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ABSTRACT
In the biological field, having a visual and interactive representation of data is useful, particularly when
there is a need to investigate a large amount of multilevel data. It is advantageous to communicate this
knowledge intuitively because it helps the users to perceive the dynamic structure in which the correct
connections are present and can be extrapolated. In this work, we propose a human-interaction system
to view similarity data based on the functions of the Gene Ontology (Cellular Component, Molecular
Function, and Biological Process) of the proteins/genes for Alzheimer disease and Parkinson disease.
The similarity data was built with the Lin andWangmeasures for all three areas of Gene Ontology. We
clustered data with the K-means algorithm in order to demonstrate how information derived from data
can only be partial when using traditional display methods. Then, we have suggested a dynamic and
interactive view based on SigmaJS with the aim of allowing customization in the interactive mode
of the analysis workflow by users. To this aim, we have developed a first prototype to obtained a
more immediate visualization to capture the most relevant information within the three vocabularies
of Gene Ontology. This facilitates the creation of an omic view and the ability to perform a multilevel
analysis with more details which is much more valuable for the understanding of knowledge by the
end users.

© 2021 KSI Research

1. Introduction
In the latest years, it is becoming increasingly vital to

have an omic vision in order to define biological systems at
an ever-increasingly granular level. The goal of omic sci-
ences is to generate useful knowledge which can be utilized
to feature and interpret biological systems [18].

For omic scienceswe refer to thewide range of biomolec-
ular disciplines characterized by the suffix -omics including
genomics, transcriptomics, proteomics, and metabolomics.
In this perspective, technological innovation aids the growth
of complex system biology by allowing researchers to inves-
tigate various intrinsic and extrinsic influences and events
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at the base of life. Biological data is multidimensional and
highly interdependent. The current challenge is to acquire
a more detailed integrative view of the dynamics of cellular
processes in a cell or organism enriched in biological and
spatial-temporal information [19]. For this purpose, clear
visualization methods can provide more immediate access
to their content information.

The visualization of biological data has become increas-
ingly relevant in Biosciences, as O’Donoghue et al. [14] point
out because it helps researchers to interpret heterogeneous
data more quickly and easily. One of the most current is-
sues in omic data analysis is the inability to investigate rela-
tionships between multi-omic states to incorporate them and
combine higher-level expertise [23].

In this paper, we report the preliminary results achieved
regards visualization of the similarity of the proteins based
on the protein annotations. Protein similarity visualization
not based on sequence alignment can be tricky due to inter-
class dissimilarities and inter-class similarity [1]. Clustering
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and Machine Learning methods may not be able to extract
interdependencies between objects effectively [9]. This fact
often does not allow us to generate a clear visual represen-
tation of the information.

Our goal is to demonstrate how a human-assisted dy-
namic graph construction can help abstract functional rela-
tionships between proteins in order to generate a clear data
visualization when a traditional clustering technique fails.
For this contribution, we focused on two diseases: Alzheimer
andParkinson, the twomost common neurodegenerative con-
ditions. Alzheimer’s disease (AD) is a form of degenerative
dementia that occurs after 65 years. In this pathology, there
is a deposition of an A� peptide B with the formation of
senile plaques and the intracellular aggregation of tau pro-
tein [5]. Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder in the senile age in which
neuronal loss is found in the substance nigra and formation
of �-synuclein aggregates that are neuropathological [15].

These pathologies show similar neurodegenerationmech-
anisms supported by scientific evidence with genetic, bio-
chemical, and molecular studies. Pathological pathways in-
volving �-synuclein and tau proteins, oxidative stress, mi-
tochondrial dysfunction, iron pathway, and locus coeruleus
are among these findings [22]. Because of the overlap in
their pathogenic mechanisms, they were chosen as an exam-
ple for our search workflow. This feature introduces intra-
and extra-class overlaps which can deceive typical cluster-
ing algorithms.

This paper is an extension of the work Gene Ontology
Terms VisualizationwithDynamicDistance-Graph and Sim-
ilarity Measures [2]. We have restructured some sections
of the paper, enriching the description of the approach with
more details. We included two new figures (Figure 4 and
Figure 5) which depict the graphical representation of the
molecular function of AD and PD proteins, respectively. In
addition, the chord diagrams of the recoverable information
following the usage of similarity matrices have been pro-
vided as an overview (Figures 9-12) . We also added further
results in Section 5. In particular, we calculated the similar-
ity between all the proteins of both diseases for themolecular
function, the biological process and the cellular component.
We also extracted the proteins in common to AD and PD,
giving an overview of the information that can be recovered
from these findings.

The paper is structured as follows. In Section 2 we de-
scribe themost important relatedworks in the examined field.
In Section 3 we discuss respectively the datasets, methodol-
ogy, and performance measures which we have used in our
research. Finally, we expose the visual results in Section 4
and overall results in Section 5. The conclusions with future
work are outlined in Section 6.

2. Related Work
In the literature, several web interfaces can query the

terms of the Gene Ontology. The Gene Ontology (GO) is
a bioinformatics project which uses ontologies to enable the
standardization of biological information regarding gene and

gene products properties. It is structured as an acyclic ori-
ented graph where each GO-term is identified by a word
or strings and a unique alphanumeric code [8]. The GO
database is the most widely utilized resource for enrichment
analysis.

