
Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

Graphical Animations of the NS(L)PK Authentication Protocols⋆,⋆⋆
Thet Wai Mona, Dang Duy Buia, Duong Dinh Trana, Canh Minh Doa and Kazuhiro Ogataa,∗
aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

ART ICLE INFO
Article History:
Submitted 3.1.2021
Revised 6.1.2021
Second Revision 8.1.2021
Accepted 10.10.2021
Keywords:
graphical animation
NSPK authentication protocol
NSLPK authentication protocol
state machine
state picture design

ABSTRACT
NSLPK is visualized using SMGA so that human users can visually perceive non-trivial characteris-
tics of the protocol by observing graphical animations. NSPK is a public-key authentication protocol
invented by Needham and Schroeder and NSLPK is a revised version of NSPK by Lowe. These char-
acteristics could be used as lemmas to formally verify that NSLPK enjoys desired properties. We first
carefully make a state picture design for NSLPK to produce good graphical animations with SMGA
and then find out non-trivial characteristics of the protocol by observing its graphical animations. Fi-
nally, we also confirm the guessed characteristics using model checking. The work demonstrates that
SMGA can be applied to a wider class of systems/protocols, authentication protocols in particular.
The visualization of NSLPK is different from ordinary message sequence diagrams that have been of-
ten used for security protocols. It is convenient that message sequence diagrams can be automatically
generated in a graphically animated way for some cases such that we need to see the order in which
way what messages are sent, faked and/or received. Thus, we have revised SMGA so that message
sequence diagrams can be automatically generated in a graphically animated way.

© 2019 KSI Research

1. Introduction
Authentication protocols have become important tech-

nical components in this advanced highly networked world.
If authentication protocols have some flaws (security holes),
users’ credentials may be leaked to malicious third parties.
It is then really important to make sure that authentication
protocols are reliable and truly secure. Therefore, we need
to use some technologies for this purpose. One possible
technology is formal verification with theorem proving in
which one challenging task is lemma conjecture. If human
users carefully observe graphical animations of a state ma-
chine, they could recognize the characteristics from which

⋆This work was partially supported by JST SICORP Grant Number
JPMJSC20C2, Japan and FY2020 grant-in-aid for new technology research
activities at universities (SHIBUYA SCIENCE CULTURE AND SPORTS
FOUNDATION).

⋆⋆The present paper is an extended and revised version of the paper [9]
presented at DMSVIVA 2021.

∗Corresponding author
thetwaimon@jaist.ac.jp (T.W. Mon); bddang@jaist.ac.jp (D.D.

Bui); duongtd@jaist.ac.jp (D.D. Tran); canhdominh@jaist.ac.jp (C.M.
Do); ogata@jaist.ac.jp (K. Ogata)

ORCID(s): 0000-0002-2700-1762 (D.D. Bui); 0000-0001-7092-2084
(D.D. Tran); 0000-0002-1601-4584 (C.M. Do); 0000-0002-4441-3259 (K.
Ogata)

they could conjecture useful lemmas. We aim to come up
with a better way to conjecture lemmas in much fewer ef-
forts and less time by observing animations produced by the
State Machine Graphical Animation tool (SMGA) to com-
plete formal proof.

SMGA [11] has been developed to visualize graphical
animations of state machines that can be used to formalize
security protocols. The main purpose of SMGA is to help
human users be able to visually perceive non-trivial charac-
teristics of state machines by observing their graphical ani-
mations because humans are good at visual perception [7].
SMGA takes a finite state sequence of a state machine for-
malizing a protocol and produces its graphical animation by
regarding the state sequence as amovie film. Observing such
a graphical animation allows us to guess the characteristics
of the state machine. We confirm whether the state machine
enjoys guessed characteristics because such characteristics
may or may not be true properties of the state machine. One
possible way to do so is model checking. However, it does
not guarantee that the state machine enjoys the properties
when the reachable state space is unbounded. If that is the
case, we should use some other techniques, such as theo-
rem proving to make sure that the system enjoys the guessed
properties. Several case studies of some protocols have been

DOI reference number: 10.18293/JVLC2021-N2-005
39

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

conducted with SMGA, such as Qlock [1] and MCS [12, 3],
shared-memory mutual exclusion protocols, Suzuki-Kasami
protocol [2], a distributed mutual exclusion protocol, and
ABP [11], a communication protocol. Authentication pro-
tocols have not been yet, and this work is the very first time
of tackling authentication protocols with SMGA.

Authentication protocols are often visualized as message
sequence diagrams called the Alice-Bob format, where Al-
ice and Bob are principals. It is possible to grasp the mes-
sages exchanged by Alice and Bob and the order of the mes-
sages sent and received by principals and faked by Cathy,
an intruder when such protocols are visualized as message
sequence diagrams. We need to take into account the ex-
istence of intruders so as to formally verify that authenti-
cation protocols enjoy desired properties, such as the nonce
secrecy property. Cathy plays an ordinary principal from the
Alice and Bob point of view but does something against au-
thentication protocols, such as faking messages based on the
gleaned information. Thus, many messages may be faked
by Cathy. If many messages appear, it may not be straight-
forward to comprehend message sequence diagrams. This is
why we came up with a different way to visualize NSLPK
than message sequence diagrams.

We aim at coming up with a brand-new way to visualize
the behavior of authentication protocols. Since it is known
that state picture designs affect how well human users can
detect non-trivial characteristics of protocols [3], we care-
fully make a state picture design of the NSLPK protocol and
based on it to produce good graphical animations. By ob-
serving the graphical animations, some non-trivial charac-
teristics are guessed and checked with Maude [4]. In the
paper, we mainly focus on how to design the state picture of
the NSLPK protocol and how some characteristics could be
found by observing graphical animations with detailed ex-
periments.

