
D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

Graphical Animations of the Lim-Jeong-Park-Lee Autonomous Vehicle
Intersection Control Protocol⋆,⋆⋆
Dang Duy Buia, Win Hlaing Hlaing Myinta, Duong Dinh Trana and Kazuhiro Ogataa,∗
aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

ART ICLE INFO
Article History:
Submitted 3.1.2021
Revised 6.1.2021
Second Revision 8.1.2021
Accepted 10.21.2021
Keywords:
graphical animation
autonomous vehicle intersection proto-
col
state machine
state picture design

ABSTRACT
SMGA is a tool that mainly supports humans in visually perceiving the characteristics/properties of
systems/protocols. Those characteristics could be used as lemmas to formally verify that the sys-
tems/protocols enjoy desired properties. The core task of the tool is to design a state picture that
helps humans comprehend the systems/protocols better and then conjecture the characteristics. To
demonstrate that SMGA can be applied to a wider class of systems/applications, we have graphically
animated the Lim-Jeong-Park-Lee autonomous vehicle intersection control protocol with SMGA. The
state machine formalizing the protocol uses composite data. We have revised SMGA so as to handle
composite data. We design a flexible state picture for the protocol so that it is possible to deal with
different initial states when the number of vehicles is less than or equal to a given number. In the
conference version of the present paper, the visual representations of vehicles (or vehicle statuses) on
each lane did not preserve the actual order of the vehicles on the lane. We have also revised SMGA
so that it is possible to make a state picture design that preserves such an order. In the conference
version, any information on conflict and concurrent lanes for each lane was not displayed. We have
revised the state picture design so that such information can be visualized. Some characteristics are
guessed by observing graphical animations based on the state picture design, and the characteristics
are confirmed with model checking. The paper also summarizes several lessons learned as tips on
how to design a state picture with composite data.

© 2022 KSI Research

1. Introduction
SMGA [15] has been developed to visualize graphi-

cal animations of systems/protocols. The main purpose of
SMGA is to help human users be able to perceive non-trivial
characteristics of systems/protocols by observing its graph-
ical animations because humans are good at visual percep-
tion [10]. Those characteristics could be used as lemmas
to formally verify that the systems/protocols enjoy some de-
sired properties. It implies the usefulness of the tool since

⋆This work was partially supported by FY2020 grant-in-aid for new
technology research activities at universities (SHIBUYA SCIENCE CUL-
TURE AND SPORTS FOUNDATION).

⋆⋆The present paper is an extended and revised version of the paper [14]
presented at DMSVIVA 2021.

∗Corresponding author
bddang@jaist.ac.jp (D.D. Bui); winhlainghlaingmyint@jaist.ac.jp

(W.H.H. Myint); duongtd@jaist.ac.jp (D.D. Tran); ogata@jaist.ac.jp (K.
Ogata)

ORCID(s): 0000-0002-2700-1762 (D.D. Bui); 0000-0001-7092-2084
(D.D. Tran); 0000-0002-4441-3259 (K. Ogata)

lemma conjecture is a challenging problem in formal veri-
fication. Several case studies of some protocols have been
conducted with SMGA, such as Alternating Bit Protocol
(ABP) [15], a communication protocol, Qlock andMCS pro-
tocols [3, 16, 5, 6] shared-memory mutual exclusion proto-
cols, and Suzuki-Kasami protocol [4], a distributed mutual
exclusion protocol, to demonstrate its power.

Nowadays, autonomous vehicles or self-driving cars are
a trend of the era. They have many potentials that make hu-
mans more convenient. The Lim-Jeong-Park-Lee autono-
mous vehicle intersection control protocol (the LJPL pro-
tocol) [12] is one possible way to handle traffic control
management for intersections through which vehicles/cars
pass. It also has been formally specified in Maude by Moe
et al. [2]. Thus, it is ready to graphically animate the LJPL
protocol with SMGA so as to demonstrate that SMGA can
be applied to protocols of autonomous vehicles/self-driving
cars. Our motivations of the work described in the present
paper are two-fold: (1) we would like to show that SMGA

DOI reference number: 10.18293/JVLC2022-N1-004
1



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

can be applied to a wide class of protocols/systems, and (2)
we would like to be prepared by conjecturing non-trivial
characteristics for future formal proofs that the LJPL pro-
tocol enjoys some desired properties. The LJPL protocol
was taken for motivation (1) as written. Moe et al. [2]
conducted some model checking experiments for the LJPL
protocol but did not do any formal proofs for the proto-
col. Standard model checking cannot guarantee that proto-
cols/systems surely enjoy desired properties in general, al-
though it is good at finding counterexamples. It would be
necessary to use theorem proving so as to guarantee that
protocols/systems surely enjoy desired properties. Formal
proofs that the LJPL protocol enjoys desired properties is
one piece of our future work for which we must use several
lemmas. Motivation (2) is for this purpose.

We need to carefully make a state picture design in order
to produce good graphical animations because it is consid-
ered a core task of the tool [5]. To make a state picture de-
sign, we first specify the protocol in Maude. The specifica-
tion, however, contains some observable components whose
values are composite (over one component value inside). It
is non-trivial to deal with composite data with SMGA. One
possible way to visualize such a composite value is to add
extra observable components each of which stores a copy
of a (component) value that composes the composite value,
where observable components are what constitute states in
our way to specify state machines and extra observable com-
ponents play roles as auxiliary/ghost variables used in formal
verification. This option may make state expressions unnec-
essarily complex. We did not take this option but have re-
vised the tool so that users can design a state picture to be
able to display (each component of) a composite value ex-
plicitly. Even if the number of vehicles is fixed, the LJPL
protocol has multiple initial states. Given a natural number
n, we make a flexible state picture design so that any initial
states in which the number of vehicles is up to n can be han-
dled. Some characteristics are then guessed by observing
graphical animations generated from the design. The char-
acteristics are also confirmed with Maude [7]. Some lessons
learned are summarized as tips on how to design a good state
picture with observable components whose values are com-
posite.

In the conference version [14] of the present paper, the
visual representations of vehicles (or vehicle statuses) on
each lane did not preserve the actual order of the vehicles on
the lane. We have also revised SMGA so that it is possible to
make a state picture design that preserves such an order. In
the conference version [14], any information on conflict and
concurrent lanes for each lane was not displayed. We have
revised the state picture design so that such information can
be visualized.

The rest of the paper is organized as follows. Sect. 2
mentions some preliminaries such as statemachines, Maude,
and SMGA. Sect. 3 introduces the LJPL protocol. Sect.
4 describes formal specification of the LJPL protocol in
Maude. In Sect 5, we describe how to graphically animate
the LJPL protocol. We discuss some ideas of how to handle

observable components whose values are composite. Some
characteristics of the LJPL protocol are then guessed by ob-
serving its graphical animations and confirmed by model
checking in Sect. 6. Sect. 7 summarizes lessons learned as
tips on how to design a state picture with composite data.
Sect. 8 mentions some related work. Finally, we conclude
the present paper in Sect. 9.

