char-
acteristics. Similarly, to confirm Characteristics 4.1 and 4.2,
we use two commands as shown in Figure 20 and Figure 21,
respectively. The two commands also do not return any so-
lution, meaning that no counterexample is found for the two
characteristics.

Note that we need to confirm all guessed characteris-
tics because human users may overlook flawed cases. One
flawed characteristic we have conjectured is as follows: when
there is a non-through lane vehiclewhose status is approaching,
the next status of the vehicle is always stopped whenever
its status changes. The characteristic cannot be expressed
as an invariant property and then it is impossible to check
the characteristic with the search command. We should use
the Maude LTL model checker that is available in r-SMGA.
When we use the Maude model checker in r-SMGA to con-
firm it, r-SMGA returns a counterexample. The counterex-
ample says that the status of a non-through lane vehicle can
change to crossing from approaching when the mode is fair

and the turn is nonThrough.

6. A Flawed Case of the r-AR Protocol
Beside invariant properties of a state machine, there are

liveness properties, such as leads-to properties. In this sec-
tion, we will check whether the r-AR protocol satisfies a
property called the lock-out freedom that can be expressed
as a leads-to property. An informal description of the prop-
erty says that when a vehicle approaches or stops just before
the merge point, it will eventually go into the merge point.

If there are a few vehicles running on the two lanes and
each vehicle tries to go through the merge point once, the
r-AR protocol enjoys the lock-out freedom property. There-
fore, wemodify the behavior of each vehicle as follows: when
the status of each vehicle is crossed, it will change to running,
meaning that each vehicle tries to go through themerge point
repeatedly. Note that we do not essentially change the r-AR
protocol. To do it, we add the following rewrite rule:
rl [return] :

{(v[v(I)]: L1,crossed) OCs} =>

{(v[v(I)]: L1,running) OCs} .

where return is the name of the rule, and I and L1 are Maude
variables of vehicles IDs and lanes, respectively. The rule
says that if the status of a vehicle I on a lane (through or non-
through) is crossed, it changes to running. To model check
the lock-out freedom property, we define some propositions
as follows:

18

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 17: A command in r-SMGA to confirm Characteristic 1

Figure 18: A command in r-SMGA to confirm Characteristic 2

eq {(v[v(I)]: L,approaching) OCs} |= approaching(I,L)

= true .

eq {(v[v(I)]: L,stopped) OCs} |= stopped(I,L) = true .

eq {(v[v(I)]: L,crossed) OCs} |= crossed(I,L) = true .

eq {OCs} |= PROP = false [owise] .

where _|=_ is a Maude operator for assigning the state (the
first parameter) to a proposition (the second parameter) and
returns a Boolean value. approaching(_,_), stopped(_,_),
and crossed(_,_) areMaude operators that denote the propo-
sitionsmeaning that the status of a vehicle on a lane is approaching,
stopped, and crossed, respectively. PROP is a Maude variable
of propositions. The first equation says that the proposition
approaching(I,L) is true if a status of the vehicle I on lane L

is approaching; Propositions stopped(I,L) and crossed(I,L)

are defined likewise. owise stands for otherwise. We define
the lock-out freedom property as follows:
eq lockout-free(I,L) =

(approaching(I,L) \/ stopped(I,L)) |-> crossed(I,L) .

where _|->_ is a Maude operator to denote the leads-to tem-
poral connective. The formula says that whenever the status
of the vehicle I on the lane L is approaching or stopped, the
status will eventually become crossed.

We use the Maude model checking functionality in r-
SMGA to check the property for each lane and each vehicle.
For any vehicles on the through lane, no counterexample is

returned. It implies that the r-AR protocol satisfies the lock-
out freedom property for the through lane. However, a coun-
terexample is returned when model checking for the non-
through lane, which says that the protocol does not satisfy
the lock-out freedom property for the non-through lane. Fig-
ure 22 shows the state pictures representing the loop part of
the counterexample, where two vehicles on the non-through
lane never enter the merge point. The following is the or-
der of the loop. The first state of the loop is shown at the
top-most on the left column, the second state is shown at the
top-most on the right column, the third state is shown at the
second row of the left column, etc. The next state of the fi-
nal state of the loop shown at the bottom-most on the right
column is the first state. Note that we have deleted the two
observable components gstat and #uvcs in the protocol and
in the state picture template because each vehicle tries to go
through the merge point repeatedly and then we do not need
to maintain them. Taking a look at those state pictures via
graphical animations, we can observe situations where two
vehicles on the non-through lane never go through the merge
point. r-SMGA allows human users to observe the loop of
the state shown in Figure 22 as graphical animations. Care-
ful observation of the graphical animations helps us to know
that there are two cases in the states in the loop:

