
H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

DOI reference number: 10-18293/JVLC2022-N2-024

Implementing BERT With Ktrain Library For Sentiment Analysis

Hasnan Othmana,*, Mohd Ridzwan Yaakubb

a Malaysian Administrative Modernisation and Management Planning Unit (MAMPU),Prime Minister Department,Putrajaya, 62502 Malaysia

b.Centre for Artificial Intelligence Technology, Universiti kebangsaan Malaysia, Bangi 43600, Malaysia

__

A R T I C L E I N F O

Article History:

Submitted 10.1.2022

Revised 10.2.2022

Second Revision 10.5.2022

Accepted 10.6.2022

Keywords:

Bi-directional Representation

Bi-directional Encoder

BERT

ktrain library

Sentiment Analysis

Transformers

A B S T R A C T

Building the Sentiment Analysis (SA) model for classification tasks is challenging to boost
computational efficiency while writing Machine Learning (ML) applications with the Python Library

package. Its implementation with the pre-trained Bi-directional Encoder From Transformers (BERT)

will produce better results for the experiment. However, one of the implementation issues is choosing
library resources to develop the SA model in solving the Natural Language Processing (NLP) tasks.

Implementing BERT with the Ktrain framework can make such jobs more accessible by allowing

domain experts to further democratize ML with minimum code. The Ktrain Library package's
experiment in implementing the BERT model on IMDB movie datasets obtained an accuracy of 92.8

percent compared to based line models using Support Vector Machine (SVM) and Logistic Regression

(LR). Future works will apply the Ktrain library package with other ML models on diversified domains
of datasets.

© 2022 KSI Research

1. Introduction

Sentiment analysis(SA) on the text is the form of

indirect assessment based on information gathered in a

text which can be classified as positive, negative, or

neutral. Three approaches to conducting SA on text are

machine learning, lexicon-based, and hybrid. The

machine learning strategy uses machine learning

algorithms to classify text, whereas the lexicon-based

approach requires the construction of manual lexicon

dictionaries, which is more time-consuming [1].

The difficulties in building a model for SA inherent in

mastering machine learning coding workflows might

make it challenging for beginner programmers to

determine appropriate library resources to be used.

Machine learning workflows were composed of several

components, such as building the model, inspection,

and application, to ensure that the models become

operational [2]. Python's ability to be used as a

programming language is significantly more efficient

than other programming languages in performing

matrix operations and SA tasks [3]. Ktrain library lets

you use many pre-trained deep learning architectures in

Natural Language Processing (NLP), such as BERT.

Choosing the model coherently with NLP SA tasks can

be improved by getting an efficient programming

language and supporting resources library. Numerous

studies have been conducted on sentiment analysis over

the years, and most studies accurately classify data as

positive, neutral, or negative polarity. Despite this,

various studies have shown the diverse applications of

SA research in security, tourism, and business

intelligence. The approach can expand the need to use

SA as part of the business strategy to increase revenues

[4].

Ktrain is a Python machine learning package library

that provides a simple, unified interface for performing

the ML programming workflow in building the model

regardless of the input type (i.e., text vs. images vs.

graphs). It is a lightweight TensorFlow Keras wrapper

package that can be useful in developing deep learning

and ML projects. The wrapper is used to create, train

and deploy deep learning and ML models. There are

three phases of developing the project: building a

model, inspecting, and applying it that can be

completed in as few as three or four lines of code, a

technique known as "low-code" ML [2]. The ktrain

library package currently supports several data types

and tasks: text, vision, graph, and tabular data.

Ktrain also aims to further democratize machine

learning by allowing novices and domain experts with

minimal programming or data science knowledge to

construct advanced machine learning models with

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc/

26

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

minimal coding. It is also handy for seasoned

practitioners who need to develop deep learning

solutions rapidly[2].

A deep learning transformer solution like BERT is the

first fine-tuning-based representation model that

outperforms numerous task-specific designs on many

sentence and token-level challenges. As a state-of-art

model, BERT was designed to pre-train deep

bidirectional representation from an unlabeled text by

conditioning each layer on the left and right context.

