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A B S T R A C T

Building the Sentiment Analysis (SA) model for classification tasks is challenging to boost 
computational efficiency while writing Machine Learning (ML) applications with the Python Library 

package. Its implementation with the pre-trained Bi-directional Encoder From Transformers (BERT) 

will produce better results for the experiment. However, one of the implementation issues is choosing 
library resources to develop the SA model in solving the Natural Language Processing (NLP) tasks. 

Implementing BERT with the Ktrain framework can make such jobs more accessible by allowing 

domain experts to further democratize ML with minimum code. The Ktrain Library package's 
experiment in implementing the BERT model on IMDB movie datasets obtained an accuracy of 92.8 

percent compared to based line models using Support Vector Machine (SVM) and Logistic Regression 

(LR). Future works will apply the Ktrain library package with other ML models on diversified domains 
of datasets.     

© 2022 KSI Research 

1. Introduction

Sentiment analysis(SA) on the text is the form of 

indirect assessment based on information gathered in a 

text which can be classified as positive, negative, or 

neutral. Three approaches to conducting SA on text are 

machine learning, lexicon-based, and hybrid. The 

machine learning strategy uses machine learning 

algorithms to classify text, whereas the lexicon-based 

approach requires the construction of manual lexicon 

dictionaries, which is more time-consuming [1].  

The difficulties in building a model for SA inherent in 

mastering machine learning coding workflows might 

make it challenging for beginner programmers to 

determine appropriate library resources to be used. 

Machine learning workflows were composed of several 

components, such as building the model, inspection, 

and application, to ensure that the models become 

operational [2]. Python's ability to be used as a 

programming language is significantly more efficient 

than other programming languages in performing 

matrix operations and SA tasks  [3]. Ktrain library lets 

you use many pre-trained deep learning architectures in 

Natural Language Processing (NLP), such as BERT. 

Choosing the model coherently with NLP SA tasks can 

be improved by getting an efficient programming 

language and supporting resources library. Numerous 

studies have been conducted on sentiment analysis over 

the years, and most studies accurately classify data as 

positive, neutral, or negative polarity. Despite this, 

various studies have shown the diverse applications of 

SA research in security, tourism, and business 

intelligence. The approach can expand the need to use 

SA as part of the business strategy to increase revenues 

[4]. 

Ktrain is a Python machine learning package library 

that provides a simple, unified interface for performing 

the ML programming workflow in building the model 

regardless of the input type (i.e., text vs. images vs. 

graphs). It is a lightweight TensorFlow Keras wrapper 

package that can be useful in developing deep learning 

and ML projects. The wrapper is used to create, train 

and deploy deep learning and ML models. There are 

three phases of developing the project: building a 

model, inspecting, and applying it that can be 

completed in as few as three or four lines of code, a 

technique known as "low-code" ML [2]. The ktrain 

library package currently supports several data types 

and tasks: text, vision, graph, and tabular data.  

Ktrain also aims to further democratize machine 

learning by allowing novices and domain experts with 

minimal programming or data science knowledge to 

construct advanced machine learning models with 
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minimal coding. It is also handy for seasoned 

practitioners who need to develop deep learning 

solutions rapidly[2].  

 

A deep learning transformer solution like BERT is the 

first fine-tuning-based representation model that 

outperforms numerous task-specific designs on many 

sentence and token-level challenges. As a state-of-art 

model, BERT was designed to pre-train deep 

bidirectional representation from an unlabeled text by 

conditioning each layer on the left and right context. 

BERT can be fine-tuned to various task questions and 

language inference in NLP without significant task-

specific architecture modifications. BERT is advanced 

in eleven NLP tasks and distinctive features unified are 

architectured across different tasks [5]. 

The hyperparameters setting using the ktrain library 

used a simple lines code to describe what batch size to 

be used and what learning rate parameter to specify. The 

ktrain-BERT has a pre-training length of 75 words, a 

full feature set to consider, and a batch size of words to 

embed. It features a three and n-gram range for word 

token sequencing. Model loading also establishes 

column labels so the model can determine if the job is 

binary or multi-label categorization[6]. Fig 1. shows the 

codes line to set the training model with one cycle 

learning rate policy. The fit method will be applied with 

the cycle_len parameter. The hyperparameters setting 

using the Ktrain Library used a simple line that 

described what batch size to use and what learning rate 

parameter to specify. Figure 1 shows the line of code to 

set the training model with one cycle learning rate 

policy. The function will process the learning rate 

schedule and maximal learning rate reduction. 