However, it is convenient that message sequence dia-
grams can be automatically generated in a graphically ani-
mated way for some cases such that we need to see the order
in which way what messages are sent, faked and/or received.
Thus, we have implemented SMGA-SD that is a tool that
automatically generates message sequence diagrams in an
animated way from a finite sequence of states. We have in-
tegrated SMGA-SD with SMGA.We have visualized NSPK
and NSLPK in SMGA-SD.

The remaining part of the paper is organized as fol-
lows. Sect. 2 gives some preliminaries such as state ma-
chine, Maude, and SMGA. Sect. 3 describes theNSLPKpro-
tocol and Sect. 4 describes its formal specification. Sect. 5
presents the state picture design of the NSLPK protocol in
which the idea and the design are mainly conveyed. Sect. 6
reports on how we can find characteristics by observing
graphical animations. Sect. 7 describes SMGA-SD and
some experiments with SMGA-SD. Sect. 8 concludes the
paper with some pieces of future work.

2. Preliminaries
This section describes some preliminaries needed to

comprehend what follows in the present paper: state ma-
chines, Maude, SMGA, NSLPK protocol. State machines
are mathematical models used to formalize systems. Maude
is a rewriting specification/programming language in which
state machines can be described. Maude also refers to
its processor equipped with model checking functionality.
NSLPK protocol is an authentication protocol and used as
one main example in the present paper.
2.1. State machines

A state machine is a mathematical model of computa-
tion. Based on the current state and given input, state ma-
chine performs state transitions and produces outputs. A
state machine M ≜ ⟨S, I, T ⟩ consists of a set S of states,
a set I ⊆ S of initial states, and a binary relation T ⊆ S ×S
over states. (s, s′) ∈ T is called a state transition where s′ is
successor state of s and may be written as s →M s′. The set
R ⊆ S of reachable states with respect to (wrt) M is induc-
tively defined as follows: I ⊆ R and if s ∈ R and s →M s′,
then s′ ∈ R. A state predicate p is an invariant property wrt
M if and only if (∀s ∈ R) p(s) that is p(s) holds for all s ∈ R.
A state predicate p can be interpreted as a set P of states such
that (∀s ∈ P) p(s) and (∀s ∉ P) ¬p(s). A finite sequence
s0,… , si, si+1,… , sn of states is called a finite computation
ofM if s0 ∈ I and (si, si+1) ∈ T for each i = 0,… , n − 1.

Systems can be formalized as state machines. States
are expressed as braced soups of observable components.
Soups are associative-commutative collections, and observ-
able components are name-value pairs. That is a state of S
is expressed as associative-commutative collection of name-
value pairs. The juxtaposition operator is used as the con-
structor of soups. Let oc1, oc2, oc3 be observable compo-
nents, and oc1 oc2 oc3 is the soup of observable components.
Then a state that consists of these three observable com-
ponents can be expressed as {oc1 oc2 oc3}, which equals
{oc3 oc1 oc2} and some others due to associativity and com-
mutativity. To specify state transitions we use Maude as a
formal specification language.

Let us consider the hand game ’Rock Paper Scissors’ be-
tween a human (you) and a machine and a system (called
RPS) that is a series of matches of the games. Each state of
the system is expressed as follows:
{(pair: n(X,Y)) (result: Z)}

where X is your current choice, Y is the computer’s current
choice andZ is the result of the match, where each ofX and
Y is one of rock, paper and scissors, andZ is one of win, lose
and draw. Let us suppose thatX, Y and Z are initially set to
rock, rock and draw. Given a state {(pair: n(X,Y)) (result:

Z)}, each of X and Y is randomly chosen from rock, paper
and scissors. OnceX and Y are fixed, we know the resultZ
from them. This can decide all state transitions of the state
machine formalizing the system.

40

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

2.2. Maude
Maude [4] is a rewriting logic-based specifica-

tion/programming language supporting both equational and
rewriting logic. Maude makes it possible to describe soups,
observable components and braced soups of observable
components. When M is specifying in Maude, T is speci-
fied as rewrite rules. A rewrite rule starts with the keyword
rl, followed by a label enclosed with square bracket and
a colon, two patterns (terms that may contain variables)
connected with =>, and ends with a full stop. A conditional
rule starts with the keyword crl and has a condition with
the keyword if before full stop. The following are forms of
a rewrite rule and conditional rewrite rule:
rl [lb] : l => r .
where lb is a label. An instance of l is replaced with the
corresponding instance of r.
crl [lb] : l => r if … /\ ci /\ … .
where lb is a label and ci is part of the condition, which may
be an equation lci = rci or a matching equation lci ∶= rci.The negation of lci = rci can be written as (lci =/= rci) =
true, where = true can be omitted. If the condition … /\ ci
/\ … holds, an instance of l is replaced with the correspond-
ing instance of r.

The state transitions of RPS is specified as the following
rewrite rule:
clr [game-match] : {(pair: n(X,Y)) (result: Z)}

=> {(pair: n(X1,Y1)) (result: Z1)}

if X1 Xs1 := rock paper scissors /\

Y1 Ys1 := rock paper scissors /\

Z1 := result(X1,Y1) .

where rock paper scissors is the associative-commutative
collection of rock, paper and scissors and result is the func-
tion that judges the game match based on X1 and Y1. The first
two matching equations in the condition randomly choose
one of rock, paper and scissors and assign it to each of X1
and Y1, and the third matching equation uses the function
result with X1 and Y1 and assigns the result to Z1.