1. The mode is fair and a through lane vehicle is passing
the merge point. Therefore, even though the turn is
non-through, the non-through lane vehicle just before

Figure 19: A command in r-SMGA to confirm Characteristic 3

Figure 20: A command in r-SMGA to confirm Characteristic 4.1

19

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 21: A command in r-SMGA to confirm Characteristic 4.2

themerge point is not allowed to cross themerge point.
2. The mode is prioritized. If this is the case, a vehicle

is passing the merge point or there is a through lane
vehicle just before the merge point. Hence, the non-
though lane just before the merge point has no chance
to cross the merge point.

In Figure 22, there are four states that belong to Case 1,
where you can see “Congested!” appearing. For each of
the four states, its next state is in the prioritized mode. The
r-AR protocol cannot make the best use of the fair mode, let-
ting a non-through lane vehicle to cross the merge point. For
each state that belongs to Case 2, a through lane vehicle is
crossing the merge point or there is a through lane vehicle
just in front of the merge point. Therefore, non-through ve-
hicles are never allowed to cross the merge point. In the next
section, we revise the r-AR protocol so that the it can enjoy
the lockout freedom property.

7. A Revised Version of the r-AR Protocol
As written, the r-AR protocol does not make the best

use of the fair mode, letting a non-through lane to cross the
merge point. In the r-AR protocol, where the number of the
through lane vehicles whose status is approaching is greater
than a fixed number, the mode becomes fair, but if the num-
ber becomes less than the fixed number, the mode becomes
back prioritized. Between two modes, nothing guarantees
that a non-through lane vehicle can pass the merge point.
Therefore, we modify how to change the prioritized mode to
the fair mode and vice versa.

To handle such situation, we use how many through lane
vehicles have entered themerge point instead. LetN be such
number. WhenN becomes greater than a fixed number, the
mode is changed to fair from prioritized, and non-through
lane vehicles are given a higher priority than though lane ve-
hicles in the fair mode. If the through lane queue is empty,
the non-through lane just before the merge point is allowed
to enter the merge point. So, let us suppose that the through
lane queue is not empty and the mode is prioritized. If that
is the case, though lane vehicles cross the merge point, in-
creasing N . When N becomes larger than a fixed number,
the mode changes to fair from prioritized. If the non-through
lane queue is not empty, the top vehicles of the queue is given
the highest priority to enter themerge point and then the non-
through lane vehicle is allowed to enter the marge point. We
add one observable component (#tlvp N) representing the
number of through lane vehicles that have passed the merge
point. The rewrite rule used when a through lane vehicle

enters the merge point in the prioritized mode is modified as
follows:
rl [enter-prio-T] :

{(v[v(I)]: through,VS) (lane[through]: (v(I) ; TQ))

(crossing?: false) (mode: prioritized) (#tlvp: N) OCs}

=> {(v[v(I)]: through,crossing)

(lane[through]: (v(I) ; TQ)) (crossing?: true)

(mode: (if N < 2 then prioritized else fair fi))

(#tlvp: (if N < 2 then s(N) else N fi)) OCs} .

where TQ is a Maude variable of queues, N is a Maude vari-
able of natural numbers, and s(_) is the successor function
of natural numbers. We use 2 as the fixed number and can
use a different positive number.

When a non-through lane vehicle has entered the merge
point in the fair mode, we change the mode to prioritized
from fair and make n used in (#tlvp n) 0. Then, the rewrite
rule used when a non-through lane vehicle enters the merge
point in the fair mode is revised as follows:
rl [enter-fair-N] :

{(v[v(I)]: nonThrough,stopped)

(lane[nonThrough]: (v(I) ; NQ))

(mode: fair) (#tlvp: N) (crossing?: false) OCs}

=> {(v[v(I)]: nonThrough,crossing)

(lane[nonThrough]: (v(I) ; NQ)) (mode: prioritized)

(#tlvp: 0) (crossing?: true) OCs} .

where NQ is a Maude variable of queues.
We check if the revised version of the r-AR protocol sat-

isfies that lockout freedom property with the model check-
ing functionality in r-SMGA, and then no counterexample
is found. We confirm that this revised version satisfies the
lockout freedom property.