BERT can be fine-tuned to various task questions and

language inference in NLP without significant task-

specific architecture modifications. BERT is advanced

in eleven NLP tasks and distinctive features unified are

architectured across different tasks [5].

The hyperparameters setting using the ktrain library

used a simple lines code to describe what batch size to

be used and what learning rate parameter to specify. The

ktrain-BERT has a pre-training length of 75 words, a

full feature set to consider, and a batch size of words to

embed. It features a three and n-gram range for word

token sequencing. Model loading also establishes

column labels so the model can determine if the job is

binary or multi-label categorization[6]. Fig 1. shows the

codes line to set the training model with one cycle

learning rate policy. The fit method will be applied with

the cycle_len parameter. The hyperparameters setting

using the Ktrain Library used a simple line that

described what batch size to use and what learning rate

parameter to specify. Figure 1 shows the line of code to

set the training model with one cycle learning rate

policy. The function will process the learning rate

schedule and maximal learning rate reduction.

Figure 1: Method to set one cycle policy rate schedules

Text classification is a common problem in SA. It is

distinct from text mining and employs text

classification to identify document subjects. SA

classifies material depending on the writer's mood on

various positive or negative themes [4]. For

determining the sentiment of a text, the machine

learning approach uses algorithms such as Naive Bayes,

S Vector Machine, Decision Tree, Logical Regression,

etc. In contrast, the lexicon-based approach relies on

sentiment lexicons (i.e., a dictionary of opinion words

and phrases with assigned polarities and intensities) [7].

2. Research Objectives

The primary goal of this research is to enhance the

model development process using programming

languages such as Python by choosing an adequate

library package to increase the model's performance.

Doing this can make the process more efficient with less

code and improve performance on processing data to

meet challenged NLP tasks in SA. The scope of work

for this research is to fulfill the following objectives :

(i) Enhance the capability of a model building using

the library packages to accommodate the need

for NLP tasks, particularly on SA domain

datasets.

(ii) Better managed the language program tools

using transformer BERT correlated with the

python package using ktrain library.

The works of literature related to the ktrain Library,

BERT pre-trained Model, ML model workflow, and

buildings of the SA model in these subsections are as

follow:

2.1 BERT Model

The BERT language model has two approaches:

feature-based, unsupervised, and fine-tuning. Feature-

based unsupervised techniques, in general, are like

word or word embedding [8]–[10]. The process to train

the word representation based on previous work was to

place the possibilities of the following sentence [9], the

generation of left-to-right emphasis words of the last

sentence [8], and the derivative of automatic denoising

encoding [11]. The unsupervised approach based on

fine-tuning, on the other hand, works on word

embedding parameters trained from the unlabeled text.

Sentence or document encoders that produce contextual

token representations have been trained from unlabeled

text and refined for supervised downstream tasks [12]–

[14]. Figure 2 shows the pre-training and fine-tuning for

the BERT model in which the output architecture is the

same. In pre-training, the BERT model will use the

masked sentence to train the model on how to predict

the surrounding words[5]. As for fine-tuning, the model

can be configured to apply a feature selection algorithm

using hybrid approaches to building the sentiment

analysis model.

Figure 2: BERT model Pre-training and Fine-Tuning [5]

The machine learning model development consists of 3

phases: model development, inspection, and

27

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

development [15]. Recent improvements in deep

learning-based recommender systems have piqued

researchers' interest by overcoming traditional models'

limitations and reaching excellent suggestion quality.

Deep learning can capture non-linear and non-trivial

user-item connections and codify more sophisticated

abstractions as data representations in higher layers.

Furthermore, it captures the subtle relationships within

the data from readily available sources like contextual,

textual, and visual information. The BERT model can

semantically pick up a relevant field associated with

documents classified in scientific publications[16].