 

 

Figure 1: Method to set one cycle policy rate schedules 

 

Text classification is a common problem in SA. It is 

distinct from text mining and employs text 

classification to identify document subjects. SA 

classifies material depending on the writer's mood on 

various positive or negative themes [4]. For 

determining the sentiment of a text, the machine 

learning approach uses algorithms such as Naive Bayes, 

S Vector Machine, Decision Tree, Logical Regression, 

etc. In contrast, the lexicon-based approach relies on 

sentiment lexicons (i.e., a dictionary of opinion words 

and phrases with assigned polarities and intensities) [7]. 

 

2. Research Objectives  

The primary goal of this research is to enhance the 

model development process using programming 

languages such as Python by choosing an adequate 

library package to increase the model's performance. 

Doing this can make the process more efficient with less 

code and improve performance on processing data to 

meet challenged NLP tasks in SA. The scope of work 

for this research is to fulfill the following objectives : 

(i) Enhance the capability of a model building using 

the library packages to accommodate the need 

for NLP tasks, particularly on SA domain 

datasets. 

(ii) Better managed the language program tools 

using transformer BERT correlated with the 

python package using ktrain library. 

The works of literature related to the ktrain Library, 

BERT pre-trained Model, ML model workflow, and 

buildings of the SA model in these subsections are as 

follow: 

 

2.1 BERT Model 

The BERT language model has two approaches: 

feature-based, unsupervised, and fine-tuning. Feature-

based unsupervised techniques, in general, are like 

word or word embedding [8]–[10]. The process to train 

the word representation based on previous work was to 

place the possibilities of the following sentence [9], the 

generation of left-to-right emphasis words of the last 

sentence [8], and the derivative of automatic denoising 

encoding [11]. The unsupervised approach based on 

fine-tuning, on the other hand, works on word 

embedding parameters trained from the unlabeled text. 

Sentence or document encoders that produce contextual 

token representations have been trained from unlabeled 

text and refined for supervised downstream tasks [12]–

[14]. Figure 2 shows the pre-training and fine-tuning for 

the BERT model in which the output architecture is the 

same. In pre-training, the BERT model will use the 

masked sentence to train the model on how to predict 

the surrounding words[5]. As for fine-tuning, the model 

can be configured to apply a feature selection algorithm 

using hybrid approaches to building the sentiment 

analysis model. 

 

 

 

 

 

 

 

 

Figure 2: BERT model Pre-training and Fine-Tuning [5] 

 

 

 

 

The machine learning model development consists of 3 

phases: model development, inspection, and 
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development [15]. Recent improvements in deep 

learning-based recommender systems have piqued 

researchers' interest by overcoming traditional models' 

limitations and reaching excellent suggestion quality. 

Deep learning can capture non-linear and non-trivial 

user-item connections and codify more sophisticated 

abstractions as data representations in higher layers. 

Furthermore, it captures the subtle relationships within 

the data from readily available sources like contextual, 

textual, and visual information. The BERT model can 

semantically pick up a relevant field associated with 

documents classified in scientific publications[16]. 

 

2.2 Ktrain Library 

Ktrain is a low code library for Python that can make 

accessibility and application to ML tasks easier. It is 

straightforward for beginners and expert practitioners to 

build, train, inspect, and apply sophisticated, state-of-

the-art machine learning models. Ktrain is also 

designed to make deep learning, such as BERT and 

Artificial Intelligent (AI), more accessible and easier 

for newcomers and experienced practitioners. It also 

includes modules that deal with textual data. Ktrain is 

used in the machine learning model implemented in 

TensorFlow Keras (TF. Keras) and supports the 

following data types and tasks, as illustrated in Fig. 

3[2]. Four categories for the ktrain library are text, 

vision, graph, and tabular data. This category will relate 

the ktrain library with a classifying model for 

performing the relevant task. Tasks for text data include 

task classification, such as auto categorizing 

documents, text regression, such as predicting 

numerical values, and sequence tagging, which extracts 

sequences of words representing Named Entity 

Recognition. The tasks on vision data include image 

classification, such as auto-categorizing images across 

various dimensions, and image regression to predict 

numerical values such as a person's age from photos. 

The graph data types category is a node classification 

that auto-categorizes nodes in a graph, such as social 

media accounts, and predicts missing links in a social 

network. Lastly, tabular data includes classification and 

regression that store data in tables. 

 

 

 

 

 

 

 

 

Figure 3: Ktrain data types and task [2] 

 

Additionally, ktrain offers a straightforward and user-

friendly prediction API for making predictions on fresh 

and unstudied samples. The model (i.e., the underlying 

tf. Keras model) and the preprocessing procedures (i.e., 

a Preprocessor instance) necessary to convert raw data 

into the format anticipated by the model are both 

included in a Predictor instance. It is simple to save and 

reload the Predictor instance to deploy production 

environments [2]. 