Note that we do not use the observable component turn
because we use the observable component mode instead. The
formal specification of the revised version of the r-AR pro-
tocol is available at the URL2.

8. Related Work
Bui, et al. [7] have used SMGA to graphically animate

the intersection traffic control distributed mutual exclusion
protocol or the LJPL protocol [15]. In the protocol, there are
eight lanes in which each two of them can be conflicted or
concurrent. Vehicles in the concurrent lanes are allowed to
enter the intersection at the same time while vehicles in the
conflicted lanes are prohibited. Moreover, vehicles in the

2https://github.com/rSMGA/AVMP/blob/main/avmp-rev.maude

20

https://github.com/rSMGA/AVMP/blob/main/avmp-rev.maude

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

Figure 22: A loop generated by the model checking functionality in r-SMGA.

same lane can also enter the intersection at the same time.
To guarantee the mutual exclusion property (e.g., no con-
flicted lane vehicles in the intersection), the protocol uses
statuses for each vehicle (e.g., approaching and crossing) and
controls them by their proposed algorithm. Based on some
assumptions of the protocol, such as lanes of vehicles and
vehicles’ statuses, Bui, et al. [7] have revised SMGA and de-
signed a state picture template so that the tool can visualize
elements in the lanes (vehicles’ IDs) followed by other ele-
ments (vehicles’s statuses). By observing graphical anima-
tions based on their state picture template, the authors con-
jecture some non-trivial characteristics of the protocol and
the characteristics have been confirmed with Maude. The
r-AR protocol and the LJPL protocol share some ideas to
design, such as using lanes of vehicles and statuses of ve-
hicles, but, some assumptions of two protocols are different,

and then we cannot apply all ideas to visualize the LJPL pro-
tocol for visualizing the r-AR protocol.

Frank, et al. [13] have proposed a method to visualize
state transition systems of protocols/systems. They aim to let
users observe global properties of protocols/systems by visu-
alizing whole state spaces. They use cone tree [21] to form
state transition structures in three dimensions so that users
can observe the visualization in three dimensions. The main
algorithm of the method focuses on the symmetry property
and aims to let users identify the symmetrical and similar
sub-structures in the tree. To do that, they first rank all nodes
tomake the systems become hierarchical system structures [23].
Then, they cluster such nodes following some local proper-
ties to reduce the visual complexity of the tree. Based on
the clusters, they aim to visualize the whole state spaces as a
backbone tree, where clusters are visualized as circles whose

21

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

sizes are decided by their volumes. Then, users can observe
and interact with the tree by focusing and zooming into some
clusters to be able to analyze paths inside. The method is ex-
tended to deal with a large state space [12]. The results of
both versions allow users to observe state spaces of protocols
visualized as a backbone tree with the cone tree concept for
each node. Then users can find some global properties of the
protocols, such as obtaining some clusters that do not return
to initial nodes after starting some executions. This method
and r-SMGA share the idea to help users find properties or
characteristics of protocols. r-SMGA graphically animates
state sequences (paths) while this method visualizes whole
state spaces. The idea of the method motivates us to extend
r-SMGA so that r-SMGA can give users an overview of state
spaces. Then users can select some paths and graphically an-
imate them by our approach. One piece of our future work
is to extend r-SMGA based on the mentioned ideas.

r-SMGA can be considered a way to comprehend coun-
terexamples via graphical animations where the counterex-
amples are returned by Maude. Nguyen, et al. [19] have
shown that observing graphical animations of a shorter coun-
terexample can make humans easier to comprehend. The
idea is to use meta level inMaude to generate a shorter coun-
terexample based on the search command in Maude. First,
they use a model checker equipped with Maude to gener-
ate a counterexample when a system does not satisfy some
property. Then, they use meta-search in Maude that uses a
breadth-first search way (this search canmake the counterex-
ample shorter) to find a shorter state sequence leading the
loop part of the counterexample. For the loop, it can work
likewise. Finally, the shorter counterexample is graphically
animated with SMGA.. In the present paper, the size of the
counterexample is large (over 450 states) and then the ap-
proach to making a counterexample shorter would be useful
for r-SMGA as well. It is one piece of our future work to
utilize the approach in r-SMGA.