2.2 Ktrain Library

Ktrain is a low code library for Python that can make

accessibility and application to ML tasks easier. It is

straightforward for beginners and expert practitioners to

build, train, inspect, and apply sophisticated, state-of-

the-art machine learning models. Ktrain is also

designed to make deep learning, such as BERT and

Artificial Intelligent (AI), more accessible and easier

for newcomers and experienced practitioners. It also

includes modules that deal with textual data. Ktrain is

used in the machine learning model implemented in

TensorFlow Keras (TF. Keras) and supports the

following data types and tasks, as illustrated in Fig.

3[2]. Four categories for the ktrain library are text,

vision, graph, and tabular data. This category will relate

the ktrain library with a classifying model for

performing the relevant task. Tasks for text data include

task classification, such as auto categorizing

documents, text regression, such as predicting

numerical values, and sequence tagging, which extracts

sequences of words representing Named Entity

Recognition. The tasks on vision data include image

classification, such as auto-categorizing images across

various dimensions, and image regression to predict

numerical values such as a person's age from photos.

The graph data types category is a node classification

that auto-categorizes nodes in a graph, such as social

media accounts, and predicts missing links in a social

network. Lastly, tabular data includes classification and

regression that store data in tables.

Figure 3: Ktrain data types and task [2]

Additionally, ktrain offers a straightforward and user-

friendly prediction API for making predictions on fresh

and unstudied samples. The model (i.e., the underlying

tf. Keras model) and the preprocessing procedures (i.e.,

a Preprocessor instance) necessary to convert raw data

into the format anticipated by the model are both

included in a Predictor instance. It is simple to save and

reload the Predictor instance to deploy production

environments [2].

Ktrain simplifies the SA model workflow, from input

curation and preprocessing (i.e., ground-truth-labeled

training data) to model training, tuning,

troubleshooting, and application. Libraries that are a

core of Ktrain's explainable AI are powered by other

libraries, such as Shapley Additive Explanations

(SHAP) (Kiros et al. 2015) and ELI5 with LIME [9].

The prediction using both libraries significantly

impacted the result by trusting a prediction or testing

the model. We characterize "explaining a prediction" as

displaying textual or visual artifacts that provide a

qualitative comprehension of the relationship between

the instance's components (e.g., words in a text, patches

in a picture) and the model's prediction [9]. The SHAP

library will assign each feature an essential value for a

particular prediction. Hence, the local Interpretable

Model-agnostic Explanations (LIME) technique

interpreted individual model predictions based on a

local approximation model around a given prediction

[15].

The equation prediction using SHAP by additive feature

attribution methods is :

𝑔(𝑧′) = ∅0 + ∑ ∅𝑖 𝑧𝑖
′𝑀

𝑖=1 (1)

Where z' ∈ {0, 1}M, M is the number of simplified input

features, and ∅𝑖 ∈ ℝ.

This method matches the attribute with the effect of ∅i

to each feature and sums up all the attribute features to

the output f(x) of the original model.

28

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

As for using LIME, the equation prediction interprets

the model predictions individually based on

approximating the model for the given prediction. It is

to simplify input by mapping the value of 𝑥 =

 ℎ𝑥 (𝑥′) to convert it into a binary vector of

interpretable input to the original input space.

ξ = arg min L(f, g, π x′) + Ω (g) (2)

The explanation of the argument is the minimum ξ =arg

min, and it will enforce the loss of L over a set of

samples in simplified input space weighted by the local

kernel πx’.Ω penalizes the complexity of g. The equation

is solved using penalized linear regression [15].

Figure 4 is a sentiment analysis pipeline by applying

SHAP in IMDB positives datasets for two rows of data.

It shows how to score positive based on the reviewer's

dataset comment.

Figure 4: SHAP explained in an IMDB positives review

on two sets of data

2.3 SA Model

Acquiring SA models and modifying them according

to the task requirements is time-consuming and error-

prone. It is because process knowledge is typically

disseminated across many people, and workflow

modeling is an arduous task that requires the expertise

of a modeling specialist [17]. There are three

fundamental problems in developing the SA method:

feature selection, senti-word identification, and

sentiment classification. This requirement is needed to

prepare the developing model to meet SA requirements

and focus on the given task. The data validated the

sentiment model's integrity by developing new SA

frameworks and components under SA-related issues

[18]. Building models using the ktrain standard for

supervised tasks described are as described in Figure 5

[2], [17].

