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A B S T R A C T 

High-quality Artificial intelligence (AI) software in different domains, like image recognition, has 

been widely emerged in people’s daily life. They are built on machine learning models to implement 

intelligent features. However, the current research on image recognition software rarely discusses test 

questions, clear quality requirements, and evaluation methods. The quality of image recognition 

applications becomes more and more prominent. A three-dimensional(3D) classification decision 

table can help users to conduct classification-based test requirement analysis and modeling for any 

given mobile apps powered with AI functions in detection, classification, and prediction. This paper 

presents a case study of a realistic image recognition application called Calorie Mama using manual 

testing and automation testing with a 3D decision table. The study results indicate the proposed 

method is feasible and effective in quality evaluation. 

 © 2021 KSI Research 

time application of software, such as some software that 

testing the software is very important to verify that the 

is used to help with surgeries in the hospital. Therefore, 

the product meets requirements and specifications. 

Software testing ensures the correctness, integrity, and 

 high quality of the software by checking errors or bugs 

and fixing them in the initial design. 

This paper focused on testing an image recognition 

application called Calorie Mama utilizing both manual 

testing and automation testing. Calorie Mama is a 

smartphone app that runs on Android and IOS devices. 

It uses deep learning to recognize food from food 

images and track nutrition based on the food in the 

image. It calculates the calorie based on that. We 

evaluated the performance, correctness, and quality of 

the app using both manual testing and automation 

testing. 

This paper is written to provide our perspective views 

on image recognition software testing and quality 

evaluation. The paper is organized as follows. Section 

2 discusses the review of AI software testing and image 

recognition. The third part elaborates methodologies of 

manual and automation testing. Then, the fourth part 

shows a case study of testing Calorie Mama APP using 

these two methods and presents the comparative results 

of test efficiency and coverage. At last, section 5 gives 

the conclusion. 
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1. Introduction

With the rapid development of big data analysis and 

artificial intelligence technology, AI software and 

applications have been widely accepted in our daily life 

including business, education, social media and so on. 

At present, AI software and applications are based on 

the most advanced machine learning models, and 

various artificial intelligence features are realized 

through large-scale data training. 

The most important implementation of Artificial 

Intelligence is the imitation of human interactions—

vision. Nowadays, there is an abundance of digital 

images captured by high-quality equipment. Most 

images are captured with phones. Artificial Intelligence 

is often used to process these images to extract 

knowledge, categorization, and labeling along with 

other advantages. Typical applications of image 

recognition include object recognition, face recognition, 

text parsing. 

Detecting bugs and errors in software can be very 

costly. Sometimes bugs can be even deadly if it is a real-

*Corresponding author

Email address: taochuanqi@nuaa.edu.cn

ORCID: 0000-0002-0698-7307 

DOI reference number: 10-18293/JVLC2021-N2-194 
11



C. Tao et al. / Journal of Visual Language and Computing (2021) 11-20

2. Related Work

An in-depth research is conducted in the field of AI 

testing. This research helped us in choosing our 

methodologies and impacted our testing approach as a 

whole. 

Gao et al. [1] explained the various testing methods of 

the AI software testing wherein the authors mention 

context classification modeling, input and outcome 

classification modeling and decision tables. Various 

functional and non-functional quality parameters such 

as program correctness, system operations, 

performance, reliability and scalability are discussed to 

better understand the concept. In addition to this, the 

authors discuss the issues and challenges of AI testing. 

AI testing can be costly and time-consuming. There is a 

lack of adequate models and well-defined standards.  

According to [2], AI can apply methods on data for 

software testing purposes like classifications, 

regression, clustering and dimensionality reduction. 

The paper also discusses the testing coverage 

containing requirement analysis, test planning, test 

development and execution.  

In terms of test case generation, Zhu et al. [3] 

proposed a new method called datamorphic testing, 

which consists of three components: a set of seed test 

cases, a set of datamorphisms for transforming test 

cases, and a set of metamorphisms for checking test 

results. 

