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A composite framework for supporting mobile object self-localization based on c-
eiling vision is presented in this paper. In particular, we consider the estimation -

of the position of a mobile object using ceiling landmark images acquired by a lo-
w resolution camera placed on a mobile object, being light given by electric lamp-
ps ith circular holders. The pixeles of the images of the light holders on the ceilin-
g are mapped on the image plane of the camera by means of a two dimesional d-

f(‘;i:l‘l’zr:tsmn ynamic programming algorithm (2D-DPA). The proposed algorithm estimates the
- distance from the camera lens to the center of the landmarks using only ceiling v-

Ceiling Landmarks - . . . )

Mobile Objects |S|on:0ther intelligent tqols and solgtlons further improve the accuracy of our self-

Two-Dimensional Dynamic Program- localization task. Experiments confirms the benefits of our work© 2001 KSI Research

ming

1. Introduction

Self-localization of mobile objects is a fundamental re-
quirement for autonomy. Mobile objects can be for exam-
ple a mobile service robot, a motorized wheelchair, a mobile
cart for transporting tasks or similar. Self-localization repre-
sents as well a necessary feature to develop systems able to
perform autonomous movements such as navigation tasks.
Self-localization is based upon reliable information coming
from sensor devices situated on the mobile objects. There
are many sensors available for that purpose. The early de-
vices for positioning are rotary encoders. If the encoders
are connected to wheels or legs movement actuators, rela-
tive movements of the mobile object during its path [3] can
be measured. Then, mobile object positioning can be ob-
tained with dead-reckoning approaches. Dead reckoning [3]
is still widely used for mobile robot positioning estimation.
It is also true that dead-reckoning is quite unreliable for long
navigation tasks, because of accumulated error problems.
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Other popular sensor for self-localization are laser or sonar
based range finders and inertial measurement devices. In
outside scenarios the most popular approaches are based on
Global Positioning System (GPS). Due to the importance of
self-localization, many other solutions for indoor environ-
ment have been proposed so far with different cost and ac-
curacy characteristics. For example the Ultra Wide Band ra-
dio signal indoor localization systems [ 15], or the Bluetooth-
based angle of arrival radio devices [19], or a combination
of them. However these systems have serious limitations in
cost and reliability, respectively. Another important type of
sensors which may be used for cost effective self-localization
are the CCD cameras, which require computer vision algo-
rithms such as for example visual odometry, [16]. Mobile
objects vision based self-localization is currently an open
research field [29] and an increasing number of new meth-
ods are continuously proposed. As a matter of fact we have
to consider that self-localization of mobile objects requires
centimeter-level accuracy and Computer Vision is one of the
most cost-effective techniques able to reach that accuracy.
Consequently, some surveys of Computer Vision based self-
localization techniques appeared recently in the literature,
[24].

In this paper we describes a novel Computer Vision
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based algorithm for estimating the distance from the camera
lens to the center of ceiling landmarks with circular shape us-
ing a monocular low cost webcam. From that distance, mo-
bile object localization approaches can be easily developed
and a simple example is provided in this paper. The images
of the ceiling landmarks are projected on the image plane
of the camera. The projection can be analytically described,
but the projections distortions, which may arise especially
when low cost devices are used, may affect the results. To
take into account the projection distortions in order to obtain
a better precision of the results, we use an approximation of
the two-dimensional dynamic programming (2D-DPA) al-
gorithm [13] which finds a sub-optimal mapping between
the image pixels of the ceiling landmarks and the image pix-
els of the landmarks projected on the camera plane. Since
optimum 2D-DPA is NP-complete, however, many approx-
imations have been developed. For example, the 2D-DPA
technique described by Levin and Pieraccini in [22] has an
exponential complexity in the image size, while Uchida and
Sakoe describe in [30] a Dynamic Planar Warping technique
with a complexity equal to O(N39V), N being the image
size. Lei and Govindaraju propose in [21] a Dynamic Planar
Warping approximation with a complexity of O(N°®). How-
ever each approximation has some limitation in terms of con-
tinuity of the mapping. In this paper we use a approximation
of the optimum 2D-DPA with a complexity of O(N#) [12]
which is implemented on a GPU to obtain real-time perfor-
mance. When the landmark is far from the camera or if the
environments has low lighting, an high quantization noise
may arise in acquired images. However the algorithm we
describe in this paper is particularly robust against noise due
especially to the use of two-dimension DPA.