Figure 5: Phases in building model [2]

Phases step based on Figure 5 that will be applied

using ktrain library packages :

• Load and preprocess Data comprises a step for

loading data from various sources and preparing

it according to the model's specifications. The

process for language-specific preparation will

include lemmatization and tokenization for text

classification. Image data may involve auto-

normalizing pixel values based on the model,

attributes of nodes, and the link to the networks.

All ktrain preprocessing techniques return a

Preprocessor instance that incorporates all the

preprocessing stages for a particular task. This

instance can be used when utilizing the model to

make predictions on new, unknown data.

• Create a Model using tf.Keras for model

development and be wrapped in a ktrain. The

model will be configured based on configuring the

Learner instance wrapped in ktrain. Learner

instance as an abstraction to facilitate training. The

customization also can be made by the users

whether to customize it or use defaults.

• Estimate Learning Rate can be employed to

estimate the optimal learning rate for the given

model and data. This step is optional for some

models, such as BERT, with default learning rates

that function well.

• The training model will be using the fit-one-cycle

method and autofit method. Fit-one-cycle is the method

that employs a one-cycle policy, whereas autofit utilizes

a triangular learning rate schedule by specifying the

number of epochs. After training a model, ktrain

provides a simple interface to evaluate the technique

and calculates extensive validation (or test) metrics.

29

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

3. Methodology

The proposed methodology using the ktrain Library

and BERT model are as per Figure 6. The building

frameworks for this methodology will be conducted in

various steps starting from initiating the library package

for ktrain library resources, processing the data, and

splitting data for training and evaluation models. We

will use ktrain to easily and quickly build, train, inspect,

and evaluate the model. The visualization of the

experience will be assessed based on a comparison will

baseline models and to produce the result based on the

finding.

Figure 6: Proposed Methodology Using the Ktrain
Library and BERT Model

Firstly, the building of the model BERT will be using

the ktrain library by implementing based on

hyperparameter tuning on the model structure. Firstly

the pre-trained BERT will determine the column labels

so that the model can know whether the task is binary

or multi-label classification. The transformers class

using the ktrain library will be instantiated by providing

the model name, the length sequence, and the target

names' populating classes. The training metrics were fit

to 2 epochs using the one-cycle policy with a max LR

of 1e-05. Total trainable parameters are 109,336 322.

Next is the preprocessing data in the Keras model,

where the preprocessor instances are loaded with the

encapsulated feature set, pre-training length, and model

range. The preprocessing steps include tokenization,

normalization, and stop word removal [19].

After that, we create a classifier with pre-trained

weights, and fine-tuneable final layers initialized

randomly. The model will be wrapped in a ktrain

Learner object, which will make it simple to train,

analyze, and use the model to generate predictions on

new data. Dataset will be split into training and testing

datasets in a ratio of 40,000 data to trained and 10,000

for testing. We will use the Learning Rate Finder in

ktrain to estimate a good learning rate for our model and

dataset. Then the model will perform sentiment

classification by using the learner.validate() method to

produce testing data results

(learner.validate(val_data=(x_test, y_test)).

The following method is to inspect the model by

examining the classifying datasets. This process

includes loading the BERT model using the ktrain

wrapper by implementing the function that predicts the

classifying sentiment by declaring operating

predictor=ktrain.get_predictor(learner. model,

preproc).

Lastly, the prediction of the dataset and evaluation for

accuracy will be using the predictor.predict(data)

function. The result will be visualization by evaluating

the accuracy, precision, recall, and F1 score. The

visualization will illustrate the comparison with other

baseline models, such as SVM and LR.