All of the state pictures and state sequences for SMGA
presented in this paper are available at https://bddang.
bitbucket.io/.

2. Preliminaries
A state machine M ≜ ⟨S, I, T ⟩ consists of a set S of

states, a set I ⊆ S of initial states, and a binary relation
T ⊆ S ×S over states. (s, s′) ∈ T is called a state transition
and may be written as s→M s′. The setR ⊆ S of reachable
states with respect to M is inductively defined as follows:
(1) for each s ∈ I , s ∈ R and (2) for each (s, s′) ∈ T ,
if s ∈ R, then s′ ∈ R. A state predicate p is an invariant
property with respect to M if and only if p(s) holds for all
s ∈ R. A finite sequence s0,… , si, si+1,… , sn of states iscalled a finite computation ofM if s0 ∈ I and (si, si+1) ∈ T
for each i = 0,… , n − 1.

In this paper, to express a state of S, we use a braced
associative-commutative collection of name-value pairs.
Associative-commutative collections are called soups, and
name-value pairs are called observable components. That is,
a state is expressed as a braced soup of observable compo-
nents. The juxtaposition operator is used as the constructor
of soups. Let oc1, oc2, oc3 be observable components, and
then oc1 oc2 oc3 is the soup of those three observable com-
ponents. A state is expressed as {oc1 oc2 oc3}. There are
multiple possible ways to specify state transitions. In this
paper, we use Maude [7], a programming/specification lan-
guage based on rewriting logic, to specify them as rewrite
rules. Maude makes it possible to specify complex systems
flexibly and is also equipped with model checking facili-
ties (a reachability analyzer and an LTL model checker). A
rewrite rule starts with the keyword rl, followed by a la-
bel enclosed with square brackets and a colon, two patterns
(terms that may contain variables) connected with =>, and
ends with a full stop. A conditional one starts with the key-
word crl and has a condition following the keyword if be-
fore a full stop. The following is a form of a conditional
rewrite rule:
crl [lb] : l => r if … /\ ci /\ …
where lb is a label and ci is part of the condition, which may
be an equation lci = rci or a matching equation lci ∶= rci.The negation of lci = rci could be written as (lci =/= rci) =
true, where = true could be omitted. For a given subject term
t, if there exist a sub-term t′ of t and a substitution � such that
t′ = �(l) and the condition… /\ ci /\ … holds under �, t′ in
t is replaced with �′(r), where �′ is a substitution obtained
by � and substitutions calculated bymatching equations. For
lci ∶= rci, lci may have new variables that do not appear in
l and the other matching equations so far, while rci does not

2



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

have such new variables. lci ∶= rci holds if and only if
there exists a substitution �i such that �i(�′′(lci)) = �′′(rci),where �′′ is a substitution obtained by � and substitutions
calculated by the matching equations so far.

Maude provides the search command that allows finding
a state reachable from t such that the state matches p and
satisfies c:
search [n,m] in MOD ∶ t =>* p such that c .
where MOD is the name of the module specifying the state
machine, and n and m are optional arguments stating a bound
on the number of desired solutions and the maximum depth
of the search, respectively. n typically is 1 and t typically
represents an initial state of the state machine.

State Machine Graphical Animation (SMGA) is a tool
developed by Nguyen and Ogata [15]. SMGA does not au-
tomatically produce visual state picture design but it allows
human users to design a good state picture. An input requires
a state picture designed by humans and a state sequence gen-
erated by Maude. An output is graphical animations based
on series of pictures in which each state is displayed based
on the state picture design. There are two ways to visual-
ize the observable component at each state that temporarily
called (1) text display and (2) mark display. For example,
one state that simulates a clock is specified as follows:
{(hh: 10) (mm: 59) (ss: 59)}

where hh, mm, and ss are observable components receiving 10,
59, and 59 as their values, respectively. The following figure
displays a state picture design (on the left-hand side), and a
state picture (on the right-hand side) of the example in which
hh is presented as (2) (mark display), mm and ss are presented
as (1) (text display).

3. Lim-Jeong-Park-Lee Autonomous Vehicle
Intersection Control Protocol
Unlike the traditional traffic light mechanism, which has

a drawback in choosing the optimal time and cycles of light
signals with the different numbers of vehicles in different
lanes of various intersections, the LJPL protocol provides an
efficient solution to manage the traffic of intersections. Sup-
pose that vehicles run on the right-hand side of a street and
each side of a street has two lanes as shown in Figure 1. We
also suppose that when a vehicle is crossing the intersection,
if it is running on the right lane of its moving direction, then

Figure 1: An example of intersection

it can only go straight or turn right. On the other hand, if
the vehicle is crossing the intersection on the left lane, it can
only turn left.

For each lanei, two relations between it and the other
lanes are introduced as follows:

• conflict lanes: the conflict lanes of lanei are lanej for
j = (i + 2) % 8, (i + 5) % 8, (i + 6) % 8, (i + 7) % 8
if i = 0, 2, 4, 6; and j = (i + 1) % 8, (i + 2) % 8, (i +
3) % 8, (i + 6) % 8 if i = 1, 3, 5, 7 (where % is the
modulo operation). For example, lane0 and lane2 are
conflict, meaning that vehicles on lane0 and those on
lane2 are not allowed to go through the intersection
simultaneously.

• concurrent lanes: the concurrent lanes of lanei are
lanej for j = (i + 1) % 8, (i + 3) % 8, (i + 4) % 8 if
i = 0, 2, 4, 6; and j = (i+4)%8, (i+5)%8, (i+7)%8
if i = 1, 3, 5, 7. For example, lane0 and lane4 are con-
current, meaning that vehicles on those two lanes are
allowed to go through the intersection simultaneously.

Each vehicle has as its status one of the following five
values: running, approaching, stopped, crossing, or crossed
as its status. Let us note that Lim et al. do not use running&
approaching statuses in the paper [12] and they use passing
& passed statuses instead of crossing & crossed, respec-
tively. There are eight queues of vehicles, each of them is
associated with one of eight lanes. When a vehicle is far
enough from the intersection, its status value is running,
and when the vehicle is approaching the intersection shortly
enough, its status changes to approaching, and its ID is en-
queued into the queue associated with its lane. A vehicle
is supposed to never change the lane and never pass the ve-
hicles in front of it after its status changes to approaching.
After a vehicles becomes approaching as its status, its sta-
tus becomes stopped, which means that the vehicle stops in
front of the intersection. Furthermore, the vehicle becomes
lead if there is not any other vehicle whose status value is
stopped in front of it; otherwise, it becomes non-lead. Note
that there are two possible cases such that the vehicle be-
comes lead: (1) the vehicle is the top of the queue (i.e., there

3



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

is no other vehicle in front of it on the lane), and (2) there is
another vehicle in front of it on the lane whose status value
is crossing.