 

Ktrain simplifies the SA model workflow, from input 

curation and preprocessing (i.e., ground-truth-labeled 

training data) to model training, tuning, 

troubleshooting, and application. Libraries that are a 

core of Ktrain's explainable AI are powered by other 

libraries, such as Shapley Additive Explanations 

(SHAP) (Kiros et al. 2015) and ELI5 with LIME [9]. 

The prediction using both libraries significantly 

impacted the result by trusting a prediction or testing 

the model. We characterize "explaining a prediction" as 

displaying textual or visual artifacts that provide a 

qualitative comprehension of the relationship between 

the instance's components (e.g., words in a text, patches 

in a picture) and the model's prediction [9]. The SHAP 

library will assign each feature an essential value for a 

particular prediction. Hence, the local Interpretable 

Model-agnostic Explanations (LIME) technique 

interpreted individual model predictions based on a 

local approximation model around a given prediction 

[15].  

 

The equation prediction using SHAP by additive feature 

attribution methods  is : 

 

𝑔(𝑧′ ) =  ∅0 +  ∑ ∅𝑖    𝑧𝑖
′𝑀

𝑖=1               (1) 
 

Where z' ∈ {0, 1}M,  M is the number of simplified input 

features, and ∅𝑖 ∈  ℝ.  

 

This method matches the attribute with the effect of  ∅i  

to each feature and sums up all the attribute features to 

the output f(x) of the original model. 
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As for using LIME, the equation prediction interprets 

the model predictions individually based on 

approximating the model for the given prediction. It is 

to simplify input by mapping the value of  𝑥 =

 ℎ𝑥 (𝑥′ ) to convert it into a binary vector of 

interpretable input to the original input space. 

 

ξ = arg min L(f, g, π x′ ) +  Ω (g)         (2) 

 

The explanation of the argument is the minimum ξ =arg 

min, and it will enforce the loss of L over a set of 

samples in simplified input space weighted by the local 

kernel πx’.Ω penalizes the complexity of g. The equation 

is solved using penalized linear regression [15]. 

 

Figure 4 is a sentiment analysis pipeline by applying 

SHAP in IMDB positives datasets for two rows of data. 

It shows how to score positive based on the reviewer's 

dataset comment. 

 

 

 

Figure 4: SHAP explained in an IMDB positives review 

on two sets of data 

2.3 SA Model 

Acquiring SA models and modifying them according 

to the task requirements is time-consuming and error-

prone. It is because process knowledge is typically 

disseminated across many people, and workflow 

modeling is an arduous task that requires the expertise 

of a modeling specialist [17]. There are three 

fundamental problems in developing the SA method: 

feature selection, senti-word identification, and 

sentiment classification. This requirement is needed to 

prepare the developing model to meet SA requirements 

and focus on the given task. The data validated the 

sentiment model's integrity by developing new SA 

frameworks and components under SA-related issues 

[18]. Building models using the ktrain standard for 

supervised tasks described are as described in Figure 5 

[2], [17]. 

 

 

Figure 5: Phases in building model [2] 

 

Phases step based on Figure 5 that will be applied 

using ktrain library packages : 

 

• Load and preprocess Data comprises a step for 

loading data from various sources and preparing 

it according to the model's specifications. The 

process for language-specific preparation will 

include lemmatization and tokenization for text 

classification. Image data may involve auto-

normalizing pixel values based on the model, 

attributes of nodes, and the link to the networks. 

All ktrain preprocessing techniques return a 

Preprocessor instance that incorporates all the 

preprocessing stages for a particular task. This 

instance can be used when utilizing the model to 

make predictions on new, unknown data. 

 

• Create a Model using tf.Keras for model 

development and be wrapped in a ktrain. The 

model will be configured based on configuring the 

Learner instance wrapped in ktrain. Learner 

instance as an abstraction to facilitate training. The 

customization also can be made by the users 

whether to customize it or use defaults. 

 

• Estimate Learning Rate can be employed to 

estimate the optimal learning rate for the given 

model and data. This step is optional for some 

models, such as BERT, with default learning rates 

that function well. 

