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A B S T R A C T
The limitivism philosophy holds that an accurate connectionist account can only approximate good
symbolic descriptions within certain limit. Grounding symbolic structure onto the vector space has
been researched in the literature but precise solution has not yet emerged. Here, we present a geo-
metric method that embodies symbolic tree structures precisely onto learned vector representation.
This method turns vector embedding of symbols into nested sets of 𝑛-spheres (spheres in a higher di-
mensional space), with two desirable properties: (1) each vector embedding is well preserved by the
central point of an 𝑛-sphere; (2) symbolic tree structures are precisely encoded by inclusion relations
among 𝑛-spheres. This unified representation bridges the gap between Deep Learning and symbolic
structural knowledge. Significant experiment results are obtained by embodying a large hypernym
trees word-sense tree onto GloVE word embeddings of tree nodes. Our geometric method shows a
new way to completely resolve the antagonism between connectionism and symbolicism.

© 2022 KSI Research

1. Introduction
A concept can be understood from two perspectives, one

from the inside – its content, in terms of a set of features, the
other from outside – its connections with other concepts, in
terms of a symbolic structure. In the battle between the two
perspectives, both sides believe the they explain the same
phenomena [26]. If we imagine the two perspectives as dif-
ferent eyes of the monster Artificial Intelligence, how can
this monster construct the external world in its mind using
the inputs from the two heterogeneous eyes? Precisely, How,
if possible at all, can discrete symbolic structures be (pre-
cisely) unified with their own feature vectors?

The two perspectives belong to the two paradigms in
Artificial Intelligence, namely the symbolic paradigm and
the connectionist paradigm. The symbolic paradigm is con-
cerned with structural knowledge and rules for inference and
decision making. A typical symbolic system consists of three
components [9]: (i) symbols, either primitive or constructed;
(ii) the meaning of constructed symbols, interpreted via the
meaning of primitive symbols and the way of construction;
(iii) reasoning via symbolic manipulations. The connection-
ist paradigm is inspired by the physiology of the brain and
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models cognitive capabilities in terms of networks of simple
computational nodes. Problem solving in this paradigm is to
design and to train networks using exemplary data, in which
knowledge is implicitly represented by weights of connec-
tions between nodes.

Approaches in the two AI paradigms are based on com-
plementary mechanisms and target different levels of cog-
nitive analysis [45, 50]. Symbolic approaches excel at rea-
soning but can hardly learn and are vulnerable to noisy in-
puts. Connectionist approaches, in particular Deep Learn-
ing [32], are robust to noisy or unforeseen inputs and capa-
ble of learning from data. However, they lack explainabil-
ity, and are limited to approximated reasoning [25, 10], can
be deliberately fooled by adversarial inputs [44, 28], and re-
quiring much more training data than human learnes would
need [29]. Nevertheless, connectionist approaches can make
sense of data via similarity judgments [25, 52] and thus sim-
ulate one of three judgment methods under uncertainty [53].

An open challenge remains with respect to the question
of how connectionist approaches can reach symbolic levels
of reasoning [3, 49] or achieve cognitive modeling [39]. Re-
searches in hybrid neuro-symbolic approaches aim at real-
ising robust connectionist learning and sound symbolic rea-
soning [1, 2, 21, 16, 5]. Most of the approaches utilise inter-
face neural networks to approximately bridge vector embed-
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Figure 1: Blue areas represent islands with Left Hand Traffic
System; red areas represent islands with Right Hand Traffic
System

dings and symbols [17], in a way to roughly ground abstract
symbols into a vector space [23, 24]. Geometrical struc-
ture is advocated as a potential cognitive representation apart
from symbols or connectionist networks [18, 19].

Here, we geometrically construct a unified representa-
tion of a symbolic tree structure and its node embeddings:
(1) vectorial node embeddings are promoted onto spheres in
higher dimensional space; (2) the symbolic tree is spatialised
onto these spheres such that inclusion relations among spheres
precisely embody symbolic tree structures. The existence
of these spheres shows the possibility to create a geometric
continuum between symbolic and connectionist models, to
completely resolve the antagonism between connectionism
and symbolicism, and to realise the hope that to design ar-
tificial cognitive systems (the mind of the AI monster) that
combine the two complementary paradigms (inputs from its
two eyes) and solve problems from both perspectives [38, 9].