4. Results and Discussion

The experiment was conducted on the Google Colab

platform with GPU using an IMDB movie review [20]

with total data of 50,000 lines data. Dataset was split

into 40,000 for the training dataset and 10,000 for the

test dataset. It is a balanced dataset with polarity

negatives and positives. The experiment reviewed the

ktrain lightweight wrapper for TensorFlow Keras,

which streamlines the development of the model

transformer BERT. The execution of model activities

through the ktrain wrapper will use the library's

resources that initialize from the ktrain library. The task

was done with minimal program code to initialize the

30

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

BERT model classifier. This function will process the

splitting data process with eight batches based on the

parts of program codes shown in Figure 7.

Figure 7: Line Codes In Training The Model Using

The Ktrain Library

The classifier model used the method of

ktrain.get_predictor to evaluate data from the learner

model to predict the sentiment outcome using predictor

instances predictor.predict(data). The predictor can be

implemented on individual phrases of data to check the

sentiment classifier outcome. The method of predictor

object is to help the model understand how those

predictions were made. Figure 8 is the result based on

the unigram classifier. The Unigram word is 'bad,' and

the result gives 0 negative value.

Figure 8: Results based on unigram

The calculation was based model classifier for True

Positive, False Negative, True Negative, and False

Positive. Table 1 shows the results based on

learner.validate() method for the testing of 10,000

data (0.2 from datasets of 50,000 with 40,000 for

training dataset). The results are based on

classification Table I, which then shows the detailed

results compared with the baseline models.

Table 1. Evaluation results

Details calculations are based on the measurement

equation below [21]:

Accuracy =
TP + TN

TP + FP + TN + FN
=>

9288

10000

=> 𝟎. 𝟗𝟐𝟖

Precision =
TP

TP + FP
=>

4612

4612 + 373

=>
4612

4985
=> 𝟎. 𝟗𝟐𝟓

Recall =
TP

TP + FN
=>

4612

 4612 + 339

=>
4612

4951
=> 𝟎. 𝟗𝟑𝟏

F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall

=> 2 ∗
0.861

1.856
=> 𝟎. 𝟗𝟐𝟕

Compared with the baseline model summarized, model

BERT gets a higher accuracy of 92.8 compared to other

baseline models using Support Vector Machine(SVM)

and Logistic Regression(LR). For precision, BERT

obtained 92.5%, Recall 93.1% dan f1-score 92.7%. This

result shows that the BERT model was better than SVM

and LR. Detail as described in Table 2.

Table 2. Comparison of results with baseline models

The discussion on the experimental process is an

initialization of the ktrain library that provides more

options for the general sentiment analysis process.

Ktrain package and sub-modules comprehensively

cover most of the tasks in classifying the SA

requirements. The experiment reviewed the ktrain

lightweight wrapper for TensorFlow Keras, which

streamlines the development of transformer models

such BERT model.

The prediction instances show that making a predictor

of the current data only needs simple code to call the

model = text.text_classifier('bert',

 train_data=(x_train, y_train),

 preproc=preproc)

learner = ktrain.get_learner(model,

 train_data=(x_train, y_train),

 batch_size=8)

Model True

Positive

False

negative

True

Negative

False

Positive

BERT 4612 339 4676

373

 Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

BERT 92.8 92.5 93.1 92.7

LR 88.90 88.90 90.80 88.90

SVM 89.80 89.20 90.80 90.0

predictor =

ktrain.get_predictor(learner.model, preproc)

data=["bad"]

predictor.predict(data)

31

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

predictor instances, declare it based on the data set, and

thus, predict the data polarity. The predictions can be

easily defined by utilizing the method predictor objects

to understand how the prediction is made. An

experimental sample using the unigram n bigram shows

that the predictor was accurate based on the predicted

results. Figure 9 shows the ktrain library's predictions

using the BERT model based on bigram phrases.

Figure 9: Make predictions using the ktrain library and

BERT model

Once all models are trained, they can be managed using

TensorFlow or the transformer Library. The predictor

also can be saved than to be reloaded later in making

other deployment classifications by applying the

predictor. save method.