AI software testing is different from traditional 

software testing, because AI software is characterized 

by dependence on big data, difficulty in predicting all 

application scenarios, and constant self-learning from 

past behavior. King et al. [4] discussed the issues and 

challenges in software testing. According to the authors, 

non-determinism is a huge issue. The same input to the 

system can produce different outputs. Testing has fuzzy 

oracles, i.e., determining the correctness can be a 

challenging task. The other challenges of testing 

include security, performance and scalability. Marijan 

et al. [5] stated that traditional systems have a fixed 

behaviour as they execute a set of rules and are typically 

pre-programmed. ML-based systems exhibit non-

deterministic behavior as they use prediction algorithms 

or so. The quality parameters included correctness, 

robustness and reliability.  

Metamorphic testing (MT) is a property-based 

software testing technique, which has been leveraged in 

many domains for addressing the test oracle problem 

and test case generation problem [6]. Chen et. al [7] 

introduced MT in 1998, which has been an effective AI-

based software testing approach. MT has been applied 

to autonomous driving system [8,9], machine 

translation [10,11], ML classifiers [12,13], Google map 

App [14], search engines [15], facial age recognition 

software [16], and object detection system [17], etc., all 

of which have achieved good results. 

GUI testing is also important in AI software testing. 

Rauf et al. [18] discussed the issues and challenges 

related to testing applications with a user interface. 

According to the authors, it becomes difficult to address 

the large number of states of GUI. Also, it is difficult to 

generate test cases each time the GUI changes. The 

testing can be platform-specific and thus shows a 

limitation. The methods prescribed and used in [18] did 

not address the problem of a huge number of states that 

even a small application’s UI can have and thus can lead 

to a number of test cases. This paper has used particle 

swarm optimization (PSO), partition testing based on 

particle swarm optimization (PSO), test case 

minimization using an artificial neural network (ANN), 

Bayesian Network (BN).  

King et al. [19] discussed the testing methods of 

Replication with Validation (RV) and Safe Adaptation 

with Validation (SAV). While testing a conventional 

application, we formulate creative test cases, manually 

explore the product, or write automated test scripts, 

testing AI-based products that focus on data and 

analytics. Testing supervised ML has two major phases: 

training validation and relevance testing. Training data 

is tested in the training validation phase which is 

verified during the validation phase. A genetic 

algorithm is used to generate test cases to cover all DU-

pairs in [20]. As per the genetic algorithm, BP model is 

used which uses BP neural network.  

Besides, other methods have been used to test AI 

software. The testing methods of RAP (Reconfiguration 

Automation Project) and FEID timeline set up were 

discussed in [21]. The automation of the several phases 

of the flight software testing procedure is the actual idea 

behind RAP. Also, it introduced Artificial Intelligence 

into the Space Shuttle flight software testing. Different 

models of AI systems were discussed in [22]. The 

authors discussed building testable AI systems, limiting 

the AI system to propositional logic and intervening 

variables in reducing testing. Ramanathan et al. [23] 

used symbolic decision procedures coupled with 

statistical hypothesis testing to validate machine 

learning algorithms for studying the correctness of 

intelligent systems. They also used an algorithm to 

analyze the robustness of a human detection algorithm 

built using the OpenCV open-source computer vision 

library.  

In the field of image recognition, most researchers 

focus on recognition algorithms. Girshick et al. [24] 

proposed the R-CNN algorithm, which added selective 

search operations to the CNN network to identify 

candidate regions. The algorithm first divides the 

candidate regions of the input images and then extracts 

the characteristics of the candidate regions through the 

CNN network model for classification and recognition. 

He K et al. [25] proposed the SPP-Net algorithm, which 

reduced the process of image normalization and solved 

the problem of image information loss and storage. 

Girshick R [26] proposed the Fast R-CNN algorithm, 

which refers to the Region of Interest (RoI) and the 
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multi-task loss function method, and replaces SVM 

classification and linear regression with Softmax and 

SmoothLoss to realize the unification of classification 

and regression and reduce the disk space.  

Moreover, Redmon et al. [27] proposed the YOLO 

algorithm, which can identify the categories and 

locations of multiple items in an image at one time, 

realizing end-to-end image recognition. First, the 

YOLO algorithm meshes the input images, calculates 

the confidence degree and classification probability of 

the existence of target objects in each grid, and removes 

the mesh without target objects by threshold. The 

YOLO algorithm runs fast, but has low recognition 

accuracy. Liu et al. [28] proposed SSD algorithm, 

which is a multi-target detection algorithm to directly 

predict the target category. It first extracts the feature 

map through the CNN network model, and then carries 

on the regression classification to the feature map. At 

the same time, SSD algorithm adds a multi-scale feature 

graph function, which can return the candidate boxes of 

different sizes on the feature graph of different levels, 

detect targets of different sizes, and improve the 

recognition accuracy. 