Every lead vehicle checks if there is no vehicle on any
conflict lane crossing the intersection and the time given to
it is earlier than those given to the lead vehicles on the con-
flict lanes (i.e., it arrives at the intersection earlier than any
others). If so, the lead vehicle is allowed to go through the
intersection, and its status changes to crossing. At the same
time all non-lead vehicles following the lead vehicle and sta-
tuses are stopped are also allowed to go through the intersec-
tion together with the lead and their statuses also change to
crossing. When a vehicle has crossed the intersection, the
status of the vehicle becomes crossed and its ID is dequeued
from the queue.

Some information needs to be exchanged among lead ve-
hicles to synchronize the protocol (e.g., comparing the ar-
rival times). Algorithm 1 and Algorithm 2 describe how
a lead vehicle whose status value is stopped on a lane ex-
changes information with the lead vehicles on the four con-
flict lanes.
Algorithm 1. Basic IVC protocol (active thread)
1: begin at each round
2: veℎicletarget ← selectVehicle();
3: send(informationlocal,veℎicletarget);
4: informationtarget ← receive(veℎicletarget);
5: updateInformation(informationlocal,

informationtarget);
6: end
Algorithm 2. Basic IVC protocol (passive thread)
1: repeat
2: veℎicletarget ← waitForVehicle();
3: informationtarget ← receive(veℎicletarget);
4: updateInformation(informationlocal,

informationtarget);
5: send(informationlocal, veℎicletarget);
6: until forever
where IVC stands for inter-vehicle-communication [12] and
informationv for v = local, target consists of the following
information:

• lane: Lane number from 0 to 7
• arrivalTime: Arrival time for its own vehicle
• arrivalTimelead : Arrival time for the lead vehicle
• lead: True or false
• conflictLane: List of conflict lanes
• concurrentLane: List of concurrent lanes
• concurrentLanePassing: List of concurrent lanes for

passing vehicles
• status: stopped, passing, or passed

Let us repeat again that in the present paper, we use crossing
& crossed instead of passing & passed; and we add running
& approaching as the status values.

The LJPL protocol itself is described as Algorithm 3:
Algorithm3. Mutual exclusion algorithm via IVC
1: begin initialization
2: inforV eℎiclesi[j]← null, ∀i ∈ {1, ...,maxlane},

∀j ∈ {1, ...,maxvehicle};
3: end
4: begin when entering the intersection
5: lane← getLaneNum();
6: arrivalT ime← getCurrentTime();
7: if no vehicle on the lane,

where status == stopped then
8: lead ← true;
9: arrivalT imelead ← arrivalT ime;
10: else
11: lead ← false;
12: endif
13: status← stopped;
14: end
15: begin at each cycle
16: update inforV eℎiclesi[j]according to Algorithm 1 and Algorithm 2;
17: check infoV eℎiclesconflictLanefor passing the intersection;
18: if passingCondition() then
19: status← passing;
20: move and cross the intersection;
21: endif
22: end
23: begin when exiting the intersection
24: status← passed;
25: end
26: function passingCondition()
27: if ∀arrivalT imelead ∈ inforV eℎiclesconflinctLane

> arrivalT imelead and
∀status ∈ inforV eℎiclesconflictLane
== stopped then

28: return true;
29: else if ∃status ∈ inforV eℎiclesconcurrentLane

== passing and
∃!lanei ∈ {lanen,∀n ∈ {0, ...,maxlane}
∣ status == passing} and
∀arrivalT imelead
∈ inforV eℎiclesconcurrentLanePassing
> arrivalT imelead then

30: return true;
31: else
32: return false;
33: end function

4. Specification of LJPL Protocol in Maude
As written, in this paper, a state is expressed as a braced

soup of observable components. Let b is a Boolean value, q

4



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

is a queue of vehicle IDs (i.e., a queue of natural numbers be-
cause natural numbers are used as vehicle IDs). Let vid, lid,
t, lt are natural numbers, where vid and lid represent a ve-
hicle ID and a lane ID, respectively, while t and lt represent
the time. To formalize the LJPL protocol as a state machine
MLJPL, we use the following observable components:

• (clock : t,b) - it says that the current time is t. clock

represents the global clock shared by all vehicles. Ini-
tially, the first parameter of clock is set to 0 and will
increment. However, if time is allowed to increase
without any constraints, the reachable state space will
quickly explode. That is the reason why we introduce
the second component b such that t only can incre-
ment when b is true. That is, whenever b is true, t
can increment and b becomes false, and when a vehi-
cle obtains the current time t (without changing t), b
becomes true.

• (v[vid] : lid,vstat,t,lt) - it says that the vehicle vid
is running on the lane lid, its current status is vstat,
it arrives at the intersection at the time t, and the lead
vehicle of the lane lid reaches the intersection at the
time lt.

• (lane[lid] : q) - it says that the queue of vehicles run-
ning on lane lid is q.

• (gstat : gstat) - it says whether all vehiles concerned
have crossed, where gstat is either fin or nFin. When
it is fin, all vehicles concerned have crossed the inter-
section.

Each state in SLJPL is expressed as {obs}, where obs is a
soup of those observable components. We suppose that five
vehicles (from 0 to 4) participate in the LJPL protocol such
that two vehicles are running on lane0, one vehicle is running
on lane1, and two vehicles are running on lane5. The initial
state of ILJPL namely init is defined as follows:
{(gstat: nFin) (clock: 0,false) (lane[0]: oo)

(lane[1]: oo) (lane[2]: oo) (lane[3]: oo)

(lane[4]: oo) (lane[5]: oo) (lane[6]: oo)

(lane[7]: oo) (v[0]: 0,running,oo,oo)

(v[1]: 0,running,oo,oo) (v[2]: 1,running,oo,oo)

(v[3]: 5,running,oo,oo) (v[4]: 5,running,oo,oo)

(v[oo]: 0,stopped,oo,oo) (v[oo]: 1,stopped,oo,oo)

(v[oo]: 2,stopped,oo,oo) (v[oo]: 3,stopped,oo,oo)

(v[oo]: 4,stopped,oo,oo) (v[oo]: 5,stopped,oo,oo)

(v[oo]: 6,stopped,oo,oo) (v[oo]: 7,stopped,oo,oo)}

Initially, gstat is set to nFin, the value of the global clock is
0. Since the second value of the clock observable compo-
nent is false, the abstract notion of the current time cannot
increment. Each queue associated with each lane only con-
sists of oo (denoting ∞), saying that there is no vehicle on
the lane close enough to the intersection. v[0] & v[1] repre-
sent the two vehicles running on lane0, v[2] represents the
vehicle running on lane1, and v[3] & v[4] represent the two

vehicles running on lane5. There are eight v[oo] observable
components that are used to represent dummy vehicles.

12 rewrite rules are used to specify TLJPL. Let OCs and
OCs' be Maude variables of observable component soups, T,
T' and T'' be Maude variables of natural numbers, and B is a
Maude variable of Boolean values. When all vehicles have
crossed the intersection, the state does not change anything,
which is specified by the following two rewrite rules:
rl [stutter] : {(gstat: fin) OCs}

=> {(gstat: fin) OCs} .

crl [fin] : {(gstat: nFin) OCs}

=> {(gstat: fin) OCs} if fin?(OCs) .

where fin?(OCs) returns true iff all vehicles in OCs have
crossed the intersection.