This paper is organized as follows. Section 2 reports
on related work. Section 3 the localization problem is de-
scribed, and in Section 4 the projection distortion is geo-
metrically described, while in Section 5 the two-dimensional
Dynamic Programming approximation is described. In Sec-
tion 6 the proposed algorithm is sketched and in Section 7 the
computer vision algorithms for the detection of landmarks
on the image plane are reported. Section 8 sketches a pos-
sible global localization approach of the mobile object. In
Section 9 we report some experimental comparison of the
proposed algorithm with state of the art algorithm. Finally,
Section 10 concludes the paper with concluding remarks and
a suggestion of future works.

2. Related Work

Many papers on vision-based mobile robot self-
localization appeared recently in the literature (e.g., [28, 14,
27, 31]).

Moreover, Avgeris et al. describe in [I] a self-
localization algorithm for mobile robots that uses cylindri-
cal landmarks resting on the floor and a single pivotal cam-
era with an horizontal angle of view of 30-degree. Each
cylindrical landmark has a different color in order to be eas-
ily detected by the robot. However, frontal vision could be

occluded by objects or people. Such interference can be
avoided by placing the landmarks on the ceiling, so that the
camera is tilted toward the ceiling. Ceiling vision has been
used by many authors to perform mobile robot localization.
One of the early proposals is described in [25] and is based
upon a digital mark pattern and a CCD camera. The cam-
era is tilted, so the horizontal distance from the ceiling mark
pattern is obtained measuring the ratio between the length
and the width of the pattern picture.

Kim and Park [18] acquire ceiling images in a small area
with a fish-eye lens camera. Ceiling outlines are detected
by means of adaptive binarization and segmentation. Robot
pose is obtained after identification of the ceiling region and
the determination of the center and the momentum of the re-
gion. Lan et al. describe in [20] a mobile robot positioning
algorithm based on artificial passive landmarks placed on the
ceiling and infrared sensors. The landmarks are made of re-
flective film 2D structures containing dots assigned to unique
ID’s. The infrared sensors consist of an infrared camera and
an infrared LED array. A similar approach is described in
[32] where artificial passive reflective landmarks are placed
on the ceiling and an infrared camera plus an infrared LED
source are used to capture the reflection the IR light on the
landmark for estimating the robot pose.

Wang et al. describe in [34] a vision control system
which captures ceiling RGB images with a camera placed on
the robot, converts the image to HSV color space and uses
V channel images to reduce the effect of illumination lamps.
The common objects and the straight lines on the ceiling are
detected by template matching and used to estimate the robot
orientation.

Other Computer Vision based approaches are based on
the Free Space Density concept. For example, A. Ribacki
et al. use an upward facing camera to detect the ceiling
boundaries and to estimate the ceiling space density from
the current image [26]. Other authors, for example [5, 6] use
the ceiling depth images for robot localization. In these ap-
proaches self-localization is obtained from Principal Com-
ponent Analysis of ceiling depth images. Ceiling vision is
used by many other authors to perform self-localization of
mobile robots. For example Lin et al. describe in [23] a
visual odometry algorithm based on a monocular camera
which points to the ceiling. The algorithm uses several lo-
cal features detectors for matching the features between two
sequential frames of the ceiling.

In addition, it should be considered the emerging integra-
tion of these topics with the innovative big data trend (e.g.,
[8, 11,7, 10, 2]). Here, the main research perspective is to
take into account the well-known 3V model of big data, in-
cluding volume, velocity and variety.

3. Problem Description

We show in Figure | a mobile object in an indoor en-
vironment. The movable object is equipped with a camera
tilted towards the ceiling at an angle @. We call A the dis-
tance between the camera and the ceiling. Moreover in Fig-
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Figure 1: A mobile object with a camera on it, tilted toward
the ceiling.

horizontal angle of view

Figure 2: The horizontal and vertical angles of view of the
camera.