However, the evaluation of image recognition system 

is relatively less but important. In [29], an 

implementation of Yolo-v2 image recognition and other 

test benches for a deep learning accelerator were 

presented. They converted the Yolo-v2 software to 16-

bit floating point version and used it in the simulation 

and FPGA experiment during the chip development. 

Several other testbenches were designed and used to 

test various networks. 

In [30], Yu et al. presented an image-driven tool, 

namely LIRAT, to record and replay test scripts across 

platforms, solving the problem of test script cross-

platform replay for the first time. LIRAT recorded 

screenshots and layouts of the widgets, and leverages 

image understanding techniques to locate them in the 

replay process. 

3. Methodology 

The testing methodologies of the software ensure that 

the software meets the client's requirements. To do this, 

different types of strategies are used in accordance with 

the application to be tested. Every test methodology 

consists of an objective, method and results. A clear 

understanding of these terms is needed to conduct 

thorough testing of the application. We have used two 

different testing techniques to test image recognition 

applications using manual testing and automation 

testing. 

3.1 Manual Test 

The following are the test methods that we can use to 

efficiently and elegantly complete the software test 

process and ensure good quality.  

1) Equivalence Partitioning Method  

Equivalence class partitioning (ECP) is one of the 

software testing techniques that divides the data that is 

obtained as input of software into partitions of 

equivalent information with the help of which test cases 

are systematically derived. By principles, test cases are 

designed to provide coverage to each of these partitions 

once or at least once. The following table is an example 

of an equivalent partition for tree detection. 

Table 1: Equivalence partitioning of tree detection 

Equivalence Partitioning 

(1) The height of the tree 
A) >20ft 

B) <20ft 

(2) Picture completeness 

A) The whole tree 

B) The trunk of the tree 

C) The root of the tree 

D) The branch of the tree 

(3) Flowers 
A) Without flowers 

B) With flowers 

2) Boundary Value Testing 

Boundary value analysis refers to the testing technique 

where tests are designed for validating software 

behaviors and functions by focusing on boundary 

values for each boundary in the system. 

3) Category-Partition Testing 

The Category-partition method is to divide the input 

domains of a component into N different disjoint 

partitions, and then select one value from each domain, 

combine them as one single test case. For example, it is 

used for vehicle detection and we choose to define the 

category of vehicle as follows:  

A. Vehicle Type  

1. Motor 2. Bus 3. Truck 4. Car  

B. Vehicle Direction  

1. Front 2. Side 3. Back  

The result of the test cases is shown below. 

Table 2: Test cases of the vehicle detection 

Test Case # Test Case Description Result 

1 A1B1 Front of Motor Fail 

2 A1B2 Side of Motor Pass 

3 A1B3 Back of Motor Pass 

4 A2B1 Front of Bus Pass 

5 A2B2 Side of Bus Pass 

6 A2B3 Back of Bus Pass 

7 A3B1 Front of Truck Pass 

8 A3B2 Side of Truck Pass 

9 A3B3 Back of Truck Pass 

10 A4B1 Front of Car Pass 

11 A4B2 Side of Car Pass 

12 A4B3 Back of Car Pass 

4) Scenario-Based Testing 
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Scenario-based testing is one of the testing methods 

that consists of the business process flow tested end to 

end. Some test steps should be written in a way that 

completes and validates the positive flow of an 

application.  

5) Decision Table  

Testing is one of the best ways to deal with various 

combinations of input that produce different kinds of 

results. This is also referred to as Cause-Effect table. It 

provides a systematic way of stating complex business 

rules, which is useful for developers as well as for 

testers. 

3.2 Automation test 

Automation testing uses different types of tools, 

scripts, and software to perform test cases by reusing 

predefined actions. It is more reliable if the scripts are 

well written, because the machine can perform related 

tasks without error. Moreover, it is faster than manual 

testing which can be used when we have something 

repetitive to test. 