Maude is equipped with model checking facilities (a
reachability analyzer and an LTL model checker). Maude
provides the search command that allows finding a state
reachable from s such that the state matches pattern p and
satisfies condition c:
search [n,m] in MOD ∶ s =>* p such that c .
where MOD is the name of the Maude module specifying the
state machine under model checking, n and m are optional ar-
guments stating a bound on the number of desired solutions
and the maximum depth of the search, respectively. n typi-
cally is 1 and s is a given state (typically an initial state of
the state machine). p is pattern and c is a condition. The
condition part such that c can be omitted. The search com-
mand searches the reachable states from s for at most n states
that can match the pattern p and make the condition c true.
In this paper, Maude search command is used to confirm the
characteristics guessed by observing graphical animations of
NSLPK.

Figure 1: A state picture design for RPS

Figure 2: Four state pictures of a graphical animation for RPS

2.3. State machine graphical animation (SMGA)
State machine graphical animation tool (SMGA) is de-

veloped by Nguyen and Ogata [11]. The main purpose of
SMGA is to help human users be able to recognize state pat-
terns and perceive non-trivial characteristics of a state ma-
chine by observing its graphical animations. SMGA cannot
automatically produce visual state picture designs and then it
allows us to design a good state picture. As an input, SMGA
basically takes a state picture design made by humans and a
finite state sequence input generated byMaude. An output is
a graphical animations by regarding the finite state sequence
as a movie film based on the state picture design. One pos-
sible state picture design for the state machine formalizing
RPS is shown in Figure 1. Figure 2 shows a four consecutive
state pictures from the initial state.

3. NS(L)PK Protocols
NSPK [10] is a public-key authentication protocol de-

signed by Needham and Schroeder and NSLPK [8] is a re-
vised version of NSLPK by Low. NSLPK can be described
as the following three message exchanges:
Init p → q ∶ q(np, p)

41

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Resp q → p ∶ p(np, nq , q)
Ack p → q ∶ q(nq)

NSLPK uses public-key cryptography. Each principal, such
as p and q, has a private/public key pair. The public key
is known by all principals but the private one is only avail-
able to its owner. p(m) denotes the ciphertext obtained by
encrypting a message m with the principal p’s public key.
np is a nonce (a random number) generated by principal
p. A nonce is a unique and non-guessable number that is
used only once in all protocol runs. The difference between
NSLPK and NSPK is only the Resp message. NSPK uses
p(np, nq) as the Resp message.

If pwants to mutually authenticate q, p generates a nonce
np and sends to q an Init message that consists of np and its
ID p encrypted by the public key of q. When q receives the
Init message, q tries to decrypt the ciphertext received by its
private key. q then generates a nonce nq and sends back to paRespmessage that consists of np, nq , and ID q encrypted by
the public key of p. On receipt of the Resp message, p tries
to decrypt the ciphertext received by its private key. If the
decryption is successful, p obtains two nonces and a princi-
pal ID and checks if the principal ID equals q and one of the
nonces is the exact one that p has sent to q in this session.
p then sends back to q an Ack message that contains nq en-crypted by the public key of q. On receipt of the message,
q decrypts it, obtains a nonce and checks if the nonce is the
one that q has sent to p in this session.

4. Formal Specification of NSLPK
We first introduce the following three operators (con-

structors) to represent three kinds of ciphertexts used in the
protocol:
op enc1 : Prin Nonce Prin -> Cipher1 [ctor] .

op enc2 : Prin Nonce Nonce Prin -> Cipher2 [ctor] .

op enc3 : Prin Nonce -> Cipher3 [ctor] .

where Prin is the sort representing principals; Nonce is the
sort denoting nonces; Cipher1, Cipher2, and Cipher3 are the
sorts denoting three kinds of ciphertexts contained in Init,
Resp, and Ack messages, respectively. Given principals p, q
and a nonce np, the term enc1(q, np, p) denotes the ciphertext
q(np, p). enc2 and enc3 can be understood likewise. Here-
inafter, let us use Cipher1 (or Cipher2, or Cipher3) ciphertexts
to refer to the ciphertexts contained in Init (or Resp, or Ack)
messages.

The following operator (constructor) is used to represent
nonces:
op n : Prin Prin Rand -> Nonce [ctor] .

where the third argument Rand is the sort denoting random
numbers that makes the nonce globally unique and unguess-
able. Given principals p, q and a random value r, the term
n(p, q, r) denotes a nonce created by p for q.

The following three operators (constructors) are used to
represent the three kinds of messages used in NSLPK:

op m1 : Prin Prin Prin Cipher1 -> Msg [ctor] .

op m2 : Prin Prin Prin Cipher2 -> Msg [ctor] .

op m3 : Prin Prin Prin Cipher3 -> Msg [ctor] .

where Msg is the sort denoting messages. Given three
principals c, s, r and a Cipher1 ciphertext cipℎ1, the term
m1(c, s, r, cipℎ1) denotes an Init message such that c is the
actual creator of the message, s is the seeming sender of the
message, r is the receiver of the message and cipℎ1 is the
message body. c may or may not be the same as s. If c is
different from s, then the message must have been faked by
the intruder. m1 and m2 can be understood likewise.

The network is modeled as associative-commutative col-
lections of messages, which the intruder can use as his/her
storage. Any message that has been sent or put once into
the network is supposed to be never deleted from the net-
work because the intruder can replay the message repeat-
edly, although the intruder cannot forge the first argument.
Consequently, the empty network (i.e., the empty collection)
means that no messages have been sent.