2. The Structuralist Eye Cannot Be Replaced
by the Connectionist Eye
The eliminativism claims that connectionist approaches

can sweep away (eliminate) symbolic approaches, and was
refuted by observing that neural-networks were computed
by symbolic computational devices (Turing machine) [7]. In
this section, we give more evidences to refute the elimina-
tivism perspective, starting from a thought experiment.
2.1. You won’t trust neural navigators in

way-finding
On your birthday party, your wonderful birthday gift is

placed in the middle of a large maze. You are given a route
instruction to find it at the end of the route. You are ex-
tremely excited, take the route instruction, and dive into the
maze, and forget to ask how to get out of the maze. You call
your friends outside the maze for help. They tell you the gift
is a neural navigator. Given the current route instruction, it
produces the next route instruction. Your friends try to con-
vince you that a sequence of route instructions can be under-

stood as a long sentence, and the neural navigator is exactly
trained by the route you have, and routes of all other mazes
around the world, with the same training mechanism as that
for word-embeddings, e.g., [36]. Will you trust such kinds
of neural navigator? If you know symbolic approaches to get
out of the maze, such as the wall-follower method, or simply
reversing the current route instruction, will you choose this
neural navigator?
2.2. Connectionist eyes cannot see anything that

structuralist eyes see
Figure 1 illustrates places where different traffic systems

are used. The blue areas use the left-hand traffic system, the
red areas use the right-hand traffic system. Only being fed
with sufficient traffic scenarios, can autonomous driving cars
learn there are two traffic systems by themselves? If they
switch among right-hand traffic and left-hand traffic places,
they cannot learn whether there are two traffic systems at
all. It is hard to imagine that deep-learning systems can be
intelligent enough to generate concepts of left and right, if
they are only fed with traffic images without labeling which
traffic systems. Because the concept of being left or right
is not originated from images of street scenes. The origi-
nal meaning of the left hand refers to the hand that is close
to the heart of the body. Even for humans, the term of be-
ing left/right may not exist. For example, Guugu Yimithierr
people only have absolute orientation corrdinates, such as
north, south in their spatial conceptual system. A Guugu
Yimithirr speaker would say something like “I left some to-
bacco on the southern edge of the western table in the house”
[33, 41]. Connectionist eyes cannot see anything that struc-
turalist eyes see. To teach connectionist eyes see objects, we
have to teach them by correctly imposing object names with
object images [4, 36, 46, 14, 57, 22, 47, 32]. External knowl-
edge must be imposed onto the connectionist networks. This
is not new to connectionists. In image recognition, they shall
first precisely label object names to each image in the train-
ing set. If each cat image is labelled as ‘dog’, the well-trained
networks will recognize each cat image as ‘dog’.
2.3. Structures can exist without data

The existence of laws lies in the fact that violation exists
in the reality. That stealing is not allowed as a law is due
to the fact that stealing behaviors exist in the society. Even
stealing behaviors does not exist, it still holds that stealing is
not allowed – A phrase may be denoting, and yet not denote
anything [43, p.41]. Only fed with data of stealing behav-
iors, connectionist networks would be more likely to mimic
stealing behavior, rather than to be enlightened that stealing
is not allowed. Excluding all stealing data from the train-
ing set, connectionist networks may not learn the concept of
stealing at all.
2.4. Mental Representation of Partial Tree

Structures
Structural knowledge is often modeled in terms of re-

lations between or among entities. Figure 2(a) illustrates a
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(a) (b)
Figure 2: (a) A simple semantic network of spatial knowledge among California, Nevada, San Diego, and Reno; (b) A partially
region-based hierarchical structure among California, Nevada, San Diego, and Reno

spatial structure among the cities San Diego and Reno, the
stated of California and Nevada and the USA. Most people
mistakenly judge that San Diego (CA) is further west than
Reno (NV). The reason is that tree nodes are represented as
regions in mind and that only relations between locations
inside the same spatial region are explicitly stored [48], as
illustrated in Figure 2(b). This region-based representation
can explain systematical errors that people made in reason-
ing with spatial knowledge [54, 35].

The real challenge for connectionists is not to defeat sym-
bolic theorists, but rather to come to terms with the ongoing
relevance of the symbolic level of analysis [3, p.16]. Here,
we examine the possibility to promote vectors of entities
into regions such that inclusion relation shall precisely rep-
resent the child-parent relation in the tree, as illustrated in
Figure 2(b).

3. The Statement of the Problem, and the
Challenges
The problem addressed here can be stated as follows:

Given a symbolic tree structure, and vector representations
of its nodes, can we embody each tree node into a sphere
such that (1) each child-parent relation in the tree structure
(seen from the structuralist eye) is precisely encoded as in-
clusion relations among spheres; (2) the vector representa-
tion of a tree node (seen from the connectionist eye) is very
well preserved by the sphere of the tree node.

The first criteria can be re-formulated within the con-
nectionists’ community as the criteria of reaching global loss
zero. In the literature of connectionism, the termination con-
dition of training processes only needs to be a local mini-
mum. As we need to precisely encode all symbolic relations
into inclusion relations among regions, we require global
loss zero. A small scaled experiment in [11] shows that it
is not possible to reach global minimum zero only by utilis-
ing the back-propagation method.