It is impossible to automate all test cases. Therefore, 

we need to consider the test cause that can be automated. 

Different testing reasons can be automated, such as 

repetitive tasks and capturing results rather than 

manually collecting data and creating graphs. We can 

create a tool to capture the results for us so that we can 

save time and effort. In addition, the task of data entry 

also needs to be automated so that it is done 

automatically without having to enter the data manually 

or write it to the archive form.  

We need to identify and create an automation plan by 

identifying the goal of the automation test. We need to 

know the type of test we want to do. After that, we will 

select the right tool that will help us with testing. It is 

important to pick the right tool to get a good result of 

automated testing. After selecting the right tools, we 

need to know the scope of the automation by selecting 

which tests to automate. It could be the features that are 

remarkable for the business, scenarios (which have a 

big amount of data), the technical feasibility of which 

business components are used, or the complexity of the 

test cases. 

We usually use Appium as the main test framework. 

The main advantage of Appium over other test 

frameworks is that it is open-sourced and can be used to 

test native mobile apps. Another advantage of picking 

Appium is that it can be used across different platforms 

(mac and windows) and can test against various mobile 

operating systems such as Windows, iOS and Android. 

Appium comes with vendor-provided automation 

frameworks.  

4. A Case Study 

4.1 Test Setup 

This paper took the test Calorie Mama APP as an 

example, using manual testing and automated testing 

respectively as seen in figure 1.  

The Calorie Mama is an app designed to help the user 

achieve the weight goal he/she sets. In this app, one key 

function to do food tracking is to let the user take a 

picture of the food, and the app would recognize the 

food contents in the picture and display the food 

calories in the meal. 

The test data is a mix of various sources: images from 

Google, images clicked in real-time using a smartphone 

camera. The experiments were performed with a high-

resolution and high-quality camera. 

Test coverage in software testing measures the factors 

including information about which part of the program 

is executed and how much code is utilized when 

running the test suite. Some of the benefits of test 

coverage are listed below. It assures the quality of the 

automation test and helps in identifying the exact 

portion of the code utilized. It makes sure that time, cost 

and complexity are under control and also identifies the 

gaps in requirements, test cases and errors. 

The coverage of functional tests depends on the design 

of test cases. If the test cases are fully covered, the 

coverage of functional tests will be high. If N is the total 

test cases and M is the number of test cases for 

execution, the function-based test coverage percentage 

will be calculated as follows: 

Test Coverage = M/N *100% 

This paper focuses on function-based test coverage. 

 

Figure 1: Information about Calorie Mama APP. 

4.2 Test Experiment 

(1) Manual Test  

In this approach of manual testing, we selected 

conventional decision tables to test. A decision table is 

a table with various conditions and their corresponding 

actions. It is divided into four parts, condition stub, 
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action stub, condition entry, and action entry. We use 

decision tables to test manually from two aspects, 

namely detection of non-food and food items. 

1)Detection of non-food items: Different non-food 

items are input into the Calorie Mama APP and the 

results were shown on the user interface. A summary of 

the detection of the non-food items can be seen in the 

following decision table. Bold content indicates that the 

test failed. 

As we can see, the condition stub is designed as two 

conditions, including the state of the Internet and access 

to the Camera, which is essential for the image 

recognition software. When not turning on WIFI or 

Cellular, and not allowing access to the Camera, image 

recognition will not work. Besides, the application 

detected artificial pumpkin and artificial cake as food 

items. In contrast, it could not correctly identify the 

butter block. As a result, it failed in some of the cases.  

Table 3: Decision table of the non-food items 

 

Turn on 

WIFI or 

Cellular 

Allow 

access to 

Camera 

Food item 
Detected 

as food 

Not 

detected as 

food 

R1 T T Pen F T 

R2 T T Apple T F 

R3 T T 
Artificial 

Pumpkin 
T F 

R4 T T 
Butter 

Block 
F T 

R5 T T Banana T F 

R6 T T 
Chicken 

Wings 
T F 

R7 T T 
Clarified 

Butter 
T F 

R8 T T 
Artificial 

Cake 
T F 

R9 F F 
Glass of 

Water 
- - 

2)Detection of food items: We divided the generic 

term of food items into four categories which are Indian 

cuisine, raw fruits and vegetables, a variety of apples 

and eggs, and food items in different backgrounds.  