Letms, rs, ns, and ps be collections ofmessages, random
numbers, nonces, and principals, respectively. ps contains
the intruder. Let c1s, c2s, and c3s be collections of Cipher1,
Cipher2, and Cipher3 ciphertexts, respectively. To formalize
the NSLPK protocol as a state machineMNSLPK , we use thefollowing observable components:

• (nw : ms) - it says that ms consists of all messages sent
by principals and faked by the intruder;

• (cenc1 : c1s) - it says that c1s is the collection of the
Cipher1 ciphertexts gleaned by the intruder;

• (cenc2 : c2s) - it says that c2s is the collection of the
Cipher2 ciphertexts gleaned by the intruder;

• (cenc3 : c3s) - it says that c3s is the collection of then
Cipher3 ciphertexts gleaned by the intruder;

• (nonces : ns) - it says that ns is the the collection of
nonces gleaned by the intruder;

• (prins : ps) - it says that ps is the collection of the
principals participating in the protocol;

• (rand : rs) - it says that rs is the collection of random
numbers available.

Each state in SNSLPK is expressed as {obs}, where obs is
a soup of those observable components. We suppose that
three principals p, q and intr participate in the protocol,
where p and q are trustable principals and intr is the intruder,
and two random numbers r1 and r2 are initially available.
Then, INSLPK consists of one initial state that is expressed
as follows:
{(nw: emp) (rand: (r1 r2)) (nonces: emp)

(cenc1: emp) (cenc2: emp) (cenc3: emp)

(prins: (p q intr))} .

42

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

where emp denotes the empty collection.
Three rewrite rules Challenge, Response, and

Confirmation formalize three actions when a principal
sends an Init, a Resp, and an Ack message, respectively. Let
OCs be a Maude variable of observable component soups;
P & Q be Maude variables of principals; Ps be a Maude
variable of collections of principals; NW, R, and N be Maude
variables of collections of messages, random numbers and
nonces, respectively; Rs, CE1, and Ns be Maude variables of
collections of random numbers, Cipher1 ciphertexts, and
nonces, respectively. The rewrite rule Challenge is defined
as follows:
rl [Challenge] : {(nw: NW) (prins: (P Q Ps))

(rand: (R Rs)) (cenc1: CE1) (nonces: Ns) OCs}

=> {(nw: (m1(P,P,Q,enc1(Q,n(P,Q,R),P)) NW))

(cenc1: (if Q == intr then CE1 else

(enc1(Q,n(P,Q,R),P) CE1) fi)) (nonces:

(if Q == intr then (n(P,Q,R) Ns) else Ns fi))

(rand: Rs) (prins: (P Q Ps)) OCs} .

The rewrite rule says that when R is in rand, a new Init mes-
sage is put into the network, R is deleted from rand, the in-
truder gleans the nonce n(P,Q,R) if Q is the intruder and the
intruder gleans the ciphertext enc1(Q,n(P,Q,R),P) if Q is not
the intruder.

In addition to the three rewrite rules that formalize send-
ing messages exactly following the protocol, we also intro-
duce six more rewrite rules to formalize the intruder’s faking
messages:

• fake12, fake22, and fake32: a ciphertext C is available
to the intruder, the intruder fakes and sends an Init, or
a Resp, or an Ack message using C;

• fake11 and fake31: a nonce N is available to the in-
truder, the intruder fakes and sends an Init or an Ack
message using N;

• fake21: two nonces N1 and N2 are available to the in-
truder, the intruder fakes and sends a Resp message
using N1 and N2.

The rewrite rule fake11 is defined as follows:
rl [fake11] : {(nw: NW) (nonces: (N Ns))

(prins: (P Q Ps)) OCs} =>

{(nw: (m1(intr,P,Q,enc1(Q,N,P)) NW))

(nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

The rewrite rule says that when N is in nonces, a new in-
truder’s faking Init message is put into the network.

5. State Picture Design of NSLPK Protocol
The network component, which consists of many mes-

sages, is the main part of the protocol that we should fo-
cus on. Initially, we try to make a design for the network in
which Bui and Ogata [2] used, as shown in Figure 3. The

Figure 3: A simple state picture for the NSLPK protocol (1)

design, however, is hard to observe and/or analyze the mes-
sages in the network because there are many contents inside
each message. As shown in Figure 3, there are three rect-
angles in which the first rectangle represents a network that
contains all messages, the second one displays the most re-
cent message that has been put into the network, and the col-
lection of nonces gleaned by the intruder is displayed in the
last rectangle. “. . . ” is displayed whenever the content of the
network is overflowed. During making a better state picture
design, by observing that the number of messages increases
by one after each state, we come up with an idea that dis-
plays the contents of the most recent message that has been
put into the network (hereinafter, let us call such a message
as the latest message).

Although there are three kinds of ciphertexts (i.e.,
enc1, enc2, and enc3), in the state picture design, we
use only one form to visualize ciphertexts. The form
is as follows: enci(public-key, nonce1, nonce2, cipher-
creator), where public-key is a principal (possibly intr),
nonce1 for m1, m2, and m3 is in the following form:
nonce1(generator, random, forwhom); nonce2 is in the fol-
lowing form: nonce2(generator, random, forwhom). When
the ciphertext is in the form of enc3, cipher-creator receives
a dummy principal dP as its value. Similarly, when the ci-
phertext is in the form of enc1 or enc3, nonce2 receives a
dummy value denoted by nonce2(dP,dR,dP), where dR denotes
a dummy random number.