The rewrite rule tick is defined to specify the behavior
of the global clock:
rl [tick] :

{(gstat: nFin) (clock: T,true) OCs} =>

{(gstat: nFin) (clock: (T + 1),false) OCs} .

The rewrite rule says that if the second value of the clock ob-
servable component is true, the abstract notion of the current
time T increments and the second value becomes false.

Two rules are used to specify a set of transitions that
change a vehicle status from running to approaching as fol-
lows:
rl [approach1] : {(gstat: nFin) (clock: T,B)

(lane[LI]: oo) (v[VI]: LI,running,oo,oo) OCs}

=> {(gstat: nFin) (clock: T,true)

(lane[LI]: VI) (v[VI]: LI,approaching,T,oo)

OCs} .

rl [approach2] : {(gstat: nFin) (clock: T,B)

(v[VI]: LI,running,oo,oo)

(lane[LI]: (VI' ; VS)) OCs}

=> {(gstat: nFin) (clock: T,true)

(lane[LI]: (VI' ; VS ; VI))

(v[VI]: LI,approaching,T,oo) OCs} .

where LI, VI, and VI' are Maude variables of natural num-
bers, VS is aMaude variable of queues of natural numbers and
∞, and ; is the constructor of queues. Note that ; is declared
as an associative binary operator and each natural number
or oo is declared as a singleton queue. Thus, VI' ; VS ; VI

denotes the queue obtained by putting VI into the queue de-
noted as VI' ; VS at the end. The first rewrite rule specifies
the case in which there is no vehicle close enough to the in-
tersection on the lane where the vehicle is running, while the
second one deals with the case in which there exists at least
one vehicle close enough to the intersection on the lane.

Three rewrite rules are used to specify a set of transitions
that change a vehicle status from approaching to stopped as
follows:

5



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

rl [check1] : {(v[VI]: LI,approaching,T,oo)

(gstat: nFin) (lane[LI]: (VI ; VS)) OCs}

=> {(gstat: nFin) (v[VI]: LI,stopped,T,T)

(lane[LI]: (VI ; VS)) OCs} .

rl [check2] : {(v[VI]: LI,approaching,T'',oo)

(gstat: nFin) (v[VI']: LI,stopped,T,T')

(lane[LI]: (VS' ; VI' ; VI ; VS)) OCs}

=> {(gstat: nFin) (v[VI]: LI,stopped,T'',T')

(v[VI']: LI,stopped,T,T')

(lane[LI]: (VS' ; VI' ; VI ; VS)) OCs} .

rl [check3] : {(v[VI]: LI,approaching,T'',oo)

(gstat: nFin) (v[VI']: LI,crossing,T,T')

(lane[LI]: (VS' ; VI' ; VI ; VS)) OCs}

=> {(gstat: nFin) (v[VI]: LI,stopped,T'',T'')

(v[VI']: LI,crossing,T,T')

(lane[LI]: (VS' ; VI' ; VI ; VS)) OCs} .

where VS' is a Maude variable of queues. The first rewrite
rule specifies the case in which vehicle VI is the top of the
queue (i.e., VI will be lead on the lane). The second one
deals with the case in which there exists another vehicle VI'

in front of the vehicle VI such that VI' is stopped (VI will
be non-lead on the lane). The last one specifies the case in
which there exists another vehicle VI' in front of the vehicle
VI such that the status of VI' is crossing (VI will be lead on
the lane).

Two rewrite rules enter1 and enter2 are used to specify
a set of transitions that change a lead vehicle status from
stopped to crossing. enter1 deals with the case in which the
ID of the lane on which the lead vehicle is located is even
and enter2 deals with the case in which it is odd. enter1 is
defined as follows:
crl [enter1] : {(v[VI]: LI,stopped,T,T)

(gstat: nFin) (lane[LI]: (VI ; VS)) OCs}

=> {(gstat: nFin) (lane[LI]: (VI ; VS))

(v[VI]: LI,crossing,T,T) OCs'}

if isEven(LI) /\

LI1 := (LI + 2) rem 8 /\

(lane[LI1]: (VI1 ; VS1))

(v[VI1]: LI1,VSt1,T11,T12) OCs1 := OCs /\

VSt1 = stopped /\ T < T12 /\

LI2 := (LI + 5) rem 8 /\

(lane[LI2]: (VI2 ; VS2))

(v[VI2]: LI2,VSt2,T21,T22) OCs2 := OCs /\

VSt2 = stopped /\ T < T22 /\

LI3 := (LI + 6) rem 8 /\

(lane[LI3]: (VI3 ; VS3))

(v[VI3]: LI3,VSt3,T31,T32) OCs3 := OCs /\

VSt3 = stopped /\ T < T32 /\

LI4 := (LI + 7) rem 8 /\

(lane[LI4]: (VI4 ; VS4))

(v[VI4]: LI4,VSt4,T41,T42) OCs4 := OCs /\

VSt4 = stopped /\ T < T42 /\

OCs' := letCross(VS,OCs) .

Figure 2: A state picture design for the LJPL protocol (1)

Figure 3: A state picture for the LJPL protocol (1)

where LIi for i = 1,… , 4 are Maude variables of natural
numbers, VIi & Tj for i = 1,… , 4 & j = 11, 12,… , 41, 42
are Maude variables of natural numbers & ∞, VSi for
i = 1,… , 4 are Maude variables of queues, VSti for i =
1,… , 4 are Maude variables of vehicle statuses, and OCsi for
i = 1,… , 4 are Maude variables of observable component
soups. isEven(LI) holds if LI is even. The rewrite rule checks
if all lead vehicles of the four conflict lanes (i.e., LI1, LI2, LI3,
and LI4) are not crossing the intersection and the arrival time
T of the vehicle VI is less than all arrival times of the lead ve-
hicles on the conflict lanes. If the conditions are satisfied,
the status of vehicle VI is changed to crossing from stopped
and the statuses of all vehicles that follow VI and whose sta-
tuses are stopped also become crossing, which is done by
letCross(VS,OCs).

The rewrite rule enter2 can be defined likewise. There
are also two more rewrite rules leave1 and leave2 that are
used to specify a set of transitions changing a vehicle status
to crossed from crossing. All of them can be found from the
webpage presented in Sect. 1.

6



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 4: A state picture design for the LJPL protocol (2)

5. Graphical Animation of LJPL Protocol
5.1. Idea

At the beginning of the work, we needed to deal with
a problem of how to design a good state picture so that it
can display well a composite value of some observable com-
ponent. At that time, the version of SMGA was only able
to visualize observable components whose value is text or
designated place. The tool, however, was not able to dis-
play specific components inside the composite values of the
observable components. For example, considering the fol-
lowing observable component: (time: (Y Y ,MM,DD)),
SMGA was not able to display the value “Y Y ”, “MM”,
or “DD”. Therefore, we have modified the specification by
adding some observable components that do not affect the
behavior of the protocol. With the example above, three ob-
servable components are added: (year: Y Y ) (montℎ: MM)
(day: DD) (time: (Y Y ,MM,DD)). This is the key idea to
makes the tool be able to produce good graphical animations
for the LJPL protocol in particular and display observable
components whose values are composite in general.