We sampled some food items under the Indian food 

category and fed the images to the application. The 

application was able to recognize some of the food 

items while it failed in many as seen in the table below. 

Table 4: Decision table of Indian cuisine 

 

Turn on 

WIFI or 

Cellular 

Allow 

access to 

Camera 

Food item 

Exact 

detection 

or correct 

choices 

Offered 

wrong 

choices 

R1 T T Lentils T F 

R2 T T Sev T F 

R3 T T 
Potato 

Capsicum 
F T 

R4 T T Okra F T 

R5 T T 
Prawns 

&Okra 
T F 

R6 T T Rice&Fish F T 

R7 T T Lamb Curry T F 

R8 T T 

Mixed 

Lentil 

&Rice 

F T 

R9 T T 
Vegetable 

Biryani 
T F 

R10 T T Samosa T F 

For raw fruits and vegetables, the application was 

given an input of raw fruits and vegetables. It 

recognized a majority of the food items but failed in a 

few cases as seen in table 5 below.  

Table 5: Decision table of raw fruits and vegetables 

 

Turn on 

WIFI or 

Cellular 

Allow 

access to 

Camera 

Food item 

Exact 

detection 

or correct 

choices 

Offered 

wrong 

choices 

R1 T T Apple T F 

R2 T T Fig T F 

R3 T T Mango T F 

R4 T T Okra T F 

R5 T T 
Horse 

Radish 
T F 

R6 T T 
Oppo 

Squash 
F T 

R7 T T 
Bitter 

Gaurd 
F T 

R8 T T Lettuce T F 

R9 T T 
Mustard 

Greens 
F T 

R10 T T Loquat F T 

For a variety of apples and eggs, we decided to test the 

application under different varieties of the same food 

items. For this particular case, we considered the 

different varieties of apples. As shown in table 6, the 

application failed to recognize a majority of the apple 

varieties.  

Table 6: Decision table of apples 

 

Turn on 

WIFI or 

Cellular 

Allow 

access to 

Camera 

Food item 

Exact 

detection 

or correct 

choices 

Offered 

wrong 

choices 

R1 T T Cortland F T 

R2 T T Gala F T 

R3 T T 
Golden 

delicious 
F T 

R4 T T 
Granny 

Smith 
T F 

R5 T T Fuji F T 

R6 T T Honey Crisp F T 

R7 T T Macintosh F T 

R8 T T 
Red 

Delicious 
T F 

R9 T T Dry Apple T F 
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Figure 2: A logical data model. 

Finally, for food items in different backgrounds, the 

background of food is a very important aspect and we 

decided to test the application with images of food items 

with different backgrounds. As seen in table 7, the 

Calorie Mama application was able to correctly 

recognize the food items when given inputs with red, 

blue, and wooden backgrounds. However, the 

application detected wrong when the egg is in a tray.  

Table 7: Decision table of food items in different 
backgrounds 

 

Turn on 

WIFI or 

Cellular 

Allow 

access to 

Camera 

Food item 

Exact 

detection 

or correct 

choices 

Offered 

wrong 

choices 

R1 T T 
Blue Back-

ground 
T F 

R2 T T 
Red Back-

ground 
T F 

R3 T T 
Wooden 

Background 
T F 

R4 T T Egg in a bowl T F 

R5 T T Egg on a plate T F 

R6 T T Egg on a pan T F 

R7 T T Egg in the glass T F 

R8 T T Egg in a jar T F 

R9 T T Eggs in a tray F T 

After conducting the manual testing, we experienced 

its various drawbacks, and it is time-consuming. Also, 

load testing and performance testing are not possible 

under manual testing. Besides, regression test cases are 

very costly. Due to these drawbacks, we decided to shift 

to automation testing. 

(2) Data Modeling 

The three-dimensional (3D) classification decision 

table is influenced by the concept of conventional 

decision tables to conduct classification-based test 

requirement analysis and modeling for any given 

mobile apps powered with AI functions using a 3D 

tabular view.  

As seen in figure 2, a logical data model is created 

after brainstorming and observing the various 

possibilities for the input image of food along with the 

context in which the image was clicked. This 

information was further utilized to create a 3D 

classification table. 