QuickGO allows us to find and display GO terms and
generate a list of correspondence results based on the user’s
question. This tool returns a directed acyclic graph (DAG)
containing a single GO term and its associated terms and an-
notations. It is designed with JavaScript, Ajax, and HTML.
Statistics with interactive graphs and views of term location
tables are available on the fly, indicatingwhichwords are fre-
quently noted simultaneously. The user can create a subset
of annotations based on different parameters (Specific pro-
tein, Evidence Codes, Qualifier Data, Taxonomic Data, Go
Terms) and download them [3].

GOrilla1 identifies enriched GO terms in ordered lists
of genes using simple, intuitive, and informative graphics,
without explicitly requiring the user to provide targets or
background sets. It is a GO analysis tool that employs a
statistical approach with flexible thresholds to identify GO
terms significantly enriched at the top of a classified gene
(very useful when genomic data can be represented as a clas-
sified list of genes). The analysis’s results are presented in
the form of a hierarchical structure that allows for a clear
view of the GO terms [6].

Blast2GO (B2G)2 is an interactive platform that supports
non-model species functional genomic research. It is a data
sequence-based tool that combines high-performance anal-
ysis techniques and evaluation statistics with a high degree
of user interaction. Similarity searches produce results on
direct acyclic graphs [4].

NaviGO3, in order to measure the similarity or relation
between the terms of theGO, use six different scores: Resnik,
Lin, and the relevant semantic Similarity score for seman-
tic similarity, and Co-occurrence Association Score (CAS),
PubMed Association Score (PAS), and Interaction Associ-
ation Score (IAS) for GO associations. A Funsim score for
functional similarity is also introduced [21].

More recently, the open-source software AEGIS allows
us to visually explore the GO data in real-time, taking into
input the entire dataset GO. Any Go terms can be chosen as
the anchor and have a root, leaf, or waypoint, represented
with a DAG. Each source can include all the descendants of
the anchor term, the leaves will only include the ancestors,
and the Waypoint anchors will constitute a DAG consisted
of both ancestors and descendants [25].

3. Methods
In this work, we have used the R environment4, a free

software environment for statistical computing and graphics,
and SigmaJS, a JavaScript library dedicated to graph draw-

1Gorilla: http://cbl-gorilla.cs.technion.ac.il
2Blast2GO: https://www.biobam.com
3NaviGO: https://kiharalab.org/web/navigo/views/goset.php
4R: https://www.r-project.org
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ing5. We used the standard SigmaJS renderer to show the
graph view.
3.1. Datasets

Protein datasets for AD and PD, belonging toHomo Sapi-
ens, were downloaded from UNIPROT [17]. Data cleaning
has been carried out, removing all duplicates. Furthermore,
for each UNIPROT ID, the reference gene has been obtained
and linked to the STRING. STRING database allows us to
consider any protein-protein interactions (PPI) based on a
score calculated on experimental evidences [16]. This step
is required to eliminate those proteins that are not mapped in
the database and do not have the protein-protein interaction
that we are looking for. We have recovered a total of 216
genes for AD and 137 genes for PD.
3.2. Gene Ontology

The Gene Ontology is based on two types of relation-
ships between objects: instances and part of. All organisms
share three biological domains which can be considered as
structured and controlled vocabularies:

• Biological Process: refers to all those events that take
place within an organism resulting from an orderly set
of molecular functions;

• Cellular Component: concerns the location of the en-
tity in question at the level of cellular and/or subcellu-
lar structures;

• Molecular Function: describes the processes that oc-
cur at the molecular level.

We have identified these domains as biological process
(BP), cellular component (CC), andmolecular function (MF).
We have recovered from UNIPROT6 all the GO terms be-
longing to these three fields both for Alzheimer’s and Parkin-
son’s diseases with UniProt package in R.
3.3. Experimental setup

We explored two ways to calculate semantic similarity.
In the first case, we calculated the similarity between pro-
teins of Alzheimer disease and proteins of Parkinson disease
for all three ontology gene domains. We considered both
Lin’s similarities and Wang’s method. For simplicity, in this
work we only show the results concerning the similarity of
Lin while the future tool will allow user the setting of both
measures. Subsequently, we clustered the data obtained for
both similarity measures in BPs, CCs, and MFs domains for
AD and PD with the K-means algorithm, trying with n=3
and n=5 clusters. In the second case, we calculated the sim-
ilarity based on the Wang and Lin methods between the two
sets of protein data of diseases about BPs, DCs and MFs do-
mains in order to compare these measures.

5SigmaJS: https://sigmajs.org
6UniProt: https://www.uniprot.org

3.4. Distance Metrics
We used two types of metric to compute pairwise seman-

tic similarities, Lin and Wang, calculated with the GOSemSim

package in R [24].
3.4.1. Lin’s measure

Lin measure is based on information content (IC). The
negative log of a concept’s probability is formally known as
IC. This method computes the ratio between the amount of
“common information” and the amount of “total informa-
tion” in the descriptions regards an object pair. This ratio
corresponds to the similarity between two objects [12].