Additionally, the study has shown that the task can be

done with minimal program code and demonstrated

how to do the tasks with less program code. This post

explained how to execute most modeling activities

entirely through the wrapper. Developing ktrain Library

to BERT classifier also used a few line codes for

examples method such learner.validate. That will

produce the result evaluation that uses a validation set

by default, as shown in Figure 10.

Figure 10: Evaluation Results of the BERT Model

The comparison within the finding of True positives

(TP), True Negatives (TN), False positives (FP), and

False Negatives (FN) are illustrated in Figure 11. The

result shows that the predicted TP and TN were high,

and FP and FN were low, resulting in better accuracy.

Figure 11. Evaluation results

The comparison of the BERT model to other baseline

models resulted in Figure 12. The results show that the

BERT classifier results better than other SA models like

LR and SVM. The predictions of TP dan TN showed a

higher true result. FN and FP also showed lower false

results.

Figure 12: Comparison with baseline models

5. Conclusion

This paper shows that the BERT model works better

with the ktrain library resources modules. It

successfully processed the function or method to

expedite programming capability in delivering

results. The proposed model achieved a better result

with an accuracy of 92.8%, a precision of 92.5%,

Recall 93.1%, and F1-Score with 92.7% compared

to Support Vector Machine and Logistics

Regression. Additionally, it demonstrated that the

library provided by ktrain requires less code and can

produce the required task based on NLP needs.

Nevertheless, further research needs to work on the

limitations. For future work, we advocate wrapping

the ktrain library to more pre-trained models and

testing them on diverse domains of datasets.

Acknowledgement

learner.validate(val_data=(x_test, y_test))

 precision recall f1-score support

0 0.92 0.93 0.92 5049

1 0.91 0.92 0.91 4951

accuracy 0.92 10000

macro avg 0.92 0.92 0.91 10000

weighted avg 0.91 0.92 0.91 10000

calling instances

predictor = ktrain.get_predictor(learner.model, preproc)

#line of data set

data=["bad movie"]

predict the data

predictor.predict(data)

#Results 0 – negative 1 - positive

[‘0’]

32

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

The authors gratefully acknowledged Universiti

Kebangsaan Malaysia and RHB Bank through grant

code RHB-UKM-2020-001 (Geran RHB-UKM) for

supporting this research. The authors also thank the

Public Service Department of Malaysia(PSD) and

the Malaysian Administrative Modernisation and

Management Planning Unit (MAMPU) for this

research opportunity.

This material was made initially and has never been

published elsewhere.

References

[1] W. Kaur, V. Balakrishnan, and B. Singh,

"Improving teaching and learning experience in

engineering education using sentiment analysis

techniques," IOP Conf. Ser. Mater. Sci. Eng.,

vol. 834, no. 1, 2020, doi: 10.1088/1757-

899X/834/1/012026.

[2] A. S. Maiya, "ktrain: A Low-Code Library for

Augmented Machine Learning," vol. 10703,

2020, [Online]. Available:

http://arxiv.org/abs/2004.10703.

[3] P. Ksieniewicz and P. Zyblewski, "Stream-

learn — open-source Python library for

difficult data stream batch analysis,"

Neurocomputing, vol. 478, pp. 11–21, 2022,

doi: 10.1016/j.neucom.2021.10.120.

[4] I. S. Ahmad, A. Abu Bakar, M. R. Yaakub, and

M. Darwich, "Beyond sentiment classification:

A novel approach for utilizing social media data

for business intelligence," Int. J. Adv. Comput.

Sci. Appl., vol. 11, no. 3, pp. 437–441, 2020,

doi: 10.14569/ijacsa.2020.0110355.

[5] J. Devlin, M. W. Chang, K. Lee, and K.

Toutanova, "BERT: Pre-training of deep

bidirectional transformers for language

understanding," NAACL HLT 2019 - 2019

Conf. North Am. Chapter Assoc. Comput.

Linguist. Hum. Lang. Technol. - Proc. Conf.,

vol. 1, pp. 4171–4186, 2019.