One possible way to observe&analyze the network is to
observe&analyze each message in the network. Observing
each message in the network is also equivalent to observe
the latest message. Explicitly displaying the detailed con-
tent of the latest message helps us guess some non-trivial
characteristics, which is discussed in Sect. 6. Furthermore,
we design three sub-networks for three types of messages
instead of one network that contains all messages. One net-
work that contains all messages is another possible way to
make the state picture design. Each way of design has some
advantages as well as disadvantages. As shown in Figure 3,
putting all messages in one place is simple but it is hard to
distinguish each message. Designing three sub-networks for
three types of messages helps us be able to immediately rec-

43

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Figure 4: A state picture design for the NSLPK protocol (1)

Figure 5: A state picture for the NSLPK protocol (1)

ognize the specific message type in each specific network. It
makes us more transparent in our visual perception when we
observe each specific message or the order/relation between
messages.

In addition to the observable components presented in
Sect. 4, some more observable components are introduced
for visualizing the state picture design. They are as follows:

Observable
components Description
newmsg The latest message (m1,m2,m3)
m1 Latest message m1

m2 Latest message m2

m3 Latest message m3

nwM1 Network contains messages m1
nwM2 Network contains messages m2
nwM3 Network contains messages m3
urand Used random numbers
nonces Nonces gleaned by intruder
Figure 4 depicts our state picture design. Some designs

are used from state picture design tips of the work [3]. Fig-
ure 5 displays a state picture. We first divide two roles that
are creators and senders into two separate places. Then, ob-
servable components are put to the corresponding place in
which their roles seem to belong. For example, public-key
should be put to the receiver’s side because the sender uses

the public-key of the receiver for encrypting. Values are dis-
played with different colors and shapes. For example, pink
and light yellow colors represent two different principals,
blank represents intr, triangles represent the contents of the
nonce.

We describe the details of the state picture design. The
representation of the three types of messages designed in
Figure 4 is as follows:

The type of the latest message is represented by a small light
gray square. For example, when the latest message is a mes-
sage m2, there is only one light gray square displayed under
m2 as shown in the following picture:

The representations of the creator, sender, and receiver
of the message used in Figure 4 are as follows:

44

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

The creator of the message appears at the top-left place,
pink and light yellow circles represent two different princi-
pals q and p. If the value is intr, nothing is displayed. The
sender and receiver of the message appear at the bottom-left
and bottom-right places, respectively. For example, when
creator is intr, sender is p, receiver is q, it is displayed as
follows:

The representations of the contents of the ciphertext
shown in Figure 4 are as follows:

The cipher-creator of the ciphertext appears at the top-left
place of the rectangle, pink and light yellow squares rep-
resent two principals q and p, respectively. If the value is
intr, nothing is displayed. For the case the message is a
message m3, the text “none” is displayed. The public-key
of the ciphertext appears at the top-right place. If the value
is intr, nothing is displayed. The two nonces of the cipher-
text are shownwith two rectangles inside the primary rectan-
gle, where the upper rectangle visualizes the first nonce and
the lower rectangle visualizes the second nonce. In the first
nonce, the generator and forwhom representations appear at
the left-hand side and right-hand side, respectively; pink and
light yellow triangles are the principals q and p, respectively.
If the value is intr, nothing is displayed. The random rep-
resentation appears at the middle place in which the random
number value used is displayed. The second nonce is rep-
resented likewise. If the message is a message m3, the text
dum is displayed for the values of generator and forwhom,
where dum denotes the dummy value dP. Considering the fol-
lowing example. cipher-creator is p and public-key is q. In
the first nonce generator is p, random is r1, and forwhom is
intr. In the second nonce, generator is intr, random is r2,
and forwhom is p. Those values are displayed as follows:

In Figure 4, the representations of urand and nonces are
designed at the left-bottom corner. The values of both urand
and nonces are displayed using two rectangles as follows:

Figure 6: Some state pictures for the NSLPK protocol (1)

In Figure 4, three types of network representations are
designed on the right side. “. . . ” is displayed whenever the
messages are overflowed. This can be seen in the figure be-
low:

6. Characteristics Guessed Based on Our
Design
This section presents how to guess the characteristics of

NSLPK by observing graphical animations using SMGA.
Observing graphical animations of a state machine allows

45

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Figure 7: Some state pictures for the NSLPK protocol (2)

users to recognize some relations between observable com-
ponents (OCs). Observing all OCs at the same time is less
likely to recognize the characteristics since there are many
OCs in the design picture.

There are some tips on how to conjecture characteristics
of NSLPK by observing graphical animations with SMGA
as follows:

1. By concentrating on one observable component, we
may find that if the value of that observable compo-
nent is intr, any other observable components may
have some specific values, from which we may con-
jecture some characteristics.

2. By concentrating on two different observable com-
ponents, we may find a relation between them, from
which we may conjecture some characteristics.

3. By observing the order of the message in the network,
we may find a relation between them, from which we
may conjecture some characteristics.

4. By carefully investigating the conditions of some char-
acteristics that have been already conjectured, we may
conjecture some other characteristics.

Hence, we sometimes need to concentrate on some specific
OCs when we observe the graphical animations. Character-
istics of NSLPK that involve one message are straightfor-

46

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Figure 8: Some state pictures for the NSLPK protocol (3)

ward to guess by observing graphical animations. However,
characteristics of NSLPK that involve two or more messages
some are not.