It is convenient for users if SMGA supports a function-
ality that can explicitly visualize specific component inside
the composite values of the observable components with-
out adding unneeded observable components. Therefore, we
have revised the tool to support the functionality. The key
idea is to add # followed by a natural number (start from
0) that represents a position inside the composite value of
an observable component. For example, with the follow-
ing composite value (time: (Y Y ,MM,DD(ℎℎ,mm, ss))),
where its third component is also a composite value that
consists of ℎℎ, mm and ss, we can extract the value mm by
the notation time#2#1, where 2 denotes the third position of
time’s value (i.e., DD(ℎℎ,mm, ss)), and 1 denotes the sec-
ond position insideDD (i.e., mm). Therefore, users can dis-
play the component as a text or a designated place with the
new functionality provided by SMGA.

5.2. State Picture Design
In SMGA, designing a good state picture is an important

task because it can help humans better perceive the charac-
teristics of the protocol [5]. In our way to formalize the LJPL
protocol, each state is expressed as a braced soup of observ-
able components. Multiple similar observable components,
such as v observable components, are used. v observable
components contain values whose types are the same, such
as the lane ID (laneID) and the status (vStat) of a vehicle.
By following the similarity principle of Gestalt [20, 19], they
should be put together. Furthermore, the laneID of a vehicle
cannot be changed and hence we fix it as a constant text. We
then come up with a state picture design for the initial state
init mentioned in the previous section (shown in Figure 2).
A state picture generated from the state picture design is de-
picted in Figure 3.

In Figure 2, there are eight arrow shapes representing
eight lanes. A lane representation designed is as follows:

There are three colors: light green, pink, and light yel-
low that represent three statuses crossing, stopped, and
approaching, respectively. For example, the status values of
the fourth and fifth vehicles (i.e., v3 and v4) in the following
figure are approaching:

Two status values running and crossed representations
used in Figure 2 are as follows:

7



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

A rectangle whose color is light cyan represents the status
running. A rectangle whose color is white represents the
status crossed. For example, the status values of the first
and third vehicles (i.e., v0 and v2) in the following figure
are running and crossed, respectively:

The design of the clock representation used in Figure 2
is as follows:

The value of the clock consists of two pieces of information:
a natural number and a Boolean value (mentioned in Sect. 4).
Three blue squares represent the natural number from 0 to 2.
If the value of the natural number is 0, the first blue square
is displayed. A red circle represents the Boolean value. If
the value is true, a red circle is displayed, otherwise, noth-
ing is displayed. For example, when the value of the natural
number is 1, and the Boolean value is false, those values
are displayed as follows:

The design of the time arrivals of vehicles representation
used in Figure 2 are as follows:

In each horizontal line, three blue squares represent the value
of the time arrival (from 0 to 2). If nothing is displayed, the
value is∞. If the value is 0, the first blue square is displayed.
For example, the figure below displays the case when the
value of the first vehicle is ∞, the values of the four other
vehicles are 0:

The design of the gstat representation used in Figure 2
is as follows:

If the value of gstat is fin, the circle and text is displayed,
otherwise, nothing is displayed.

Figure 5 shows a state picture in which the initial state
contains one vehicle in each lane1, lane2, lane4, lane6, and
lane7, two vehicles in lane0, and three vehicles in lane5. It
indicates that users need to redesign a new state picture since
the initial state is changed. We design a flexible state picture
such that it can be used when the number of vehicles partici-
pating in the protocol is small enough. Figure 7 displays the
flexible state picture design, in which each lane can contain
up to four vehicles, the value of the natural number of clock,
and the value of the time arrival are up to 6.
5.3. Graphical Animation of LJPL Protocol

Figure 6 shows a state sequence for the LJPL protocol
based on the state picture design depicted in Figure 5. Six
pictures correspond to six consecutive states from State 13
to State 18 in one state sequence randomly generated by
Maude. Those pictures follow the rewrite rules mentioned in
4, such as State 17 is the successor of State 16 by the rewrite
rule leave1. Taking a look at the first picture (State 13) im-
mediately makes us recognize that each of lane0 and lane5
contains two vehicles whose status values are stopped, each
of lane6 and lane7 contains one vehicle whose status value
is approaching, each of lane1 and lane2 contains one vehicle
whose status value is stopped, the values of time arrival of
those vehicles are equal to 0 except two vehicles whose sta-
tus values are running have time arrival∞. Taking a look at
State 13 and State 14 immediately makes us recognize that
v12’s status changes from approaching to stopped. Taking
a look at State 15 to State 17 immediately makes us recog-
nize that v2’s status value changes from stopped to crossing
and finally to crossed, and v4’s status value changes from
running to approaching.

Figure 8 shows another state sequence. Three pictures
correspond to three consecutive states from State 27 to State
29. Taking a look at State 27 and State 28 makes us imme-
diately recognize that three vehicles can change the status
from stopped to crossing at the same time. It is interesting
because crossing is regarded as the critical section such that

8



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 5: A state picture design for the LJPL protocol (3)

Figure 6: A state sequence for the LJPL protocol (1)

at most one vehicle should be located in the critical section
at the same time. Taking a look at the State 28 makes us
immediately recognize a case such that there exist two ve-
hicles running on two different lanes, and their statuses are
crossing. It can be explained that two vehicles running on
two concurrent lanes (e.g., lane5 and lane2) are allowed to
cross the intersection simultaneously.
5.4. Preservation of the Order of Vehicles on each

Lane
In graphical animations of the LJPL protocol produced

in our conference paper [14], the order of vehicles on each
lane in each state picture instance may be different from the
actual order of the vehicles on the lane. For example, in State
13 appearing in Figure 6, there are two v0 and v1 on lane0. v1
is the first vehicle and v0 is the second one on the state pic-
ture instance (State 13), while the lane[0] observable com-
ponent has v0 ; v1 as its value, meaning that v0 is the first
vehicle and v1 is the second one. This difference is not good
because human users may mis-understand something about
State 13 by looking at the state picture. This is because the

version of SMGA available when our conference paper [14]
was written required us to fix the position for each vehicle
on each lane when the vehicle status is one of the three sta-
tuses (approaching, stopped and crossing). Therefore, v1 is
always in front of v0 in the state picture design used in the
conference version even though v0 is actually in front of v1
when the statuses of both v0 and v1 are one of the three sta-
tuses.

One possible way to solve the situation is to use text dis-
play (see Sect. 2) to visualize queues of lane observable com-
ponents. However, it is impossible to extract each vehicles’
statuses from the queues because the queues only consists of
vehicle IDs. For example, when the lane[0] observable com-
ponent has v0 ; v1 as its value, the text v0 ; v1 is displayed.
Because vehicles statuses are one piece of essential informa-
tion of the protocol, this approach is not good enough.