 

• The training model will be using the fit-one-cycle 

method and autofit method. Fit-one-cycle is the method 

that employs a one-cycle policy, whereas autofit utilizes 

a triangular learning rate schedule by specifying the 

number of epochs. After training a model, ktrain 

provides a simple interface to evaluate the technique 

and calculates extensive validation (or test) metrics. 
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3. Methodology 

The proposed methodology using the ktrain Library 

and BERT model are as per Figure 6. The building 

frameworks for this methodology will be conducted in 

various steps starting from initiating the library package 

for ktrain library resources, processing the data, and 

splitting data for training and evaluation models. We 

will use ktrain to easily and quickly build, train, inspect, 

and evaluate the model. The visualization of the 

experience will be assessed based on a comparison will 

baseline models and to produce the result based on the 

finding. 

 

 

 

Figure 6: Proposed Methodology Using the Ktrain 
Library and BERT Model 

 

Firstly, the building of the model BERT will be using 

the ktrain library by implementing based on 

hyperparameter tuning on the model structure. Firstly 

the pre-trained BERT will determine the column labels 

so that the model can know whether the task is binary 

or multi-label classification. The transformers class 

using the ktrain library will be instantiated by providing 

the model name, the length sequence, and the target 

names' populating classes. The training metrics were fit 

to 2 epochs using the one-cycle policy with a max LR 

of 1e-05. Total trainable parameters are 109,336 322. 

 

Next is the preprocessing data in the Keras model, 

where the preprocessor instances are loaded with the 

encapsulated feature set, pre-training length, and model 

range. The preprocessing steps include tokenization, 

normalization, and stop word removal [19].  

 

After that, we create a classifier with pre-trained 

weights, and fine-tuneable final layers initialized 

randomly. The model will be wrapped in a ktrain 

Learner object, which will make it simple to train, 

analyze, and use the model to generate predictions on 

new data. Dataset will be split into training and testing 

datasets in a ratio of 40,000 data to trained and 10,000 

for testing. We will use the Learning Rate Finder in 

ktrain to estimate a good learning rate for our model and 

dataset. Then the model will perform sentiment 

classification by using the learner.validate() method to 

produce testing data results 

(learner.validate(val_data=(x_test, y_test)). 

 

The following method is to inspect the model by 

examining the classifying datasets. This process 

includes loading the BERT model using the ktrain 

wrapper by implementing the function that predicts the 

classifying sentiment by declaring operating 

predictor=ktrain.get_predictor(learner. model, 

preproc).  

 

Lastly, the prediction of the dataset and evaluation for 

accuracy will be using the predictor.predict(data) 

function. The result will be visualization by evaluating 

the accuracy, precision, recall, and F1 score. The 

visualization will illustrate the comparison with other 

baseline models, such as SVM and LR. 

 

4. Results and Discussion 

The experiment was conducted on the Google Colab 

platform with GPU using an IMDB movie review [20] 

with total data of 50,000 lines data. Dataset was split 

into 40,000 for the training dataset and 10,000 for the 

test dataset. It is a balanced dataset with polarity 

negatives and positives. The experiment reviewed the 

ktrain lightweight wrapper for TensorFlow Keras, 

which streamlines the development of the model 

transformer BERT. The execution of model activities 

through the ktrain wrapper will use the library's 

resources that initialize from the ktrain library. The task 

was done with minimal program code to initialize the 
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BERT model classifier. This function will process the 

splitting data process with eight batches based on the 

parts of program codes shown in Figure 7. 

 

Figure 7: Line Codes In Training The Model Using 

The Ktrain Library 

 

The classifier model used the method of 

ktrain.get_predictor to evaluate data from the learner 

model to predict the sentiment outcome using predictor 

instances predictor.predict(data). The predictor can be 

implemented on individual phrases of data to check the 

sentiment classifier outcome. The method of predictor 

object is to help the model understand how those 

predictions were made. Figure 8 is the result based on 

the unigram classifier. The Unigram word is 'bad,' and 

the result gives 0 negative value. 

 

Figure 8: Results based on unigram 

 

The calculation was based model classifier for True 

Positive, False Negative, True Negative, and False 

Positive. Table 1 shows the results based on 

learner.validate() method for the testing of 10,000 

data (0.2 from datasets of 50,000 with 40,000 for 

training dataset). The results are based on 

classification Table I, which then shows the detailed 

results compared with the baseline models. 