The major testing focus for a 3D classification table is 

the mappings among classified disjoint context 

conditions, classified input selections, and classified AI 

function outputs. These mappings are known as image 

recognition function classification rules. Each of them 

represents the conjunction among three different views.  

Test case design and generation based on a 3D 

classification decision table must cover these image 

recognition classification rules. Adequate image 

recognition function testing coverage could be assessed. 

Next, we introduce the construction of each one-

dimensional model in the 3D decision table. 

1) Input Modeling 

The input classification refers to the parameters and 

their values that represent different test case scenarios. 
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Each parameter has multiple possible values which 

when combined with context values gives us the final 

set of test cases. The following figure shows Calorie 

Mama's input classification tree, which contains 

information about the type of food being clicked, such 

as what the food is, and the physical appearance of the 

food, such as quality, size, shape, consistency, etc.  

Figure 3: A sample input classification tree. 

2) Context Modeling

The context classification tree contains information 

about the image context. It is basic information about 

the image itself and not specifically about the item in 

the image. For example, the context classification tree 

contains information like if the image is blurry or not 

well illuminated, what is the angle of the camera while 

clicking the image, if the image is rotated or so, etc. The 

following figure shows Calorie Mama's context 

classification tree. 

Figure 4: A sample context classification tree. 

3) Output Classifications

The output classification tree contains information 

about the output. Various parameters regarding the 

output obtained from the application will be considered. 

This can be modified based on the requirements and 

results expected from the application. The following 

figure shows Calorie Mama's output classification tree. 

Figure 5: A sample output classification tree. 

(3) Automation Test

After data modeling, we performed automation testing 

with minimal human assistance on top of the model. 

Automation testing can increase coverage for test data 

and come up with more concluding test results for the 

selected mobile app. We used Appium as an automation 

tool to perform automation on the mobile app. Appium 

acts as a server that launches the app into the simulator 

or a real device and can access the elements for 

processing the actions triggered by the automation 

script which we wrote in Java.  

Steps to perform the automation were: 

1) Install Appium server.

Appium is an open-source test automation

framework used to run automation scripts on

mobile apps. To install Appium on our

development machine, we installed NodeJs and

Node Package Manager which is required for

installing Appium.

We had Homebrew installed already which is a

smart package manager for installing packages on

Mac machines. With the help of brew, we installed

node by running the below command,

brew install node

This installs the Node and Node Package Manager.

Below command installs Appium.

npm install Appium

After the appium is installed, we can just run

Appium command to launch the Appium server.

By default, Appium starts on port 4723.

2) Create the automation environment for Android.

17
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After Appium is successfully installed and 

launched, the next step is to create the automation 

environment for the mobile operating system 

which we are using to automate our mobile app. 

This section discusses creating an automation 

environment on Android while the next section 

takes iOS into account. 

To create an automation environment for Android, 

we install Android Studio. 

Android Studio enables us to create Android 

emulators with customizable hardware 

specifications. As we launch a new emulator, it 

will behave as a real device connected to the 

machine and we can actually use it to launch and 

automate our target app. 

3) Create the automation environment for iOS.

We install XCode for creating an automation

environment for iOS mobile app. iOS lets us create

iOS simulators that behave exactly like an iOS

mobile device.

We can launch iOS simulators and can change the

specifications of the OS and hardware as required.

We can run any iOS app on these simulators using

XCode or launching simulators after they are once

initialized by XCode.

4) Launch simulator/ Connect a real device.

Either we can connect our real device to run the

automation scripts on our app or we can use the

simulators. If we are using a real device, then we

need to install Android Debug Bridge to get the

device IDs for proceeding with the automation.

We need device IDs to enter in the script so that

Appium can connect with the connected device.

5) Install Eclipse.

The next step after creating the automation

environment is to install Eclipse, as Eclipse will be

the used IDE to write the automation scripts.

Download link: 

https://www.eclipse.org/downloads/ Before 

installing Eclipse, we need to have Java 

Development Kit installed in our machine. 

Download 

JDK:https://www.oracle.com/technetwork/java/ja

vase/downloads/jdk8-downloads-2133151.html  

After JDK is installed, we install Eclipse and are 

ready to start with our automation. 

6) Create a maven project in Eclipse to write and run

the automation script.