The second criteria may suggest us to create a sphere
for a tree node by taking its vector as the central point of
the sphere. This turns out to be not realistic. Take a hy-
pernym tree as the example. In many cases, words, such as

Figure 3: dessert sphere partially overlaps with plant sphere,
although they should be disconnected from each other

ice_cream, tuberose, and their superordinate words, such as
dessert, plant, seldom occur in the same context, their vector
embeddings differ to such a degree that the cosine value is
less than zero. For example, using GloVE embedding [40],
the cos value of ice_cream and dessert is −0.1998, the cos
value of tuberose and plant is−0.2191. This follows that the
dessert sphere by taking the vector embedding as the central
point, will contain the origin point of the embedding space,
if it contains ice_cream sphere. The plant sphere by taking
the vector embedding as the central point will contains the
origin point of the embedding space, if it contains tuberose
sphere. Then, dessert sphere overlaps with plant sphere, as
illustrated in Figure 3. Such overlapping is not allowed, as
there is no entity which are both dessert and plant.

4. Constructing Spheres in Higher
Dimensional Spaces
Promoting vectors into spheres appears deceptively sim-

ple, as it seems that we only need to add two new elements
for each vector: one representing the length of the central
point vector, the other representing the radius. Could the
back propagation method be successful for this task? Ex-
periments show that it cannot guarantee to achieve the target
configuration precisely [12]. We abandon back propagation
method, and use geometric construction and illustrate the
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Figure 4: Spatializing symbolic structures onto vector space. Connectionist network represents a word as a one-element vector.
Biased by training sentence, Hamburg vector [348] is closer to city vector [327] and captial vector [319] than to harbor-city vector
[300]. To precisely encode symbolic tree structures, we promote them into circles, for example, harbor-city vector to a circle with
central point [572, 300] with radius=53, with the target that inclusion relations among circles encode child-parent relations in the
tree structure

method with the example as follows: Let the sentence “it was
proposed to construct a maglev train between Berlin, capital
of Germany, and harbor-city Hamburg” be in a training set,
connectionist networks can capture co-occurrence relations
among words in terms of vectors (word-embeddings). Fig-
ure 4 illustrates one dimensional word embeddings, e.g., the
word embedding of Berlin is [270]. Suppose that Hamburg
is a harbor-city, as a piece of truth-knowledge, be not clearly
stated in the training text. As a result, Hamburg vector is closer
to city vector and capital vector than to harbor-city vec-
tor, which violates the symbolic structure that Hamburg is-a
harbor-city and Hamburg is-not-a capital. Such bias may
lead connectionists and statisticians to stay at the level of ap-
proximation in reasoning and to believe the limitivism phi-
losophy that an accurate connectionist account can only ap-
proximate good symbolic descriptions within certain limit.
Our novel method is to promote a one dimensional word-
embedding [y] into two dimensional circles with central point
[x,y] and radius r. Then, we gear all xs and rs, so that in-
clusion relations among circles precisely encode the sym-
bolic tree structure, as illustrated in Figure 4. Adding di-
mension is due to the fact that the space to embed seman-
tic relations of words may not be the same as the space to
embed their co-occurrence relations. Here, a symbol is em-
bodied as a sphere in high dimensional space with the re-
striction that a part of the center vector is the vector embed-
ding from connectionist networks. That is, symbols are only
partially landed onto the vector embedding space. Through

such a symbol spatialising process, we embody a symbolic
tree structure into a continuous space, so that the brittleness
problem of symbolic approaches is removed. We describe
the symbol spatializing process for a tree structure as fol-
lows.
4.1. Method

A tree 𝔗 is a relational structure that can be described as
a relational structure (T, S) [6] in which

1. T is the set of nodes {𝑡1, 𝑡2,… , 𝑡𝑛}
2. S is the set of node pairs {(𝑡𝑖, 𝑡𝑗)|𝑡𝑖, 𝑡𝑗 ∈ 𝑇 }
3. 𝔗 has a unique root node 𝑟 that for any other node

𝑡 there is a unique chain [𝑟 = 𝑡′1,… , 𝑡′𝑖,… , 𝑡 = 𝑡′𝑤]under the condition that neighborhood nodes, 𝑡′𝑗 and
𝑡′𝑗+1, are node pairs in S.