 

 

 

 

Table 1. Evaluation results 

 

 

Details calculations are based on the measurement 

equation below [21]: 

 

Accuracy =
TP + TN

TP + FP + TN + FN
=>  

9288

10000
 

=>  𝟎. 𝟗𝟐𝟖 

Precision =  
TP

TP + FP
=>  

4612

4612 + 373 
  

=>  
4612

4985 
=> 𝟎. 𝟗𝟐𝟓 

Recall =  
TP

TP + FN
=>  

4612

  4612 + 339
  

=>  
4612

4951 
=> 𝟎. 𝟗𝟑𝟏 

F1 Score =  2 ∗  
Precision ∗ Recall

Precision + Recall
 

=> 2 ∗ 
0.861

1.856
=> 𝟎. 𝟗𝟐𝟕 

Compared with the baseline model summarized, model 

BERT gets a higher accuracy of 92.8 compared to other 

baseline models using Support Vector Machine(SVM) 

and Logistic Regression(LR). For precision, BERT 

obtained 92.5%, Recall 93.1% dan f1-score 92.7%. This 

result shows that the BERT model was better than SVM 

and LR. Detail as described in Table 2. 

 
Table 2. Comparison of results with baseline models 

 

The discussion on the experimental process is an 

initialization of the ktrain library that provides more 

options for the general sentiment analysis process. 

Ktrain package and sub-modules comprehensively 

cover most of the tasks in classifying the SA 

requirements. The experiment reviewed the ktrain 

lightweight wrapper for TensorFlow Keras, which 

streamlines the development of transformer models 

such BERT model.  

 

The prediction instances show that making a predictor 

of the current data only needs simple code to call the 

 

model = text.text_classifier('bert',  

                             train_data=(x_train, y_train),  

                             preproc=preproc) 

 

learner = ktrain.get_learner(model,  

                             train_data=(x_train, y_train),  

                             batch_size=8) 

 

Model True 

Positive 

False 

negative 

True 

Negative 

False 

Positive 

BERT 4612 339 4676 

 

373 

 

 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

BERT 92.8 92.5 93.1 92.7 

LR 88.90 88.90 90.80 88.90 

SVM 89.80 89.20 90.80 90.0 

predictor = 

ktrain.get_predictor(learner.model, preproc) 

data=["bad"] 

predictor.predict(data) 
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predictor instances, declare it based on the data set, and 

thus, predict the data polarity. The predictions can be 

easily defined by utilizing the method predictor objects 

to understand how the prediction is made. An 

experimental sample using the unigram n bigram shows 

that the predictor was accurate based on the predicted 

results. Figure 9 shows the ktrain library's predictions 

using the BERT model based on bigram phrases. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Make predictions using the ktrain library and 

BERT model 

 

Once all models are trained, they can be managed using 

TensorFlow or the transformer Library. The predictor 

also can be saved than to be reloaded later in making 

other deployment classifications by applying the 

predictor. save method. 

 

Additionally, the study has shown that the task can be 

done with minimal program code and demonstrated 

how to do the tasks with less program code. This post 

explained how to execute most modeling activities 

entirely through the wrapper. Developing ktrain Library 

to BERT classifier also used a few line codes for 

examples method such learner.validate. That will 

produce the result evaluation that uses a validation set 

by default, as shown in Figure 10. 

 

 
Figure 10: Evaluation Results of the BERT Model 

The comparison within the finding of True positives 

(TP), True Negatives (TN), False positives (FP), and 

False Negatives (FN) are illustrated in Figure 11. The 

result shows that the predicted TP and TN were high, 

and FP and FN were low, resulting in better accuracy. 

 

 
Figure 11. Evaluation results 

The comparison of the BERT model to other baseline 

models resulted in Figure 12. The results show that the 

BERT classifier results better than other SA models like 

LR and SVM. The predictions of TP dan TN showed a 

higher true result. FN and FP also showed lower false 

results. 

 

Figure 12: Comparison with baseline models 

5. Conclusion 

This paper shows that the BERT model works better 

with the ktrain library resources modules. It 

successfully processed the function or method to 

expedite programming capability in delivering 

results. The proposed model achieved a better result 

with an accuracy of 92.8%, a precision of 92.5%, 

Recall 93.1%, and F1-Score with 92.7% compared 

to Support Vector Machine and Logistics 

Regression. Additionally, it demonstrated that the 

library provided by ktrain requires less code and can 

produce the required task based on NLP needs. 

Nevertheless, further research needs to work on the 

limitations. For future work, we advocate wrapping 

the ktrain library to more pre-trained models and 

testing them on diverse domains of datasets. 

 

Acknowledgement 

  

learner.validate(val_data=(x_test, y_test)) 

                                   precision      recall   f1-score   support 

 

0                 0.92           0.93       0.92       5049 

1                 0.91           0.92       0.91       4951 

 

accuracy                                               0.92      10000 

macro avg             0.92            0.92      0.91     10000 
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# calling instances 

predictor = ktrain.get_predictor(learner.model, preproc)  

#line of data set 

data=["bad movie"]  

# predict the data 

predictor.predict(data)    
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