We took a different approach. We have revised SMGA
so that the tool can use mark display (see Sect. 2) to visu-
alize queues of lane observable components so as to visu-
alize vehicles statuses effectively. When a vehicle is in one
of the three statuses, its ID is always displayed at a fixed

9



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 7: A flexible state picture design for the LJPL protocol (1)

Figure 8: A state sequence for the LJPL protocol (2)

location of the arrow shape for the status in the previous ap-
proach. Thus, state pictures may not respect the order in
which there are vehicles whose statuses are one of the three
statuses (approaching, stopped and crossing) on a lane. On
the other hand, in the current approach taken in the present
paper, we allows the ID of such a vehicle to be displayed at
any possible location of the arrow shape depending on the
value (queue) of the lane observable component concerned.

For example, the design of the arrow shape for lane 5 is as
follows:

We suppose that there are three vehicles v3, v4 and v10 on
lane 5. The design is made so that each of the three vehicles
can be displayed at any of the three possible positions on
each arrow sub-shape (note that there are three arrow sub-
shapes on the lane).

When the value (queue) of the lane[i] observable com-
ponent is displayed, SMGA checks the status of each vehicle
j in the queue by looking at the second component (vstat)
of the v[j] observable component. For example, when there
are three vehicles v3, v4 and v10 on lane 5 such that v3 and v4

are crossing and v10 is stopped, they are displayed as shown
in Figure 9. The state picture respects the order of the three
vehicles v3, v4 and v10 on lane 5.

Figure 10 shows a sequence of state pictures produced by
the latest version of SMGA that corresponds to the sequence
of state pictures shown in Figure 8. Each state picture ap-
pearing in Figure 10 preserves the order of vehicles on each
lane, while each state picture appearing in Figure 8 does not
necessarily preserves the order.
5.5. Visualization of Conflict and Concurrent

Lanes
For each of the eight lanes, there are four conflict and

three concurrent lanes. In graphical animations of the LJPL
protocol produced in our conference paper [14], any infor-
mation on conflict and concurrent lanes is displayed. Infor-
mation on conflict and concurrent lanes is not very static be-
cause each lane has different conflict and concurrent lanes.
Furthermore, information on conflict and concurrent lanes
is not stored in any observable components. Thus, such in-
formation cannot be handled as any other information, such
as the status of each vehicle and the lane information. Be-

10



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 9: A state picture for the LJPL protocol (2)

Figure 10: A state sequence for the LJPL protocol (3)

cause information on conflict and concurrent lanes is crucial
for the LJPL protocol, it should be visualized.

Our approach to visualization of information on con-
flict and concurrent lanes is as follows. We make each text
“lane i” for i = 0, 1,… , 7 on each state picture clickable. Ini-
tially, each text “lane i” is displayed in black. When “lane i”
is clicked, its four conflict lane texts become red and its
three concurrent lane texts become blue, while “lane i” is
kept black. For example, when “lane 5” is clicked, each
“lane j” for j = 0, 3, 6, 7 becomes red and each “lane k” for
k = 1, 2, 4 becomes blue. Even while playing a graphical
animation, each “lane i” can be clicked. Figure 11 shows
four state pictures in which “lane 5”, “lane 0”, “lane 2” and
“lane 6”, respectively. The functionality that visualizes the
conflict and concurrent lanes of “lane i” by clicking “lane i”
is called the conflict/concurrent lane interaction functional-
ity.

Let us note that there are four state pictures in Figure 11
but they represent one state (State 15). State 15 is an example
in which a deadlock situation occurs, when no vehicle will

cross the intersection. It is reported by Moe et al. [2] that the
original LJPL protocol does not enjoy the deadlock freedom
property. When the lead arrival times of the two top vehicles
on two conflict lanes are exactly the same, the original LJPL
protocol cannot select one of the two vehicles. Moe et al. [2]
propose that when that is the case, one vehicle whose lane
ID is less than the other vehicle’s lane ID is selected. We
use the revised protocol by Moe et al. [2] in the following
sections.

6. Confirmation of Guessed Characteristics
with Maude
We first guess four characteristics by observing graphi-

cal animations of the LJPL protocol and confirm them with
the Maude search command. We then describe one seem-
ing characteristic by observing graphical animations of the
LJPL protocol. The characteristic is refuted by the Maude
search command. We revise the characteristic and confirm
it by theMaude search command. Let init be the initial state

11



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 11: Four state pictures in which lanes 5, 0, 2, 6 are clicked, respectively

defined in Sect. 4.
6.1. Four Characteristics Guessed and Confirmed

Observing some graphical animations, we first see that
the status of a vehicle sometimes does not change when the
value of clock changes (shown at State 15 in Figure 6). Care-
fully focusing on the value of clock, we guess that when the
Boolean value of clock is false, the arrival time of any vehi-
cle cannot be greater than the first value of clock. The char-
acteristic can be confirmed by the Maude search command
as follows:
search [1] in RIMUTEX : init =>*

{(clock: T,false) (v[VI]: LI,VS,T1,T2) OCs}

such that

T1 >= T and T1 =/= oo .

The search command above tries to find a reachable state in
which the arrival time T1 (that is not ∞) of a vehicle VI is
greater than or equal to the first value T of clock. Maude
does not find any reachable state that satisfies the condition
from the state init. Therefore, the guessed characteristic is
confirmed with the initial state init.

Observing some graphical animations, we guess that if
the first value of clock is equal to the arrival time of a vehicle,
the status of the vehicle is not running. The characteristics
can be confirmed by Maude search command as follows:
search [1] in RIMUTEX : init =>*

{(clock: T,B) (v[VI]: LI,VS,T1,T2) OCs}

such that

T1 == T and VS == running .

The search command above tries to find a reachable state
in which the arrival time T1 of a vehicle VI is equal to the
first value T of clock and the status of the vehicle is running.
Maude does not find any reachable state that satisfies the
condition from the state init. Consequently, the guessed
characteristic is confirmed with the initial state init.

Observing some graphical animations with the con-
flict/concurrent lane interaction functionality, we recognize
that if a vehicle is the top of lane LI1 and its status is cross-
ing, then another vehicle that is the top of lane LI2 that is a
conflict one of lane LI1 is never crossing. The charismatic
can be confirmed by the Maude search command as follows:
search [1] in RIMUTEX : init =>*

{(lane[LI1]: VI1 ; Q1) (v[VI1]: LI1,crossing,T11,T12)

(lane[LI2]: VI2 ; Q2) (v[VI2]: LI2,crossing,T12,T22) OCs}

such that

areConflict(LI1,LI2) = true /\ LI1 =/= LI2 .

The search command above tries to find a reachable state in
which two lanes LI1 and LI2 are conflict, two vehicles VI1

and VI2 are the top of the two lanes, respectively, and the
two vehicles’ statuses are crossing. Maude does not find any
reachable state that satisfies the condition from init. There-
fore, the guessed characteristic is confirmed with the initial
state init.