[6] S. Das, P. Mandal, and S. Chatterji,

"Probabilistic Impact Score Generation using

Ktrain-BERT to Identify Hate Words from

Twitter Discussions," 2021.

[7] W. Kaur and V. Balakrishnan, "Improving

sentiment scoring mechanism: a case study on

airline services," Ind. Manag. Data Syst., vol.

118, no. 8, pp. 1578–1596, 2018, doi:

10.1108/IMDS-07-2017-0300.

[8] R. Kiros et al., "Skip-thought vectors," Adv.

Neural Inf. Process. Syst., vol. 2015-Janua, no.

786, pp. 3294–3302, 2015.

[9] L. Logeswaran and H. Lee, "An efficient

framework for learning sentence

representations," 6th Int. Conf. Learn.

Represent. ICLR 2018 - Conf. Track Proc., pp.

1–16, 2018.

[10] C. Republic and T. Mikolov, "Statistical

Language Models Based on Neural Networks,"

Wall Str. J., no. April, pp. 1–129, 2012, doi:

10.1016/j.csl.2015.07.001.

[11] F. Hill, K. Cho, and A. Korhonen, "Learning

distributed representations of sentences from

unlabelled data," 2016 Conf. North Am.

Chapter Assoc. Comput. Linguist. Hum. Lang.

Technol. NAACL HLT 2016 - Proc. Conf., pp.

1367–1377, 2016, doi: 10.18653/v1/n16-1162.

[12] A. M. Dai and Q. V. Le, "Semi-supervised

sequence learning," Adv. Neural Inf. Process.

Syst., vol. 2015-Janua, pp. 3079–3087, 2015.

[13] J. Howard and S. Ruder, "Universal language

model fine-tuning for text classification," ACL

2018 - 56th Annu. Meet. Assoc. Comput.

Linguist. Proc. Conf. (Long Pap., vol. 1, pp.

328–339, 2018, doi: 10.18653/v1/p18-1031.

[14] A. Radford, K. Narasimhan, T. Salimans, and I.

Sustskever, "Improving Language

Understanding by Generative Pre-Training,"

Comput. Sci., vol. 9, no. 1, 2018.

[15] S. M. Lundberg and S. I. Lee, "A unified

approach to interpreting model predictions,"

Adv. Neural Inf. Process. Syst., vol. 2017-

Decem, no. Section 2, pp. 4766–4775, 2017.

[16] A. Garcia-Silva and J. M. Gomez-Perez,

"Classifying Scientific Publications with BERT

- Is Self-attention a Feature Selection

Method?," Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12656 LNCS, pp. 161–

175, 2021, doi: 10.1007/978-3-030-72113-

8_11.

[17] J. Herbst, "A machine learning approach to

workflow management," Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 1810, pp.

183–194, 2000, doi: 10.1007/3-540-45164-

1_19.

[18] S. R. Ahmad, A. A. Bakar, and M. R. Yaakub,

"A review of feature selection techniques in

sentiment analysis," Intell. Data Anal., vol. 23,

no. 1, pp. 159–189, 2019, doi: 10.3233/IDA-

173763.

[19] N. Omar, M. Albared, T. Al-Moslmi, and A.

Al-Shabi, "A comparative study of feature

selection and machine learning algorithms for

arabic sentiment classification," Lect. Notes

Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol.

8870, pp. 429–443, 2014, doi: 10.1007/978-3-

319-12844-3_37.

[20] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,

A. Y. Ng, and C. Potts, "Learning word vectors

for sentiment analysis," ACL-HLT 2011 - Proc.

49th Annu. Meet. Assoc. Comput. Linguist.

Hum. Lang. Technol., vol. 1, pp. 142–150,

2011.

[21] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran,

33

H. Othman and M. R. Yaakub / Journal of Visual Language and Computing (2022) 26–34

M. Y. Alzahrani, and R. Budiarto, "Evaluating

Trust Prediction and Confusion Matrix

Measures for Web Services Ranking," IEEE

Access, vol. 8, pp. 90847–90861, 2020, doi:

10.1109/ACCESS.2020.2994222.

34