4. For every non-root node 𝑢, there is a unique node pair
(𝑣, 𝑢) in S.

5. For any node 𝑥, (𝑥, 𝑥) does not exist in S
We geometrically represent each tree node 𝑡 as a sphere

⊙𝑡 with central point 𝑂𝑡 and radius 𝑟𝑡, and node pair as the
cover relation 𝖢𝖮𝖵 as follows: (𝑡𝑖, 𝑡𝑗) is in 𝑆, if and only if
⊙𝑡𝑖 covers ⊙𝑡𝑗 , written as 𝖢𝖮𝖵(⊙𝑡𝑖 , ⊙𝑡𝑗 ). Geometrically, we
define that ⊙𝑡𝑖 covers ⊙𝑡𝑗 , if and only if radius 𝑟𝑡𝑖 is greater
than the sum of 𝑟𝑡𝑗 and the distance between their central
points ‖𝑂𝑡𝑖 − 𝑂𝑡𝑗‖, that is, 𝑟𝑡𝑖 > 𝑟𝑡𝑗 + ‖𝑂𝑡𝑖 − 𝑂𝑡𝑗‖. This
greater than relation excludes the case that a sphere covers
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sphere contained by spheres
⊙(𝑏𝑒𝑖𝑗𝑖𝑛𝑔.𝑛.01) ⊙(𝑐𝑖𝑡𝑦.𝑛.01) ⊂ ⊙(𝑚𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑦.𝑛.01) ⊂ ⊙(𝑟𝑒𝑔𝑖𝑜𝑛.𝑛.03)
⊙(𝑏𝑒𝑟𝑙𝑖𝑛.𝑛.01) ⊂ ⊙(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑛.01)
⊙(𝑏𝑒𝑟𝑙𝑖𝑛.𝑛.02) ⊙(𝑠𝑜𝑛𝑔𝑤𝑟𝑖𝑡𝑒𝑟.𝑛.01) ⊂ ⊙(𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟.𝑛.01) ⊂ ⊙(𝑚𝑢𝑠𝑖𝑐𝑖𝑎𝑛.𝑛.02)

⊂ ⊙(𝑎𝑟𝑡𝑖𝑠𝑡.𝑛.01)
⊙(ℎ𝑎𝑚𝑏𝑢𝑟𝑔.𝑛.01) ⊙(𝑝𝑜𝑟𝑡.𝑛.01) ⊂ ⊙(𝑝𝑜𝑖𝑛𝑡.𝑛.02) ⊂ ⊙(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑛.01) ⊂ ⊙(𝑜𝑏𝑗𝑒𝑐𝑡.𝑛.01)

Table 1
Child-parent relations are encoded by continuous inclusion relations among spheres. The
direct hypernym of a word-sense 𝑤 is the word-sense 𝑥 whose sphere is the smallest sphere
that covers 𝑤’s sphere. ⊙(𝑤) represents the sphere of 𝑤, 𝐴 ⊂ 𝐵 represents 𝖢𝖮𝖵(𝐵,𝐴)

word-sense 1 word-sense 2 word
beijing.n.01 london.n.01, atlanta.n.01, china, taiwan, seoul, taipei, chinese, shanghai,

washington.n.01, paris.n.0, korea, mainland, hong, wen, kong, japan,
potomac.n.02, boston.n.01 hu, guangzhou, chen, visit, here, tokyo, vietnam

berlin.n.01 madrid.n.01, toronto.n.01, vienna, warsaw, munich, prague, germany,
rome.n.01, columbia.n.03, moscow, hamburg, bonn, copenhagen, cologne,
sydney.n.01, dallas.n.01 dresden, leipzig, budapest, stockholm, paris,

berlin.n.02 simon.n.02, williams.n.01, frankfurt, amsterdam,german,stuttgart,brussels
foster.n.01, dylan.n.01, petersburg, rome, austria, bucharest, düsseldorf,
mccartney.n.01, lennon.n.01 zurich, kiev, austrian, heidelberg, london

hamburg.n.01 glasgow.n.01, bristol.n.01, munich, stuttgart, bundesliga, frankfurt,
oslo.n.01, santos.n.01, freiburg, bayern, borussia, vfb, fc,,
colon.n.04, hull.n.05 germany, werder, bremen, eintracht, berlin

Table 2
Top-6 sphere nearest neighbors compared with top-N GloVe nearest neighbors. Neigh-
bours of a sphere are strictly constrained by hypernym structures. In our tree structure,
‘hamburg.n.01’ is the neighbor of other ports. In contrast, GloVe neighbours are biased
training corpus, mixing with or neglecting other word-senses. Glove neighbors of ‘ham-
burg’ are severely biased to football-related training sentences, neighbors ‘beijing’ mixes
with names of countries and persons, the word-sense of family names of ‘berlin’ is totally
neglected in its neighborhood

itself (condition 5). The cover relation is transitive, that is,
if ⊙𝑡𝑖 covers ⊙𝑡𝑗 , and ⊙𝑡𝑗 covers ⊙𝑡𝑘 , then ⊙𝑡𝑖 covers ⊙𝑡𝑘 .
This follows that the root sphere covers all other spheres.