Observing some graphical animations, we carefully fo-
cus on concurrent lanes. Let us note that there are three con-
current lanes for each lane. We recognize that there are at
most two concurrent lanes on which vehicles are crossing si-
multaneously. The charismatic can be confirmed by Maude
search command as follows:

12



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

Figure 12: A state picture in which the seeming characteristic
is broken

search [1] in RIMUTEX : init =>*

{(lane[L1]: v1 ; Q1) (lane[L2]: v2 ; Q2)

(lane[L3]: v3 ; Q2)

(v[V1]: L1,crossing,T11,T12)

(v[V2]: L2,crossing,T21,T22)

(v[V3]: L3,crossing,T31,T32) OCs}

such that

areConcur(L1,L2) /\ areConcur(L1,L3) /\

areConcur(L2,L3) /\ (L1 =/= L2) /\ (L1 =/= L3)

/\ (L2 =/= L3) .

The search command above tries to find a reachable state
in which three different lanes L1, L2 and L3 are concurrent,
three vehicles V1, V2 and V3 are the top of the three lanes,
respectively, and the three vehicles are crossing. Maude does
not find any reachable state that satisfies the condition from
init. Therefore, the guessed characteristic is confirmed with
the initial state init.
6.2. One Seeming Characteristic and its Revision

By using one tip called CCT-2 (By concentrating on two
different-kind observable components, we may find a rela-
tion between them, from which we may conjecture some
characteristics.) [6], we carefully focus on the two top vehi-
cles VI1 and VI2 of two conflict lanes LI1 and LI2, the statuses
of VI1 and VI2 and the arrival times T11 and T21 of VI1 and
VI2. We then guess that if VI1 is crossing, then T11 is less
than or equal to T21. We tried to confirm the characteristic
with the following Maude search command:
search [1] in RIMUTEX : init =>*

{(lane[LI1]: VI1 ; Q1) (v[VI1]: LI1,crossing,T11,T12)

(lane[LI2]: VI2 ; Q2) (v[VI2]: LI2,VS2,T21,T22) OCs}

such that

areConflict(LI1,LI2) = true /\

LI1 =/= LI2 /\ VI1 =/= VI2 /\ T11 > T21 .

Maude found a counterexample of the guessed characteris-
tic, although it is seemingly correct. Figure 12 shows a state
picture of the counterexample. Let us take a look at the vehi-
cles v1 on lane 0 and v5 on lane 5. The two lanes are conflict
and the two vehicles are the top of the lanes as shown in Fig-
ure 12. v1 is crossing and v5 is stopped, while the v1’s arrival

time is 1 and the v5’s arrival time is 0. v1 is the top of lane 0
and seems to be the lead vehicle of lane 0, but v1 is not the
lead vehicle of lane 0. v0 that is crossed was the lead vehicle
of lane 0 because both its arrival time and lead arrival time
(the third and forth components of v[v0] observable compo-
nent) are 0 and v1 has been following v0 when crossing the
intersection. This is because the lead arrival time of v1 is 0
that is the same as the arrival time of v0.

To guess the characteristic, we should have considered
the lead arrival time instead of the arrival time of each ve-
hicle concerned. We revise the characteristic as follows: if
there are the top vehicles VI1 and VI2 of two conflict lanes
LI1 and LI2 such that VI1 is crossing, the lead arrival time
T12 of VI1 is less than or equal to the lead arrival time T22

of VI2. The revised characteristic can be confirmed by the
following Maude search command:
search [1] in RIMUTEX : init =>*

{(lane[LI1]: VI1 ; Q1) (v[VI1]: LI1,crossing,T11,T12)

(lane[LI2]: VI2 ; Q2) (v[VI2]: LI2,VS2,T21,T22) OCs}

such that

areConflict(LI1,LI2) = true /\

LI1 =/= LI2 /\ VI1 =/= VI2 /\ T12 > T22 .

Maude does not find any counterexamples.

7. Lessons Learned
Through the case study with the LJPL protocol, we ob-

tain several lessons on how to design a good state picture so
that we can conjecture some non-trivial characteristics, es-
pecially when there are some observable components with
composite values. The lessons learned can be summarized
as follows:

• When an observable component has a composite
value, which consists of more than one component
value inside, we need to carefully select which com-
ponent values to visualize. For example, the second
and the third component values (i.e., the status and
the time arrival) of the vehicle observable component
are selected while the fourth component value (i.e.,
the time arrival of the lead) of the vehicle observable
component is not used in our design.

• If a value of an observable component does not
change, it should be expressed at a fixed label, such
as laneID of each vehicle observable component.

• If there exist observable components that have values
whose types are the same, we should design and dis-
play the values together in one designated place.

• If there exist observable components that have a
natural number as their values and the values are
small enough, the values should be visually expressed
nearby together so that we can see them simultane-
ously and compare them instantaneously. For exam-
ple, the first value of clock (i.e., a natural number) and
the time arrival of each vehicle have been visualized
in our design.

13



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

8. Related Work
Bui and Ogata [4] have graphically animated a mutual

exclusion distributed protocol called Suzuki-Kasami with
SMGA. The protocol contains the network component used
to exchange messages. They have realized the messages that
have been put into the network and deleted from the network
are crucial information so that they have revised SMGA to be
able to display those messages. Their solution is to prepare
two places for those messages. Some guessed characteris-
tics are confirmed as invariant properties of the protocol with
Maude. The authors have summed up their experiences as
tips to help human users design a state picture for distributed
protocol. This research and ours can share the working flow,
but we cannot apply the technical content or tips to our work.
One such reason is that the behavior of distributed protocol
and autonomous vehicle intersection control protocol cannot
share each other.

A mutual exclusion protocol called Qlock has been con-
ducted by May Thu Aung et al. [3]. Some properties of the
protocol have been conjectured by observing graphical ani-
mation. The properties also havemodel checkedwithMaude
and theorem proved with CafeOBJ [8]. One piece of our fu-
ture work is to theorem prove the characteristics guessed in
this paper with CafeOBJ.

María Alpuente et al. [13] have proposed a methodol-
ogy to check whether a Maude program is correct or not via
logical assertions based on rewriting logic theories. They
also have developed a prototype tool that is an implemen-
tation of that methodology. One functionality of the tool is
to visualize the possible trace slides (as state sequences in
our paper) to help users identify the cause of the error. Hu-
man users can observe the specific states corresponding to
their rewriting rules by selecting them from a given initial
state. In case that many possible rewriting rules may appear,
the visualization is looked like a graph or a tree in which
the states (displayed as text) are nodes. This visualization
approach can be applied to our work, although its purpose
is different than ours. One piece of our work is to compare
those approaches together.