We start automation by creating a Maven project

in Eclipse. Maven is a build automation tool that is

used to automatically install all the dependencies

involved or required by our project. We don’t need

to worry about installing the dependent libraries

one by one. In a maven project, we use the Project

Object Model (pom.xml) where we write all the

names of the required dependencies in a fixed

XML format and then Maven sets the platform for 

us thereafter. 

We provide the dependencies of Appium, Selenium, 

TestNG in the Project Object Model and then start 

writing the scripts. We use TestNG to run our 

automation tests. Soon after the execution of tests, test 

results are visible in the Eclipse console.  

Figure 6: App can take input either through camera or from 
the gallery. 

For the algorithm of the app automation, one image 

which is selected from the gallery of the phone is fed as 

an input into the target app as seen in figure 6, and the 

result of the execution is compared with the expected 

output. If the output from the target app is as expected, 

then the test case is displayed as passed or else failed. 

Also, when the app produces the output, more options, 

as provided by the app are taken into account. While 

showing the output to the user, there is an option to see 

more options from the suggestions coming from the app. 

The algorithm considers all those options as the output 

from the app and then decides if the test case is passed 

or failed. 

4.3 Test Results 

After applying manual testing and automation testing, 

we compare the coverages for both manual and 

automation tests. In manual testing, the coverage of the 

test case was limited due to timing. It was difficult to 

cover a larger set of data without the use of tools or 

scripts. On the other hand, automation testing has higher 

coverage because the tools and script helped us to cover 

more test cases. Figure 7 below shows that in 

automation testing we were able to cover more test sets 

of data than the manual testing over the same time. 

Approximately, in the automation testing, we were able 

to cover twice of what we covered in the manual testing. 
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Figure 7: Test coverage for manual and automation test. 

The app was able to detect objects, recognize them, 

and classify them with its name. However, it does not 

tell the count or sub-classification of the food item. 

Moreover, testing Calorie Mama App, required a lot of 

time to do both manual testing and automation testing. 

Manual testing needs to take more time to generate all 

decision tables, analyze different test causes and test 

manually. On the other hand, in automation testing, we 

spend days getting the script working correctly and 

program it to do the testing automatically.  

The following figure shows the results of the manual 

testing and automation testing of the Calorie Mama APP. 

In manual testing, the total test food item across 

different cuisines was four hundred items and each 

cuisine has eighty food items. For example, of the 80 

Chinese cuisines, 26 were detected as errors and 54 

were detected as passes.  As a whole, 132 of them were 

wrongly detected they were bugs in the app. This gives 

us a 33 failed percentage and the passing percentage is 

67. The diagram below shows the failing and passing

results.

Figure 8: Manual testing. 

In Automation testing, we tested four hundred 

different images in different cuisines similarly. We 

found out that out of the 400 images, 175 failed and 225 

passed. This gives us a failure percentage of 43.75 and 

a passing percentage of 56.25 as shown in figure 9. 

Figure 9: Automation testing. 

Comparing the manual testing with automation testing, 

we can see that the errors that were found in the 

automation testing are higher than the errors that were 

found by the manual testing because the automation test 

allows us to test different inputs in a short time.  

Also, in manual testing, it is more likely to make 

human mistakes because doing repeated tasks over time 

generates more errors by humans. Besides, manual 

testing can be expensive and time-consuming. 

However, doing a repeated test using automation by 

writing a script and let the machine discover the error is 

more efficient. It helps them find errors without the need 

of performing redundant tasks. However, it needs 

talented and experienced people to do that, which is 

expensive. Besides, it is difficult to automate all kinds 

of testing where not everything can be redundant and 

reusable.  

5. Conclusion

To sum up, we mainly leverage two methods to test 

the image recognition system, namely manual testing, 

and automation testing. We found that automation 

testing discovers more errors than manual testing. 

In manual testing, the test is conducted by human 

testers inputting the use cases one by one, and observing 

the results. It is subject to human error; therefore, it is 

not one hundred percent accurate. On the other hand, in 

automation testing, the testers use tools and scripts to 

help them conduct the test among the image recognition 

software, which can save labor and time cost, thus 

improving testing efficiency.  

For future work, we will evaluate more image 

recognition mobile apps with more datasets. Moreover, 

we plan to implement an automatic testing tool for 

detecting errors. 
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