We adopt depth-first recursive process to traverse the nodes
in a tree structure. A parent sphere will be constructed af-
ter all its child spheres are constructed, as illustrated in Fig-
ure 5(a). Geometric construction is carried out as a sequence
of operations selected from three geometric transformations
as follows.

1. A Homothetic operation on sphere ⊙ with the ratio
𝑘(𝑘 > 0), written as 𝖧(⊙, 𝑘), zooms out the length of
the vector of its central point and the radius with the
same ratio 𝑘, 𝖧(⊙(𝑂, 𝑟), 𝑘) = ⊙(𝑘𝑂, 𝑘𝑟), as illustrated
in Figure 5(g).

2. A Shifting operation on sphere ⊙ with vector 𝑣, writ-
ten as 𝖲(⊙, 𝑣), shifts this sphere with vector 𝑣, 𝖲(⊙, 𝑣) =
⊙(𝑂 + 𝑣, 𝑟), as illustrated in Figure 5(h).

3. A Rotation operation rotates sphere ⊙(𝑂, 𝑟) with unit
vector 𝛽 in the subspace spanned by the 𝑖-th and the
𝑗-th basis, written as 𝖱(⊙(𝑂, 𝑟), 𝛽, 𝑖, 𝑗) = ⊙(𝑂′, 𝑟), in
which 𝑂𝑘 = 𝑂′

𝑘 for all 𝑘 ≠ 𝑖, 𝑗, 𝑂′
𝑖 = 𝑂𝑖 cos 𝛽 +

𝑂𝑗 sin 𝛽, 𝑂′
𝑗 = −𝑂𝑖 sin 𝛽 + 𝑂𝑗 cos 𝛽, as illustrated in

Figure 5(i).

4.2. Experiments
GloVe word-embeddings [40] are used as the pre-trained

word-embedding, hypernym trees among word-senses are
extracted from WordNet 3.0 [37], totaling 291 hypernym
trees and 54, 310 spheres [12], each representing a word-
sense in a hypernym tree. These sphere embeddings have
32,503 word-stems. Precise spatialisation has been achieved,
pre-trained GloVe word-embeddings have been very well-
preserved. Only a tiny portion (1.3%) of pre-trained word-
embeddings indicates a small variation (std ∈ (0.1, 0.7666]).
Symbolic tree structure is precisely embedded onto the con-
tinuous space, which leads to precise encoding of category
information, as illustrated in Table 1, and precise separation
of word-senses in nearest neighborhood experiments, as il-
lustrated in Table 2. In order to prevent the deterioration of
already constructed relations, we will apply the same trans-
formation for all its child spheres, if we apply a geometric
transformation for a sphere. The recursive geometric con-
struction process will generate a sequence of transformations
for the construction of the sphere of a tree node that trans-
form a sphere from its initial status to the final status. This
dynamic information can be likened as a route instruction
that tells a baby’s home address starting from the hospital
address where it is born. If we already have the route in-
struction of its siblings, we can use it to send the new born
baby home. Using this idea, we have conducted experiments
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Figure 5: (a) Depth-first sequence to update spheres; (b-c) homothetic transformation will be applied for overlapped sibling
spheres; (d-e) construct one capital sphere that covers the Berlin sphere; (f) construct the final capital sphere that covers all
existing capital spheres; (g) homothetic transformation with 𝑘 = 2, (h) shifting transformation with 𝑣, (i) rotation transformation
with 𝛽 = 𝜋

4

to validate the category of an unknown word that appears in
corpus. For example, when we read a text Solingen has long
been renowned for the manufacturing of fine swords, knives,
scissors and razors . . . , we wonder whether Solingen is a city
or a person? Supposing it is a city, we initialize its sphere by
using the type information of city. One of its sibling is Berlin
that we have its route instruction that guides it into the sphere
of city. So, we use this route to guide Solingen. If it is finally
located inside sphere of city, we will predict that Solingen is
a city, otherwise not. We have experimented this method
to predict the type of unknown entities in knowledge graph
[13]. Our experiments show that this geometric approach
greatly outperforms traditional embedding approaches, es-
pecially when the route is long.