9. Conclusion
We have graphically animated the r-AR protocol with r-

SMGA. Designing a state picture template is a non-trivial
task in r-SMGA. To design the state picture template of the
r-AR protocol, we have used the tips [9] and Gestalt princi-
ples [24, 25]. We also have shown some factors that affect
the state picture template, such as colors in the similarity
principles of Gestalt principles. Observing graphical ani-
mations helps us to reconfirm some shallow characteristics
of the r-AR protocol that have been noticed when writing
the formal specification and guess some deep characteris-
tics of the protocol. Those characteristics have been con-
firmed with the Maude search command in r-SMGA. We
have checked that the r-AR protocol does not enjoy the lock-
out freedom property using theMaudemodel checking func-
tion available in r-SMGA. By observing graphical anima-
tions of the counterexample, we can comprehend reasons
why the protocol does not satisfy the property and revise the
r-AR protocol so that the revised version enjoys that prop-

erty. There are two main pieces of our future directions: one
is to implement some factors that help humans to better com-
prehend graphical animations of a counterexample, such as
size and causality [3]; another direction is to conduct more
advanced case studies, such as quantum teleportation proto-
col [4] and Shor algorithm [22], to demonstrate the useful-
ness of our approach [5].

References
[1] Aoki, S., Rajkumar, R.R., 2017. A merging protocol for self-driving

vehicles, in: ICCPS, p. 219–228. doi:10.1145/3055004.3055028.
[2] Aung, M.T., Nguyen, T.T.T., Ogata, K., 2018. Guessing, model

checking and theorem proving of state machine properties – a case
study on Qlock. IJSECS 4, 1–18. doi:10.15282/ijsecs.4.2.2018.1.
0045.

[3] Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R., 2012. Ex-
plaining Counterexamples Using Causality. Formal Methods in Sys-
tem Design 40, 20–40. doi:10.1007/s10703-011-0132-2.

[4] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Woot-
ters, W.K., 1993. Teleporting an Unknown Quantum State via Dual
Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70,
1895–1899. doi:10.1103/PhysRevLett.70.1895.

[5] Bui, D.D., 2022. State Machine Visualization Based on Gestalt Prin-
ciples and Its Applications. Ph.D. thesis. Japan Advanced Institute of
Science and Technology. URL: http://hdl.handle.net/10119/18189.

[6] Bui, D.D., Liu, M., Ogata, K., 2022a. Graphical Animations of an
Autonomous Vehicle Merging Protocol, in: DMSVIVA 2022, KSI
Research Inc.. pp. 16–22. doi:10.18293/DMSVIVA22-009.

[7] Bui, D.D., Myint, W.H.H., Tran, D.D., Ogata, K., 2022b. Graph-
ical animations of the Lim-Jeong-Park-Lee autonomous vehicle in-
tersection control protocol. JVLC 2022, 1–15. doi:10.18293/
JVLC2022-N1-004.

[8] Bui, D.D., Ogata, K., 2019. Graphical animations of the Suzuki-
Kasami distributed mutual exclusion protocol. JVLC 2019, 105–115.
doi:10.18293/JVLC2019-N2-012.

[9] Bui, D.D., Ogata, K., 2022. Better state pictures facilitating state ma-
chine characteristic conjecture. Multimedia Tools and Applications
81, 237–272. doi:10.1007/s11042-021-10992-z.

[10] Bui, D.D., Tran, D.D., Ogata, K., Riesco, A., 2022c. Integra-
tion of SMGA and Maude to Facilitate Characteristic Conjecture,
in: DMSVIVA 2022, KSI Research Inc.. pp. 45–54. doi:10.18293/
DMSVIVA22-006.

[11] Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.,
2018. Model checking, 2nd Edition. MIT Press. URL: https:
//mitpress.mit.edu/books/model-checking-second-edition.

[12] Groote, J., Ham, F., 2006. Interactive visualization of large state
spaces. STTT 8, 77–91. doi:10.1007/s10009-005-0198-5.