Figure 6 shows four pictures of states forMNSLPK . Tak-ing a look at the first picture (of State 0) and the second pic-
ture (of State 3) helps us recognize that there is n(intr,q,r1)
in nonces when generator is intr and taking a look at the
third picture (of State 30) and the fourth picture (of State
46) helps us recognize that there is n(p,intr,r2) in nonces

when forwhom is intr. Any nonce gleaned by the intruder is
stored in nonces. Hence, observing the graphical animation
of these four pictures helps us guess the characteristic such
that any nonce gleaned by the intruder has been generated
by the intruder or a non-intruder principal that wanted to au-
thenticate the intruder.

Taking a look at the second picture (of State 3) and the
third picture (of State 30) allows us to guess another char-
acteristic such that whenever receiver is intr (that displays
blank in the state pictures) in the latest message, then the
nonce of that message is in nonces. Carefully observing
graphical animations helps us perceive one more character-
istic. Taking a look at the four pictures of Figure 6, we rec-
ognize the characteristic that when a nonce is in nonces, the
random number used in the nonce is stored in the collection
of used random numbers urand.

We prepare another input file that consists of a finite
sequence of states so that we can guess more characteris-
tics by observing the behavior of the protocol. To guess

some non-trivial characteristics, we observe the informa-
tion in which the order of the messages is mainly focused
on. Carefully observing graphical animations of the or-
der of messages in the network and expecting that a mes-
sage m2 should follow a message m1, we guess a character-
istic which includes two messages as shown in Figure 7.
Taking a look at the first picture (of State 0), there ex-
ists a message m1(p,p,q,enc1(q,n(p,q,r1),n(dP,dP,dR),p))

in nwM1. After some m1 messages are faked by the
intruder based on the gleaned information, there ex-
ists a message m2(q,q,p,enc2(p,n(p,q,r1), n(q,p,r2),q))

in nwM2 at the second picture (of State 5). Taking a
look at the third picture (of State 19), we observe that
the intruder creates many faked m2 messages including
m2(intr,q,p,enc2(p,n(p,q,r1),n(q,p,r2), q)). Observing
the order of messages in the network allows us to conjecture
the following characteristic:

If there exists a message m1 created by a non-intruder
principal and sent to another non-intruder principal, and
there exists a message m2 (either created by the intruder
or a non-intruder principal) that is sent to the sender of
m1,
then the message m2 originates from a non-intruder prin-
cipal who is the receiver of the m1.
Similarly, we expect that a message m3 should fol-

low a message m2. There is a message m2(q,q,p,

enc2(p,n(p,q,r1),n(q,p,r2),q)) in nwM2 at the second pic-
47

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

ture (of State 5). Taking a look at the first pic-
ture (of State 40) in Figure 8, there exists a message
m3(p,p,q,enc3(q,n(q,p,r2),n(dP,dP,dR), dP)) in nwM3. At
the second picture (of State 43), there exists a mes-
sage m3(intr,p,q, enc3(q,n(q,p,r2),n(dP,dP,dR),dP)) in
nwM3 which is created by intr. Carefully observing the order
of the messages in the network, we also guess the following
characteristic:

If there exists a message m2 created by a non-intruder
principal and sent to another non-intruder principal, and

there exists a messagem3 (either created by the intruder
or a non-intruder principal) that is sent to the sender of
the message m2,
then the message m3 originates from the non-intruder
principal who is the receiver of the message m2.

Observing graphical animations of the NSLPK produced
by SMGA could help us visually perceive several character-
istics. The informal descriptions of the guessed characteris-
tics are as follows:

1. If the latest message is a message m1 and
cipher-creator of m1 is intr, then the nonce of
m1 is in nonces (i.e., the nonce is gleaned by the
intruder).

2. If the latest message is a message m1 that forms as
m1(p,p,q,enc1(q,n,p)) and p is not intr, then the
forwhom of n is q.

3. If the latest message is a message m2 that forms as
m2(p,p,q,enc2(q,n1,n2,p)) and p is not intr, then the
forwhom of n2 is q.

4. If the latest message is a message m3 that forms as
m3(p,p,q,enc3(q,n)), and p and q are not intr, then the
generator of n is q.

5. If public-key of the latest message is intr, then a
nonce/nonces in that message is/are in nonces.

6. If a nonce is in nonces, then either generator or
forwhom of the nonce is intr.

• If generator of a nonce is intr, the nonce is in
nonces.

• If generator and forwhom of a nonce are not
intr, then the nonce is not in nonces.

7. If a nonce in the latest message forms as n(p,q,r), and
p is not intr, then r is in urand.

8. if a nonce is in nonces, then random of the nonce is in
urand.

9. If message m1(p,p,q,enc1(q,n(p,q,r),p)) is in nwM1

and message m2(q1,q,p, enc2(p,n(p,q,r),n,q)) is in
nwM2 and p is not intr then m2(q,q,p,enc2(p,n(p,q,r),

n,q)) is in the network and originates from q.
10. If message m2(q,q,p,enc2(p,n,n(q,p,r),q)) is in nwM2

and message m3(p1,p,q, enc3(q, n(q,p,r)) is in nwM3,
and q is not intr then m3(p,p,q,enc3(q,n(q,p,r)) is in
the network and originates from p.

Maude search command can be used as an invariant
model checker to check that the NSLPK protocol enjoys the

guessed characteristics. The guessed characteristics are con-
firmed by the search command at a specific depth (depth 5)
of the state space because the reachable state space (gener-
ated byMaude) of the protocol is too huge to be exhaustively
traversed. The search command does not find any counterex-
ample at depth 5. It means that the NSLPK protocol seems
to enjoy the guessed characteristics.