5. Conclusion
The relation between neural networks and symbolic struc-

tures remains an open debate. This debate is nothing new
and dates back to the antagonism between Connectionism
and Symbolicism, e.g., [45]. The difficulty is that precise
encoding of symbolic relations cannot be achieved by the
back-propagation algorithm – the fundamental algorithm of
Connectionism. Here, sphere embeddings are created us-
ing geometric construction, and by abandoning back prop-
agation method. Our methodology does not belong to the
connectionism paradigm. The created sphere embeddings
only exist in a space whose dimension is higher the vec-
tor space produced by connectionist networks. This refutes
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Figure 6: Spatializing a complex lattice

eliminativism, implementationalism, and revisionism1, and
also refutes the analogy between the symbolic-subsymbolic
approaches and the relation between macro–micro physical
theories [45]. The sphere embeddings should appeal psy-
chologists, for discrete symbolic tree structures have been
precisely transformed into sphere configurations in a contin-
uous space [45, 8]. They also appeal cognitive linguists [30],
for now bounded regions and paths can be implemented by
geometric transformations.

The nested structure of sphere configurations would solve
the elaboration tolerance problem2 in connectionist networks
[34]. The sphere configuration favors both limitivism and
hybridism3, and serves as a big geometric patchwork that
bridges symbolic and network components, and promises to
merge the two complementary methods and theories in cog-
nitive science [39]. For example, the grounding model of
metaphor [31, 20], the embodiment of language and thoughts
[41, 15], and spatial thinking [55]. It also favors the way
of killing two birds with one stone4[56], in the sense that it
is able to precisely reproduce the two birds: subsymbolic
vectors, and symbolic structure – It kills the two birds with-
out loosing any information about them. The success of the
geometric approach largely depends on being able to pre-
cisely spatialise more complex symbolic structures onto vec-
tor space. Figure 6 shows an on-going work to spatialize a

1eliminativism philosophy holds that connectionist approach can
achieve all symbolic approach can do; implementationalism philosophy
holds that neural-network is the “hardware” of symbolic system; revision-
ism philosophy holds that a symbolic account can be generated by connec-
tionist networks

2elaboration tolerance challenges whether connectionist network can
be elaborated with additional phenomenon.

3limitivism philosophy holds that accurate connectionist account can
approximate good symbolic descriptions within certain limit; hybridism
philosophy holds that a patchwork can be created for the gap between sym-
bolic and neural-network components

4killing two birds with one stone refers to a two-system hypothesis of
the mind that the same neural event that is capable of simultaneously ma-
nipulate conceptual-level symbols and perform subsymbolic operations

complex grid onto vector space.
Connectionism is not a complete theory for learning [27].

Learning through huge amount of data using back-propagation
is bottom-up [51] and inefficient, and only establishes a har-
mony between input and output. An important learning style
in schools and universities is learning under instruction (top-
down style of learning [51]). It is easy to translate “white
as snow” into German (“weiß wie Schnee”), French (“blanc
comme neige”), and many other languages. How shall we
translate it into the Natemba language? People who speak
Natemba live in Benin, a country near to the equator, where
the temperature is around 20◦C in the winter, so no snow-
ing in the winter, as a consequence, no word for snow in
the Natemba language. To describe something very white
there, people would say “white as pelican” (pelican is a kind
of white bird. This is an example of elaboration tolerance in
translation, see footnote 2). We would feel this translation is
interesting and reasonable, after having been informed about
the right background knowledge. Methods should be devel-
oped to precisely inform (or impose) external knowledge to
pure data-driven machine learning systems [42].

Acknowledgement
I am indebted to S.K. Chang for the invitation and his

long-term interest in my work, and to Ron Sun for the com-
ments on an early version of this paper. This research is
funded by the Federal Ministry of Education and Resarch
of Germany as part of the competence center for machine
learning ML2R under grant number 01/S18038C.

References
[1] Bader, S., Hitzler, P., 2004. Logic programs, iterated function sys-

tems, and recurrent radial basis function networks. Journal of Applied
Logic, Special Issue on Neural-Symbolic Systems 2, 273–300.

[2] Bader, S., Hitzler, P., 2005. Dimensions of neural-symbolic integra-
tion — a structured survey, in: Artemov, S., Barringer, H., Garcez,

22



T.Dong / Journal of Visual Language and Computing (2022) 16–24

A.S.d., Lamb, L.C., Woods, J. (Eds.), We Will Show Them: Essays
in Honour of Dov Gabbay. King’s College Publications. volume 1, pp.
167–194.

[3] Bechtel, W., Abrahamsen, A., 2002. Connectionism and the mind:
Parallel processing, dynamics, and evolution in networks. Graphicraft
Ltd, Hong Kong.

[4] Bengio, Y., Ducharme, R., Vincent, P., Janvin, C., 2003. A neural
probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155.
URL: http://dl.acm.org/citation.cfm?id=944919.944966.