Figure 3: An example of the circular lamp holder used in this
paper.

ure 2 the horizontal and vertical angles of view of the cam-
era, called 0, and 6,, respectively, are highlighted.

The direction towards which the camera is oriented is
shown with the ’Camera Direction’ arrow. The ceiling land-
mark is shown in Figure 1 with a segment with a greater
thickness and the image plane of the camera is shown with
a segment orthogonal to the camera direction. The ceiling
landmark is projected to the landmark on the image plane.
The visual landmarks positioned on the ceiling used in this
approach are the lighting holders as that shown in Figure 3.

We choose landmarks with isotropic shapes because in
this way the distortion components due to image rotation can
be eliminated. The simplest bidimensional isotropic shape
is the circle. As shown in Figure 3, the lines of pixels on
the image plane are all parallel to the reference abscissa on
the ceiling plane regardless of the angle of the camera with
respect to the landmark. It is important to remark that each
landmark must be distinguishable from the others and its co-

ceiling blue Iand?m
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N,
green Ia/udma/x ,/

AN red landmark
\,
~.

~, -
'\, image plane /'

mobile object

Yy

Figure 4: Schematic representation of orthonormal reference
system, landmarks and image plane.

ordinate in the global reference system must be known. A
schematic representation of a mobile object and some land-
marks with the orthonormal reference system centered on
the camera lens is shown in Figure 4.

The reference abscissa changes dynamically in relation
to the direction of the focal axis. The reference abscissa, in
fact, is always normal to the focal axis and at the same time
it is parallel to the horizon.

The landmarks must be distinguishable from each other.
There are many possible solutions for making the landmarks
distinct. A simple possibility is to paint each holder with a
different color. More recently, the characteristic frequency
of fluorescent lights has been used, for instance in [35]. In
this paper we used the simplest solution, namely we painted
adjacent lamp holders with different colors.

For this reason the landmarks in Figure 4 are represented
with different colors, where for simplicity the three circular
landmarks positioned on the ceiling are colored in red, blue
and green. Figure 4 shows that the landmarks which fall
within the visual field of the camera are projected onto the
image plane of the camera. Of course we know in advance
the physical position of each landmark in the global refer-
ence system. On the other hand the landmark colours can be
detected using well known computer vision techniques.

4. Projective Transformations
The projective transformation is the linear transforma-
tion of coordinates reported in (1).

o =Tp (1)

where p represents a generic point in space expressed in
homogeneous coordinates, relative to the orthonormal refer-
ence system S described by the quadruple (O, i, , k).

The projected point p’ is expressed in coordinates rela-
tive to the reference system S’ described by the quadruple
o', i, f’ s 2 ), where i = i, f’ has the direction of the seg-
ment M Q and k' has the direction of the normal to the seg-
ment MQ.
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Since p is expressed with the three components
(xp, ¥p» 2,) and p has. the three components (X, ¥, Z,),
eq. (1) can be also written as follows:

xp/ Xp
yw |=T| » 2
Zp/ Zp

Such a transformation maintains the properties of
collinearity, that is, the points which in .S belong to a line,
are aligned in a line also in S’. However, projective transfor-
mation may not be defined for every point of S, in the sense
that some points could be mapped in S’ at infinity.

Let us focus on Figure 4 from the left side, that is the
¥y — z plane of the orthonormal reference system which has
its origin coincident with the center of the camera lens. This
plane is highlighted in Figure 5, where the ceiling is at z = h,
and the field of view of the camera is shown with points M
and E. Letus assume that a landmark falls within the vertical
angle of view. Then, the center of the landmark is the point
C. On the other hand, if we view Figure 4 from the front
side, that is the x — z plane, we obtain the system shown in
Figure 6. Of course the camera image plane, which is the
plane normal to the focal axis in Figure 4, is shown with the
segment M — Q in Figure 5 and segment G — I in Figure 6.