7. Graphical Animation in Sequence Diagram
7.1. Idea

Sequence diagram is used tomodel the interactive behav-
ior system entities, which is one of the most used diagrams
of UML [13]. Besides, message sequence charts (MSCs) are
widely used to capture system requirements during the early
design stages [6]. A variant of MSCs is also called sequence
diagrams used in UML. The Alice-Bob format that is often
used to describe security protocols is a kind of sequence di-
agrams. Therefore, sequence diagram is one possible way to
visualize message exchanges between principals in authenti-
cation protocols. We develop SMGA-SD that automatically
generate a sequence diagram from a sequence of states and
integrate SMGA-SD with SMGA. Regarding security pro-
tocols, such as NSLPK, messages from a principal are not
delivered immediately to the recipient but stored in the net-
work so that intruders can intercept and/or replay messages.
Hence, our sequence diagrams are designed slightly differ-
ently from standard sequence diagrams in that a message is
not delivered immediately to the recipient. We suppose that
messages in the network never be deleted. The behavior of
intruders makes protocols unpredictable, which may lead to
the middle-person attack [8]. To express principals (includ-
ing the intruder) in NSPK and NSLPK, we draw three par-
allel vertical lines denoting three principals where one prin-
cipal is intruder whose line is in the middle, and two others
represent two trustable principals. Although we can draw
as many principals as many vertical lines in SMGA-SD, for
simplicity, we keep the current appearance of our sequence
diagrams. Horizontal arrows represent messages exchanges
between principals. The message content is displayed above
in the middle position of the arrow. There are two kinds of
messages in which (1) one follows the protocol and (2) the
other is faked by the intruder. To distinguish the two kinds of
messages, the blue color is used for (1), while the red color is
used for (2). Some functionalities for animations in SMGA
are applied to SMGA-SD, such as Run, Stop, Run step, Back
step, so that users can control the animation of the sequence
diagram.

Let us describe two main different points of SMGA-SD
compared to the standard sequence diagram as follows:

1. In standard sequence diagrams, the target of arrow
messages is drawn directly to principals. In our di-
agram, we assume that messages sent are first put into
the network. Those messages are intercepted and/or
replayed by intrudersmentioned above. Therefore, the
target of arrow messages is not drawn directly to prin-
cipals except for the case in which the recipient is in-

48

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Figure 9: A snapshot of sequence diagram for NSLPK protocol

truder. Because the intruder can intercept all messages
in the network, messages sending to the intruder can
be regarded as received by the intruder without de-
lay. The following figure shows two cases: principal P
sends a message to intruder Intrdr, where the source
of arrow message starts from P and ends at Intrdr at
the top of the figure, and principal Q sends a message
to principal Pwhere the source of arrowmessage starts
from Q and ends at the point between P and Intrdr at
the bottom of the figure, which means that the mes-
sage is not delivered to principal P yet, but it is stored
in the network.

2. When a principal obtains a message (called a received
message) from the network, depending on what the
message is, the principal can produce a new message
to reply to it. The figure below shows a case when
principal Q sends a message to principal P (the first ar-
row) but has not delivered to P yet until principal P
receives the message and produces a new message to
send back to principal Q (in the second and third ar-
rows, respectively). Of course, the message sent by
principal P is not delivered to principal Q yet.

Figure 10: A sequence diagram for NSPK protocol

Figure 9 shows a sequence diagram of NSLPK. There
are five buttons: Select File, Play, Prev, Next, Reset that
correspond to five functionalities, which are the same as in
SMGA, as follows:

• Select File to import a state sequence file.
• Play to draw a sequence diagram step by step with a

speed selected by users.
• Pause to stop drawing a sequence diagram. When a

user clicksPlay button, the button becomesPause but-
ton. The following figure shows the moment before
and after clicking Play button.

• Next to go forward to the next diagram in one step (one
state transition).

• Prev to go back to the previous diagram in one step.
• Reset to reset the diagram to the beginningwhen a user

just imports a state sequence.
7.2. Graphical Animations of NSLPK in Sequence

Diagram
In the sub-section, we describe how to visualize NSLPK

as sequence diagrams by SMGA-SD. The work flow is the
same as SMGA. Firstly, we use Maude to formalize NSLPK
and generate a state sequence as an input file. The input file is
then imported into SMGA-SD.Apart from some existing ob-
servable components used in SMGA, we use a new observ-
able component called recmsg1 in the specification that rep-
resents the received message. All observable components
used SMGA-SD are summarized as follows:

49

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

• (prins: (p q intrdr)): we use three values of prins to
display the name of three principals on the diagram.

• (newmsg: message): the message format is same as
what we defined in Sec. 4.

• (recmsg1: message): this observable component is
usedwith newmsg to display the receivedmessage. This
observable component stores the message that is m1 (in
case the rl [Response] is used), m2 (in case the rl [Con-
firmation] is used), and empt (for the rest cases). Note
that the intruder always gets the messages in the net-
work as our assumption so we do not need to display
the received message of the intruder. If recmsg1 ob-
servable component is m1, the newmsg observable com-
ponent must be m2.
An example below shows the newmsg and recmsg1 com-
ponents in which newmsg is m2 and recmsg1 is m1:

If recmsg1 observable component is m2, the newmsg ob-
servable component must be m3. An example below
shows the newmsg and recmsg1 observable components
in which newmsg is m3 and recmsg1 is m2:

To be able to distinguish the messages following the pro-
tocol and those being faked by the intruder, we modify the
content of messages in the specification in which a boolean
value is added denoting that a message is faked by intrud-
ers or not. When drawing a message, we check the boolean
value to decide the color of the message. If it is true, the red
color is used. Otherwise, the blue color is used.