[5] Besold, T.R., d’Avila Garcez, A.S., Bader, S., Bowman, H., Domin-
gos, P.M., Hitzler, P., Kühnberger, K., Lamb, L.C., Lowd, D., Lima,
P.M.V., de Penning, L., Pinkas, G., Poon, H., Zaverucha, G., 2017.
Neural-symbolic learning and reasoning: A survey and interpreta-
tion. CoRR abs/1711.03902. URL: http://arxiv.org/abs/1711.03902,
arXiv:1711.03902.

[6] Blackburn, P., 2000. Representation, Reasoning, and Relational
Structures: a Hybrid Logic Manifesto. Logic Journal of the IGPL
8, 339–625.

[7] Chalmers, D.J., 1992. Subsymbolic Computation and the Chinese
Room, in: The Symbolic and Connectionist Paradigms: Closing the
Gap, Erlbaum. pp. 25–48.

[8] Dellarosa, D., 1988. The psychological appeal of connectionism. Be-
havioral and Brain Sciences 1, 28–29.

[9] Dinsmore, J., 1992. Thunder in the Gap, in: The Symbolic and Con-
nectionist Paradigms: Closing the Gap, Erlbaum. pp. 1–23.

[10] Dong, H., Mao, J., Lin, T., Wang, C., Li, L., Zhou, D., 2019a. Neural
Logic Machines, in: ICLR-19, New Orleans, USA.

[11] Dong, T., 2021. A Geometric Approach to the Unification of Sym-
bolic Structures and Neural Networks. volume 910 of Studies in Com-
putational Intelligence. Springer-Nature.

[12] Dong, T., Bauckhage, C., Jin, H., Li, J., Cremers, O.H., Speicher, D.,
Cremers, A.B., Zimmermann, J., 2019b. Imposing Category Trees
Onto Word-Embeddings Using A Geometric Construction, in: ICLR-
19, New Orleans, USA. May 6-9.

[13] Dong, T., Wang, Z., Li, J., Bauckhage, C., Cremers, A.B., 2019c.
Triple Classification Using Regions and Fine-Grained Entity Typing,
in: AAAI.

[14] Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.,
2015. Retrofitting word vectors to semantic lexicons, in: Proceedings
of the 2015 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technolo-
gies, ACL. pp. 1606–1615. URL: http://www.aclweb.org/anthology/
N15-1184, doi:10.3115/v1/N15-1184.

[15] Feldman, J., 2006. From Molecule to Metaphor: A Neural Theory of
Language. The MIT Press, Cambridge, Masachusetts.

[16] Feldman, J., 2013. The neural binding problem(s). Cogn Neurodyn
7, 1–11.

[17] d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M., 2007. Connection-
ist modal logic: Representing modalities in neural networks. Theor.
Comput. Sci. 371, 34–53.

[18] Gärdenfors, P., 2000. Conceptual Spaces – The Geometry of Thought.
MIT Press, Cambridge, Massachusetts, USA.

[19] Gärdenfors, P., 2017. The Geometry of Meaning. MIT Press, Cam-
bridge, Massachusetts, USA.

[20] Grady, J., 1997. Foundations of Meaning: Primary Metaphors and
Primary Scenes. University Microfilms.

[21] Hammer, B., Hitzler, P. (Eds.), 2007. Perspectives of Neural-
Symbolic Integration. Springer.

[22] Han, X., Liu, Z., Sun, M., 2016. Joint representation learning
of text and knowledge for knowledge graph completion. CoRR
abs/1611.04125. arXiv:1611.04125.

[23] Harnad, S., 1990. The symbol grounding problem. Phys. D 42, 335–
346.

[24] Harnad, S., 2003. The symbol grounding problem, in: Encyclopedia
of Cognitive Science, Macmillan.

[25] Hinton, G.E., 1981. Implementing semantic networks in parallel hard-
ware, in: Hinton, G.E., Anderson, J.A. (Eds.), Parallel Models of As-
sociative Memory. Erlbaum, Hillsdale, NJ, pp. 161–187.

[26] Hinton, G.E., 1986. Learning distributed representations of concepts,
in: Proceedings of the eighth annual conference of the cognitive sci-
ence society, Amherst, MA. p. 12.

[27] Hunter, L.E., 1988. Some memory, but no mind. Behavioral and
Brain Sciences 1, 37–38.

[28] Jia, R., Liang, P., 2017. Adversarial examples for evaluating reading
comprehension systems, in: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pp. 2021–2031.

[29] Lake, B., Salakhutdinov, R., Tenenbaum, J., 2015. Human-level con-
cept learning through probabilistic program induction. Science 350,
1332–1338.

[30] Lakoff, G., 1988. Smolensky, semantics, and the sensorimotor sys-
tem. Behavioral and Brain Sciences 1, 39–40.