Suppose we fix a point P on the ceiling. If the point falls
within the field of view of the camera it is shown as P in
Figure 5. Let (py, py, p,), with p, = h, be the coordinates
of P. The point P is projected to the image plane of the
camera to the point P’, which has coordinates (x oYy 2 p,).
Also the center C of the landmark in Figure 5 is projected
to the point C’ and the segment M — E is projected to the
segment M — Q in the image plane.

In this model, the focal distance of the device or other
characteristic parameters are not taken into account. It is in
fact a purely ideal model, which has the only purpose of de-
riving the relations that define the projective transformation
from the orthonormal system whose origin coincides with
the center of the camera lens to the image plane system. The
latter is chosen independently of the characteristics of the
camera. With reference to the Figures 5 and 6, we introduce
the following geometric variables characteristic of the prob-
lem.

0, 1«

. P=¢p+ >3 3)

e The distance a from the origin to the barycenter of the

landmark projected on the image plane:

a=0C' =
__h 1 4
_sin((p) — h(tan(g) + tan((p))cos((p)

e The abscissa of the point P’ on the image plane:

g =MC' =C'Q =

=h(tan(p) +

(&)

() sin(@))
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Figure 5: Plane y — z in orthonormal reference system.
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Figure 6: Plane x — z in orthonormal reference system.

Equations (4) and (5) are developed in Appendix A.
Moreover, we define the following two variables:

G =—-h(tan®tang + 1) (6)
and:
F = h(tan @ — htan ®) @)

We remark that the following considerations are based
on three coordinate systems, namely an orthonormal refer-
ence system centered on the camera lens, shown in Figure 4,
an orthonormal reference system on the image plane and a
system on the ceiling plane which is simply translated by A
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with respect to that centered on the camera lens. In general,
points on the systems centered on the camera lens and on the
ceiling are denoted with a capital letter, such as P, while that
on the image plane of the camera are denoted with a capital
letter plus an apex such as P’. In this case, P’ is the P point
projected on the image plane. If we look at the landmark
seen from the orthonormal reference system centered on the
camera lens, its barycenter is located at (x.,y,). A generic
point on the ceiling has coordinate (x, y) and the same point
projected on the image plane is (x’, y'). The coordinates of a
generic point on the landmark is given relative to its barycen-
ter: (x = x, + x,) and (y = y. + y,). According to Figures
6 and 5 the offsets x,, y, are projected to the image plane in
x'y.

Assume now we have an optimum mapping between im-
ages. In other words, assume that, having two images A and
B, A = {a(i,j), i,j =1,..,N}and B = {b(u,v), u,v =
1, ..., M}, we can estimate the following mapping function:

. u x(i, j)
F@,j) = = Y 8

“7 [v] [y(w)] ®
which maps each pixel (i, j) of one image to the pixel (u, v)
of the other image such that the difference between the two
images is minimized, as shown in (9).

min Z 2 lla(i, i) = b(u, v)|| ©

where u = x(i,j) and v = y(i, j). Such mapping is per-
formed through a two dimensional Dynamic Programming
operation [30]. 2D-DPA is the base of image matching al-
gorithms called Elastic Image Matching. Unfortunately, the
Elastic Image Matching operation is NP-complete [17]. For
this reason we devise an approximation which reduces the
2D-DPA operation complexity to O(N*), as described be-
low in Section 5. The barycenter of the landmarks, (x,, y,),
are estimated using the following Proposition.

By measuring the abscissa and ordinate (x’,)’) of a
generic point on the landmark projected on the image plane
we can estimate the coordinate (x,,y,) of the ceiling land-
mark using the following equations:

_ hcos(p—7,)(x" - g)

€ asin(y,)

X +g—X, (10)

aG + ay, tan(@) — (v = 5, + F)
Ve = — (1)
Y =3 —atan(@)

In Appendix B we give a sketch of the derivations.

A similar estimation of the coordinates of the landmark
barycenter is obtained for other points inside the landmarks.
Therefore a sequence of barycenter coordinates x,, y, is thus
obtained, of which we compute the expected value. The al-
gorithm thus estimates E(x,) and E(y,) by measuring the
values y’ and x’ of the distorted image on the image plane.