While observing the diagram for the first time, we have
found that some states are meaningless, such as the intruder
sends messages to himself/herself. Then, we modify the
specification to avoid that situation. The following figure
displays a message in which the intruder sends the message
to himself/herself:

Looking at the diagram in Figure 9 makes us immedi-
ately distinguish two kinds of messages: one is message sent
following the protocol and the other is those being faked by
the intruder. We can recognize the sender and receiver of
each message and comprehend their order.

7.3. Graphical Animations of NSPK in Sequence
Diagram

NSPK is flawed as detected by Lowe [8] and does not
enjoy the nonce secrecy property (NSP). We use the Maude
search command to find out a state sequence in which NSP
is broken. The state sequence is then used to visualize a se-
quence diagram by SMGA-SD as in Figure 10. Looking at
the diagram in Figure 10 makes it easier for us to understand
why the property is broken. Note that by running animations
step by step, we may better comprehend this flaw. Let us de-
scribe each state when using animations. Firstly, principal P
sends message m1 to intruder as follows:

Then intruder fakes message m1 and sends it to principal Q
as follows:

Whenever principal Q receives message m1 faked by intruder
and the seeming sender is P, principal Q then sends message
m2 to principal P as follows:

At this time, intruder can intercept message m2 and replay it
to principal P as follows:

Whenever principal P receives message m3 faked by in-
truder and the seeming sender is intruder, it sends message
m3 back to intruder as follows:

50

Thet Wai Mon et al. / Journal of Visual Language and Computing (2021) 39–51

Finally, intruder fakes m3 message and sends it to principal
Q as shown in Figure 10.

8. Conclusion
We have graphically animated NSLPK and NSPK with

SMGAand SMGA-SD.NSLPKhas been visualized in away
that is different from the Alice-Bob format, while NSPK,
together with NSLPK, has been basically visualized in the
Alice-Bob format, although there are some differences be-
tween our sequence diagrams and standard sequence dia-
grams. Observing the graphical animations based on our
first original design allows us to guess some (non-trivial)
characteristics of the state machine formalizing NSLPK.We
have checked the characteristics byMaude search command.
Using the middle-person attack to NSPK, we have described
how to use our sequence diagrams to help users comprehend
why the attack is doable for NSPK. One piece of our future
work is to graphically animate state machines that formalize
other authentication protocols with SMGA, such as TLS [5].

Acknowledgment
The authors would like to thank the anonymous review-

ers who carefully read an earlier version of the paper and
gave them valuable comments without which they were not
able to complete the present paper.

References
[1] Aung, M.T., Nguyen, T.T.T., Ogata, K., 2018. Guessing, model

checking and theorem proving of state machine properties – a case
study on Qlock. IJSECS 4, 1–18. doi:10.15282/ijsecs.4.2.2018.1.
0045.

[2] Bui, D.D., Ogata, K., 2019. Graphical animations of the Suzuki-
Kasami distributed mutual exclusion protocol. JVLC 2019, 105–115.
doi:10.1007/978-3-319-90104-6_1.

[3] Bui, D.D., Ogata, K., 2020. Better state pictures facilitating state
machine characteristic conjecture, in: DMSVIVA 2020, pp. 7–12.
doi:10.18293/DMSVIVA20-007.

[4] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C. (Eds.), 2007. All About Maude. volume 4350 of LNCS.
Springer. doi:10.1007/978-3-540-71999-1.

[5] Dierks, T., Allen, C., 1999. The TLS protocol version 1.0. RFC 2246,
1–80. doi:10.17487/RFC2246.

[6] Harel, D., Thiagarajan, P.S., 2003. Message Sequence Charts.
Springer US, Boston, MA. pp. 77–105. URL: https://doi.org/10.1007/
0-306-48738-1_4, doi:10.1007/0-306-48738-1_4.

[7] K. W. Brodlie, et al. (Ed.), 1992. Scientific Visualization: Techniques
and Applications. Springer. doi:10.1007/978-3-642-76942-9.

[8] Lowe, G., 1995. An Attack on the Needham-Schroeder Public-Key
Authentication Protocol. Inf. Process. Lett. 56, 131–133. doi:10.1016/
0020-0190(95)00144-2.

[9] Mon, T.W., Bui, D.D., Duong, T.D., Ogata, K., 2021. Graphical ani-
mations of NSLPK authentication protocol, in: 27th DMSVIVA, pp.
39–45. doi:10.18293/DMSVIVA2021-005.

[10] Needham, R.M., Schroeder, M.D., 1978. Using Encryption for Au-
thentication in Large Networks of Computers. Commun. ACM 21,
993–999. doi:10.1145/359657.359659.

[11] Nguyen, T.T.T., Ogata, K., 2017a. Graphical animations of
state machines, in: 15th DASC, pp. 604–611. doi:10.1109/
DASC-PICom-DataCom-CyberSciTec.2017.107.

[12] Nguyen, T.T.T., Ogata, K., 2017b. Graphically perceiving char-
acteristics of the MCS lock and model checking them, in: 7th
SOFL+MSVL, pp. 3–23. doi:10.1007/978-3-319-90104-6_1.

[13] Van Amstel, M.F., Lange, C.F., Chaudron, M.R., 2007. Four auto-
mated approaches to analyze the quality of uml sequence diagrams,
in: 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), pp. 415–424. doi:10.1109/COMPSAC.
2007.119.

51