[31] Lakoff, G., Johnson, M., 1980. Metaphors We Live By. The Univer-
sity of Chicago Press, Chicago. Citation is based on the reprinted in
2003.

[32] LeCun, Y., Bengio, Y., Hinton, G.E., 2015. Deep learning. Nature
521.

[33] Levinson, S.C., 1997. Language and Cognition: The Cognitive Con-
sequences of Spatial Description in Guugu Yimithirr. Journal of Lin-
guistic Anthropology 7, 98–131.

[34] McCarthy, J., 1988. Epistemological challenges for connectionism.
Behavioral and Brain Sciences 1, 44.

[35] McNamara, T.P., 1991. Memory’s View of Space. The Psychology
of Learning and Motivation 27, 147–186.

[36] Mikolov, T., 2012. Statistical Language Models Based on Neural Net-
works. Ph.D. thesis. Brno University of Technology. Brno, CZ.

[37] Miller, G.A., 1995. Wordnet: A lexical database for english. Com-
mun. ACM 38, 39–41.

[38] Newell, A., 1990. Unified theories of cognition. Harvard University
Press, Cambridge, MA.

[39] Núñez, R., Allen, M., Gao, R., Rigoli, C.M., Relaford-Doyle, J., 2019.
What happened to cognitive science? Nature Human Behaviour 3,
782–791.

[40] Pennington, J., Socher, R., Manning, C.D., 2014. GloVe: Global
Vectors for Word Representation, in: EMNLP’14, pp. 1532–1543.

[41] Regier, T., 1997. The Human Semantic Potential: Spatial Language
and Constrained Connectionism. The MIT Press, Cambridge, Mas-
sachusetts.

[42] von Rüden, L., Mayer, S., Garcke, J., Bauckhage, C., Schücker,
J., 2019. Informed Machine Learning - Towards a Taxonomy of
Explicit Integration of Knowledge into Machine Learning. CoRR
abs/1903.12394. URL: http://arxiv.org/abs/1903.12394.

[43] Russell, B., 1956. Logic and Knowledge. Routledge, an imprint of
Taylor & Francis Books Ltd.

[44] Seo, M.J., Kembhavi, A., Farhadi, A., Hajishirzi, H., 2016.
Bidirectional attention flow for machine comprehension.
CoRR abs/1611.01603. URL: http://arxiv.org/abs/1611.01603,
arXiv:1611.01603.

[45] Smolensky, P., 1988. On the proper treatment of connectionism. Be-
havioral and Brain Sciences .

[46] Socher, R., Chen, D., Manning, C.D., Ng, A., 2013. Reasoning with
neural tensor networks for knowledge base completion, in: Burges,
C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.
(Eds.), Advances in Neural Information Processing Systems 26. Cur-
ran Associates, Inc., pp. 926–934.

[47] Speer, R., Chin, J., Havasi, C., 2017. Conceptnet 5.5: An open mul-
tilingual graph of general knowledge, in: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., pp. 4444–4451.

[48] Stevens, A., Coupe, P., 1978. Distance estimation from cognitive
maps. Cognitive Psychology 13, 526–550.

[49] Sun, R., 2002. Hybrid connectionist symbolic systems, in: Arbib, M.
(Ed.), Handbook of Brain Theories and Neural Networks (2nd Edi-
tion). MIT Press, Cambridge, MA., pp. 543–547.

[50] Sun, R., 2015. Artificial Intelligence: Connectionist and Symbolic
Approaches, in: James, D.W. (Ed.), International Encyclopedia of

23



T.Dong / Journal of Visual Language and Computing (2022) 16–24

the Social and Behavioral Sciences (2nd edition). Pergamon/Elsevier,
Oxford, pp. 35 – 40.

[51] Sun, R., 2016. Implicit and explicit processes: Their relation, in-
teraction, and competition, in: Macchi, L., Bagassi, M., Viale, R.
(Eds.), Cognitive Unconscious and Human Rationality. MIT Press,
Cambridge, MA., pp. 257–27.

[52] Tversky, A., 1977. Features of similarity. Psychological Review 84,
327–353.

[53] Tversky, A., Kahneman, D., 1974. Judgment under uncertainty:
Heuristics and biases. Science 185, 1124–1131.

[54] Tversky, B., 1981. Distortions in Memory for Maps. Cognitive Psy-
chology 13, 407–433.

[55] Tversky, B., 2019. Mind in Motion. Basic Books, New York, USA.
[56] Woodfield, A., Morton, A., 1988. The reality of the symbolic and

subsymbolic systems. Behavioral and Brain Sciences 1, 58.
[57] Xiao, H., Huang, M., Zhu, X., 2016. From one point to a manifold:

Knowledge graph embedding for precise link prediction, in: IJCAI.

24