The distance from the camera lens and the landmark in
the ceiling reference system is thus the following:

d = \/E(x.)* +E(3.)%) (12)

with reference to Figures 6 and 5, where C = (x,,y,, z..)
is the barycenter of the landmark in the reference system
(0,1, j, k). We obtain the sub-optimal correspondence, pixel
by pixel, between a reference image and a distorted image by
means of approximated two dimensional dynamic program-
ming, . Our algorithm therefore uses the deformation of the
image to derive the distance of the landmark, i.e. it is in-
tended to determine how the perspective has distorted the
image.

The coordinates of the barycenter of the ceiling land-
marks are obtained using the coordinate x’ measured on the
image plane and x, using the mapping function, and in terms
of y and y,. Clearly (x,, y,) and (x’, ") are both known be-
cause they are derived from the coordinates of the pixels in
the pattern and in the test images respectively. What asso-
ciates the two pixels is the mapping relationship described
in (8) obtained by 2D-DPA.

The characteristic that differentiates the algorithms
present in the literature from the one developed in this paper
is the statistical character of the obtained estimate. The al-
gorithm based on dynamic programming is able to calculate
a position estimate for each single pair of associated pixels
from the mapping. The advantage is that a large number of
points are used, which contribute to the calculation of the av-
erage distance value. This makes the estimate more truthful,
especially when the landmark is very distant, which results
in a smaller image and a greater quantization error.

5. 2D Dynamic Programming Based Image
Mapping Technique (2D-DPA)

For the sake of coherence, we repeat now the mapping
considerations summarized above (equations 8 and 9) about
images A and B using instead images X and Y. Given two
images, X = {x(i,j)} and Y = {y(u,v)}, the mapping of
one image to the other is represented by the following oper-
ation:

N N
D(X,Y) =min ) " |Ix(i, /) = yw, v (13)

i=1 j=1

where u = x(i, j), v = y(i, j) is the mapping function be-
tween the pixels of X and Y. The quantity D(X,Y) gives a
distance between the image X and the optimally deformed
Y, the optimal warping function x(i, j), y(i, j) gives an inter-
pretation of the image X according to the generation model
Y.

Given the i—th row of the X image and the j—th row
of the Y images, namely Yj = (yj’l,yj’z, ,yj’N), X, =
(%11, X; 25 .-+ » X; y) respectively, the distance between the
two rows is obtained by applying a 1D-DPA [33] for find-
ing a warping among the two rows as described in (14).
Here the map M’ is, say, over (n,m) coordinates, so that
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M] = (), Grom).

. M’
min 3,2, d(M])
d(Xi’ Y]) ZT =
. M/’
i 212 i =

- 2N

(14)

Finally, the distance between the two images is obtained
by (15). In this case the map M’ is between all the rows of
X and Y. As before, | M| is the length of the path.

min ¥, d(M”))
Ml
DX,Y)= ——— =
M|
| e
min ¥, d(X;,,Yj,)  min ¥, e
M/ M/
= = 2N B

M|

min( ¥, min T2 |xi,, =y )
W (15)
4N?

Let us assume that the images are of equal size, that is
N X N pixels. Then the length of the optimum path between
the two images is equal to 2N. The local distances in each
point of this path is obtained with other 1D-DPA with paths
of length 2N. The total length is the sum of 2N along the
2N long path, giving 4N? at the denominator. The com-
plexity of the described operation is O(N IN2) = O(N*%)
where N is the image size.

6. Proposed Algorithm

The algorithm described in this paper is summarized as
follows. The inputs of the algorithm are the two gray-scale
images A and B which are the landmarks on the image plane
and on the ceiling respectively. We perform the 2D-DPA al-
gorithm on these two images to obtain the mapping function
as result. The mapping function is represented with a linked
list where each node is the map related to the two pixels. The
function get() gives as result the value of the pixel on the im-
age indicated as input and is used to get the values of the two
pixels linked by the map on the two landmark images. To de-
cide if the pixel is a landmark pixel or not, we consider their
gray levels. The landmarks have a lower values with respect
to the environment and thus if the pixel values is less then a
threshold, the pixel is a landmark pixel.