[13] van Ham, F., van deWetering, H., vanWijk, J.J., 2002. Interactive Vi-
sualization of State Transition Systems. IEEE Transaction on Visual
and Computer Graphics 8, 319–329. doi:10.1109/TVCG.2002.1044518.

[14] Liard, J., . Draw-svg the free online drawing tools. https://www.
drawsvg.org/. Accessed: 2022-04-25.

[15] Lim, J., Jeong, Y., Park, D., Lee, H., 2018. An efficient distributed
mutual exclusion algorithm for intersection traffic control. J. Super-
comput. 74, 1090–1107. doi:10.1007/s11227-016-1799-3.

[16] Liu, M., Bui, D.D., Tran, D.D., Ogata, K., 2021. Formal specification
and model checking of an autonomous vehicle merging protocol, in:
QRS-C, pp. 333–342. doi:10.1109/QRS-C55045.2021.00057.

[17] M. Clavel, et al. (Ed.), 2007. All AboutMaude. volume 4350 of LNCS.
Springer. doi:10.1007/978-3-540-71999-1.

[18] Mon, T.W., Bui, D.D., Tran, D.D., Ogata, K., 2021. Graphical ani-
mations of the ns(l)pk authentication protocols. JVLC 2021, 39–51.
doi:10.18293/JVLC2021-N2-005.

[19] Nguyen, T.T.T., Ogata, K., 2017a. A Way to Comprehend Coun-
terexamples Generated by the Maude LTL Model Checker, in: 2017

22

http://dx.doi.org/10.1145/3055004.3055028
http://dx.doi.org/10.15282/ijsecs.4.2.2018.1.0045
http://dx.doi.org/10.15282/ijsecs.4.2.2018.1.0045
http://dx.doi.org/10.1007/s10703-011-0132-2
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://hdl.handle.net/10119/18189
http://dx.doi.org/10.18293/DMSVIVA22-009
http://dx.doi.org/10.18293/JVLC2022-N1-004
http://dx.doi.org/10.18293/JVLC2022-N1-004
http://dx.doi.org/10.18293/JVLC2019-N2-012
http://dx.doi.org/10.1007/s11042-021-10992-z
http://dx.doi.org/10.18293/DMSVIVA22-006
http://dx.doi.org/10.18293/DMSVIVA22-006
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
http://dx.doi.org/10.1007/s10009-005-0198-5
http://dx.doi.org/10.1109/TVCG.2002.1044518
https://www.drawsvg.org/
https://www.drawsvg.org/
http://dx.doi.org/10.1007/s11227-016-1799-3
http://dx.doi.org/10.1109/QRS-C55045.2021.00057
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.18293/JVLC2021-N2-005

D.D. Bui et al. / Journal of Visual Language and Computing (2023) 9–24

International Conference on Software Analysis, Testing and Evolu-
tion (SATE), pp. 53–62. doi:10.1109/SATE.2017.15.

[20] Nguyen, T.T.T., Ogata, K., 2017b. Graphical animations of
state machines, in: 15th DASC, pp. 604–611. doi:10.1109/
DASC-PICom-DataCom-CyberSciTec.2017.107.

[21] Robertson, G.G., Mackinlay, J.D., Card, S.K., 1991. Cone trees: ani-
mated 3d visualizations of hierarchical information, in: SIGCHI, pp.
189–194. doi:10.1145/108844.108883.

[22] Shor, P., 1994. Algorithms for quantum computation: discrete log-
arithms and factoring, in: Proceedings 35th Annual Symposium on
Foundations of Computer Science, pp. 124–134. doi:10.1109/SFCS.
1994.365700.

[23] Sugiyama, K., Tagawa, S., Toda, M., 1981. Methods for visual un-
derstanding of hierarchical system structures. IEEE Transactions on
Systems, Man, and Cybernetics 11, 109–125. doi:10.1109/TSMC.1981.
4308636.

[24] Todorovic, D., 2008. Gestalt principles. Scholarpedia 3, 5345. doi:10.
4249/scholarpedia.5345.

[25] Ware, C., 2012. Information Visualization: Perception for Design. 3
ed., Morgan Kaufmann.

23

http://dx.doi.org/10.1109/SATE.2017.15
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.107
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.107
http://dx.doi.org/10.1145/108844.108883
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.4249/scholarpedia.5345
http://dx.doi.org/10.4249/scholarpedia.5345

24