SMGA can be regarded as an integration of formal meth-
ods and visualization. We introduce two recent studies on
an integration of formal methods and visualization. One [9]
is a study on visualization of what is done inside by Vam-
pire [11], an automated first-order logic theorem prover, and
the other is a study on visualization of the structural oper-
ational semantics of a simple imperative programming lan-
guage [17]. Although automated theorem provers are attrac-
tive because they may automatically prove theorems, they
cannot truly fully automatically prove all possible theorems.
Proof attempts may fail. If that is the case, human users
need to comprehend why the proof attempts fail and need to
change the format of input logical formulas and/or some in-
ternal proof strategies. It is very difficult for non-expert users
and at least non-trivial for expert users to really comprehend
why the proof attempts fail because it is necessary to under-
stand what is done inside by an automated theorem prover,
such as Vampire. Gleiss, et al. have then developed SATVIS,

a tool to visualize what is done inside by Vampire. Students
and even programmers should learn semantics of program-
ming languages so as to understand programming languages
better, which may make it possible for them to write better
programs. However, it is hard for students to learn semantics
of programming languages. Perhác and Zuzana Bilanová
have then developed an interactive tool for visualization of
the structural operational semantics of a simple imperative
programming language. SMGA partially shares the motiva-
tion of the first study [9]. This is because themain purpose of
SMGA is to help human users conjecture lemmas needed for
interactive theorem proving through graphical animations of
state machines concerned. Nothing special is directly shared
by SMGA and the second study [17] except an integration of
formal methods and visualization. However, several formal
semantics of programing languages have been described in
the K framework [18], where K has been implemented in
Maude. SMGA basically graphical animates state machines
specified in Maude. Therefore, it would be possible to inte-
grate SMGA and the K framework so that formal semantics
of programming languages can be visualized.

9. Conclusion
We have described graphical animations of the Lim-

Jeong-Park-Lee autonomous intersection control protocol
with SMGA in which the composite data are explicitly vi-
sually displayed. Two state picture designs that deal with
initial states in two different ways have been created, and a
flexible state picture design has been proposed so that all ini-
tial states can be handled provided that the number of vehi-
cles is less than or equal to a given number. Some character-
istics are guessed by observing graphical animations based
on our design to demonstrate that graphical animation could
help humans visually perceive the characteristics of the pro-
tocol. Those characteristics are confirmed by model check-
ing. We have summarized our experiences as some tips on
how to design a good state picture for autonomous vehicle
intersection control protocol. One future direction is to ap-
ply our work to other self-driving vehicle protocols, such as
a merging protocol [1]. Another future work is to integrate
SMGA into Maude so that the tool can use some function-
alities of Maude, such as pattern matching and generating a
state sequence of state on the fly.

Acknowledgment
The authors would like to thank the anonymous review-

ers who carefully read an earlier version of the paper and
gave them valuable comments without which they were not
able to complete the present paper.

References
[1] Aoki, S., Rajkumar, R., 2017. A merging protocol for self-driving

vehicles, in: ICCPS 2017, pp. 219–228. doi:10.1145/3055004.3055028.
[2] Aung, M.N., Phyo, Y., Ogata, K., 2019. Formal specification and

model checking of the Lim-Jeong-Park-Lee autonomous vehicle in-

14



D. D. Bui et al. / Journal of Visual Language and Computing (2022) 1–15

tersection control protocol, in: SEKE 2019, pp. 159–208. doi:10.
18293/SEKE2019-021.

[3] Aung, M.T., Nguyen, T.T.T., Ogata, K., 2018. Guessing, model
checking and theorem proving of state machine properties – a case
study on Qlock. IJSECS 4, 1–18. doi:10.15282/ijsecs.4.2.2018.1.
0045.

[4] Bui, D.D., Ogata, K., 2019. Graphical animations of the Suzuki-
Kasami distributed mutual exclusion protocol. JVLC 2019, 105–115.
doi:10.1007/978-3-319-90104-6_1.

[5] Bui, D.D., Ogata, K., 2020. Better state pictures facilitating state
machine characteristic conjecture, in: DMSVIVA 2020, pp. 7–12.
doi:10.18293/DMSVIVA20-007.

[6] Bui, D.D., Ogata, K., 2021. Better state pictures facilitating state ma-
chine characteristic conjecture. Multimedia Tools and Applications
doi:10.1007/s11042-021-10992-z.

[7] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C. (Eds.), 2007. All About Maude. volume 4350 of LNCS.
Springer. doi:10.1007/978-3-540-71999-1.

[8] Diaconescu, R., Futatsugi, K., 1998. CafeOBJ Report. World Scien-
tific.

[9] Gleiss, B., Kovács, L., Schnedlitz, L., 2019. Interactive visualization
of saturation attempts in Vampire, in: IFM 2019, Springer. pp. 504–
513. doi:10.1007/978-3-030-34968-4_28.

[10] K. W. Brodlie, et al. (Ed.), 1992. Scientific Visualization: Techniques
and Applications. Springer. doi:10.1007/978-3-642-76942-9.

[11] Kovács, L., Voronkov, A., 2013. First-order theorem proving
and Vampire, in: CAV 2013, Springer. pp. 1–35. doi:10.1007/
978-3-642-39799-8_1.

[12] Lim, J., Jeong, Y., Park, D., Lee, H., 2018. An efficient distributed
mutual exclusion algorithm for intersection traffic control. J. Super-
comput. 74, 1090–1107. doi:10.1007/s11227-016-1799-3.

[13] M. Alpuente, et al., 2016. Debugging Maude programs via runtime
assertion checking and trace slicing. J. Log. Algebraic Methods Pro-
gram. 85, 707–736. doi:10.1016/j.jlamp.2016.03.001.

[14] Myint, W.H.H., Bui, D.D., Tran, D.D., Ogata, K., 2021. Graphical
animations of the Lim-Jeong-Park-Lee autonomous vehicle intersec-
tion control protocol, in: DMSVIVA 2021, pp. 22–28. doi:10.18293/
DMSVIVA2021-004.

[15] Nguyen, T.T.T., Ogata, K., 2017a. Graphical animations of
state machines, in: 15th DASC, pp. 604–611. doi:10.1109/
DASC-PICom-DataCom-CyberSciTec.2017.107.

[16] Nguyen, T.T.T., Ogata, K., 2017b. Graphically perceiving char-
acteristics of the MCS lock and model checking them, in: 7th
SOFL+MSVL, pp. 3–23. doi:10.1007/978-3-319-90104-6_1.

[17] Perhác, J., Bilanová, Z., 2020. Another tool for structural operational
semantics visualization of simple imperative language, in: ICETA
2020, IEEE. pp. 513–518. doi:10.1109/ICETA51985.2020.9379205.

[18] Rosu, G., 2017. K: A semantic framework for programming lan-
guages and formal analysis tools, in: Dependable Software Sys-
tems Engineering. IOS Press. volume 50, pp. 186–206. doi:10.3233/
978-1-61499-810-5-186.

[19] Todorovic, D., 2008. Gestalt principles. Scholarpedia 3, 5345. doi:10.
4249/scholarpedia.5345.

[20] Ware, C., 2004. Information Visualization: Perception for Design.
MKP Inc.

15