7. Computer Vision Approach for Extracting
Landmark Images

We briefly summarize in this Section the computer vi-
sion operations we did on the image acquired from the ceil-
ing. The problem is to detect from the image plane the
isotropic images which represent the landmark. Another op-
eration, which is not reported here, is the identification of

Input:A, B
Output: distance
img=Detect(A);
id=identify(img);
head=2D-DPA(A, B);

> get the landmark in the image plane
> identify the landmark

ptr=head; > head is the list of mapping function
repeat
pixA = get(A, ptr); > pixel of A
pixB = get(B, ptr); > pixel of B

if (pixA < L)&&(pixB < L) then 1> if the pixels are
in the landmark
Compute x,, y, with (10) and (11)

sumy+ =Y
sum,+ = X.;
counter++;

ptr = ptr — next,;
until prr == NULL
V. = sumy/counter;
X, = sum, [counter;

distance = /x2 + y2;

return distance

ceiling Canny edge + Contour

detectors

Ellipse
Fitting

Erosion and Delation
Morphological analysis

Canny edge + Contour
detectors

image

Figure 7: Block diagram of the Computer Vision algorithms.

the landmark. The simplest way is to draw the landmarks
with different colors, since the computer vision operations
to identify the colors are very simple. There are however
many other ways which can be used for the identification,
typically based on some type of code drawn inside the land-
mark. Of course the computer vision operations are slightly
more complex than using different colors. More importantly,
the computer vision operations to decode drawn codes could
need greater camera resolution.

We report in Figure 7 the Computer Vision algorithms
we applied on the original image for extraction of isotropic
images.

The algorithms are described as follows:

e The acquired image is first transformed in gray-scale,
and then its edges are obtained via the Canny’s oper-
ator, obtaining the Edge image.

e From the Edge image, its contours are extracted, ob-
taining the Contourl image.

e The Contourl image is processed via morphological
analysis. More precisely the opening operation with
circular structuring element, is applied to Contourl
image in order to eliminate the little Side Dishes. The
edges are then extracted again with the Canny opera-

Candidate
Pattern
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Figure 8: Processed results, with reference to Figure 3.

environment reference system Sx

Figure 9: Sketch of a possible localization by trilateration.

tor, and then the contours are extracted again, finally
obtaining the Contour2 image.

e FEllipse fitting is applied to Contours2 image. Based
on the position and size of the found ellipses, square
portions are cut out from original image. Most likely,
the landmarks are contained in one of the extracted
portions.

The results are shown in Figure 8. These results refer to
the input image shown in Figure 3.

8. Localization

The localization of the mobile object is an issue we leave
open as starting from distance estimation several possible
solution can be developed. However, just to point out a pos-
sible simple idea based on trilateration, we report Figure 9.

This figure shows a global reference system which is re-
lated to the indoor environment is shown. Another reference
system which is rotated and translated with respect to the
first one. The origin of second reference system is centered
on the camera lens of the mobile object. Note that the x — y

Error

Average error
15% T T T T T

T T T
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Camera - Landmark Distance [m]

Figure 10: Average errors of the estimated distance.

planes shown in Figure 9 correspond to the ceiling plane.
The mobile object identify the landmarks and knows in ad-
vance their location coordinate in the global reference sys-
tem. Our algorithm estimates the distance from the mobile
object and the detected landmarks. Therefore, we can think
to draw a circle with center on the landmark and radius equal
to the estimated distance. If at least three different landmarks
are detected, the mobile object can be localized in global ref-
erence system.

9. Experimental Results

The experiments has been made using an Intel I7 CPU
with 8cores running at 3.07GHz and a memory of 24GB.
Then, the two dimensional DPA algorithm has been written
in the CUDA framework and executed on a NVidia Kepler
TM GK110 device. A low cost 640 x 480 webcam is used
for image acquisition. In Figure 10 we report the average
error of the estimation distance from the camera lens and
the barycenter of the landmarks.

As a general consideration regarding these results, if the
camera tilt-angle is high (i.e. if the inclination of the optical
axis is close to the perpendicular to the ceiling) the error is
quite small, but the field of view turns out to be very limited.
To take advantage of wider fields of view, higher tilt-angles
must be used. In this case, however, the error is higher. Fur-
thermore, if the light in the environment become worse, the
average error increases. Our algorithm, however, is quite ro-
bust against noise. The curve drawn in Figure 10 with solid
line is obtained by the algorithm described in this paper. The
curve in the middle is related to the approach developed in
2019 by Avgeris et al. and described in [1]. Finally, the
higher curve is related to the work proposed by Ogawa et al.
in [25]. Despite being quite old we include this result be-
cause its setting is very similar to this paper (the camera is
directed towards the ceiling with a tilt angle equal to 30 de-
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grees). The errors are in any cases well above that obtained
by all the other algorithms.

10. Final Remarks and Future Work

In this paper we present an algorithm to measure the dis-
tance of a mobile object to the lightning lamps used as ceil-
ing landmarks in indoor environment. The algorithm has
many attractive features, mainly the accuracy, which is better
than many other visual-based algorithms. Also, the distance
measurements algorithm is robust against noise. Quantiza-
tion noise can be high in low lighting condition of the en-
vironment and if the distance from landmarks and camera
is high. The negative outcome of the algorithm is the high
complexity of 2D-DPA which, even if polynomial, can lead
to high computational times. In [12], however, we show
how the 2D-DPA when implemented on a NVidia Kepler
TM GK110 device leads to computation time less then 100
ms, for image size of 100 x 100 pixels.

This paper naturally opens to the development of local-
ization algorithms based on our distance estimation algo-
rithm. The global localization is in fact under development.
Another open important issue is the landmark placement. Fi-
nally, the estimation of the orientation of the mobile object
is another fundamental problem not addressed in this paper.
The use of the characteristic frequencies of fluorescent lamp
is an interesting method to identify the landmarks. In this
case, adaptive and artificial intelligence metaphors, perhaps
inherited by different scientific context (e.g., [4, 9]), may
be considered. Future works will be focused on these open
points.
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Appendix A

Referring to Figure 5, we derive below the geometric
variables reported in Section 4.
Consider first Eq. (4),

a=0C'=0C-C'C (16)
From the right triangle AAOCC,, we have:

— h

C= 17
sin(¢) a7
Moreover, from /A MC’C, we have:
C'C=MCcosp=WC—-WM)cos @ (18)
i.e.:
- h
C'C =(—— + htan®)cos @ (19)
tan @

Therefore:

a= .h —h ! +tan® ) cos @ (20)
sin(g) tan @

Considering Eq. (5), we have:

é= Csin(p=h<L+tand>) sin @ 21
2 tan @

Appendix B

We now report a sketch of the derivation of the two
propositions reported in Section 4.

Let us start with Eq. (7). Regarding Figure 5, the angle
formed by segments OR and OP is equal to (® — y,), so:

tan (P —y,) _RP_

2
_[ytang — h(tan®tan @ + 1)] cos ¢
"~ h(tang+y— htan®)cos @

In addition, to simplifying the cos @, we use the defini-
tion of F and G reported above.

G=—-h(tan®tangp + 1) (23)
F = h(tanp — htan ®) 24)
Then, we have:

ytangp + G
tan (® — = 25
an(®—y,) = — " 25)

We conclude that:

tanp + G
yo=byrtane

26
2 y+ F (26)

By setting y = y,+y,. we obtain the landmark coordinate
¥, reported in Eq. (11).

Going now back to Eq. (7), let us consider Figure 6. For
lack of space we only state that, according to considerations
very similar to that just described, we can conclude that:

asiny,(x — g)
X =g+ —F 7
hcosp —vy,

where g = GD = DI = atanZ. As we did previously,
we substitute x = x, + x, in 27 and thus we can obtain x_,
described in Eq. (10).
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