In this case, this approach can measure the similarity
of the knowledge content of the GO terms for each protein
dataset, proteins of AD e proteins of PD. The frequency of
two GO words and their closest common ancestor in a par-
ticular corpus of GO annotations are used in the estimation.
The term Least Common Subsammer (LCS) suggests themost
basic definition that two concepts share as an ancestor. So,
we can consider the following Equation 1:

simlin =
2 ∗ IC(lcs(c1, c2))
IC(c1) + IC(c2)

(1)

where c1 and c2 are two concepts, IC is the information con-
tent and lcs is the function that computes the least common
subsammer. In our experiment, c1 and c2 reflect the conceptsrepresented by the GO terms referring to the BP, CC, andMF
domains. The similarity is calculated for both AD and PD
across all proteins in the pathological reference dataset.
3.4.2. Wang measure

The Wang method is based on a graph-based seman-
tic similarity. The GO terms are converted into a numeric
value by aggregating the terms of their ancestors in a GO
graph [20].

Given two GO terms, A and B, we can representDAGA =
(A, TA, EA) and DAGB = (B, TB , EB), where Tn is the set ofGO terms including the term n and all of its ancestor terms in
theGO graphwhileEn are the semantic relations represented
as edges between the GO terms. The semantic similarity
between these two terms are calculated as in Equation 2:

SGO(A,B) =

∑

t∈TA∩TB SA(t) + SB(t)

SV (A) + SV (B)
(2)

where SA(t) and SB(t) denote the S-value of a GO term t
related to term A and term B.

Wang measures the semantic meaning of GO term n,
SV(n), after obtaining the S-values for all terms in DAGnwith the Equation 3, represented below:

SV (n) =
∑

t∈Tn

Sn(t) (3)

3.5. K-means
K-means is one of the most common and widely used

partitioning clustering algorithms which divides a set of ob-
jects into K clusters based on their attributes [13]. A cluster
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is simply an aggregation of data based on similarities. The
division into K clusters is done a priori, based on the goal
to be achieved or using heuristic techniques and the clusters
represent the number of centroids required by the dataset. A
centroid is a real or imaginary point that represents the center
of the cluster and it is updated with each algorithm iteration.

The procedure is composed by four steps:
• Step 1: determine the value of K;
• Step 2: randomly select K points as initial centers of

the clusters;
• Step 3: assign each new point to the cluster with the

closest Euclidean distance to its center. Formally, if ciis a centroid of the set of centroids C then each point
x will be assigned to a cluster based on the following
equation (Equation 4):

arg min
ci∈C

dist(ci, x)2 (4)

where dist(.) represents the Euclidean distance;
• Step 4: recalculate the updated cluster centers by av-

eraging the points associated with each cluster (Equa-
tion 5):

ci =
1

|Si|
∑

xi∈Si

xi (5)

where Si is the cluster’s set of points.
The procedure repeats steps 3 and 4 until a convergence is
achieved. The algorithm ensures speed of execution while
leaving the data free to group and move away. For the pur-
pose of our study, the maximum number of clusters of the
K-means is limited to five. No PCA techniques were used.
When the concept of similarity associated to the GO is con-
sidered, this constraint is tied to the core premise that a smaller
number of clusters can be useful for biological scope. At the
same time, when K is less, the K-means allows us to pre-
serve this information but not to view it intuitively. Without
a clear display of the data, the end user could not correctly
interpret the results. It is necessary to represent such data as
clearly as possible in order to translate it into knowledge. We
attempted to collect the various forms of information from
the three GO domains in order to organize and view them
together.
3.6. Dynamic Distance-Graph

Based on the information presented in the previous sec-
tions, we propose a dynamic build cyclic distance graph
(DCDG) to visualize and transfer knowledge regarding the
GO terms. Our goal is to provide a clearer visualization
of the GO interconnections than other visualization meth-
ods like clustering or partitioning. We used a web-based
workspace built with Javascript and SigmaJS to allow the
user to explore this interconnection. Workspace is designed
to be as clean as possible. It starts as an empty web app with

a single callable overlay menu on the upper left corner, al-
lowing users to search the entry point protein into datasets.

The BP, CC, andMF distancematrices, calculated before
the execution of the k-means algorithm, were used as input
datasets. When selected, the entry protein becomes the root
of the graph. Users can click on each graph node to show a
context menu (as depicted in Figure 1) in which it is possible
to choose extension (explosion) operation for the node itself.

We defined three kinds of extensions for this contribu-
tion, each of them related to one dataset: BP, CC and MF,
whose definitions are those intended by the three vocabular-
ies of the GO. The distance between each node pairs is writ-
ten on the arcs between them. This value, which defines the
similarity measure, provides the reading key to display pro-
tein through the dynamic build cyclic distance graph. Pro-
teins are connected to each other from these values that allow
us to explore the graph taking into account the resemblance
values between biological process, molecular function and
cellular component. Also, the distance value is used to sep-
arate nodes into spaces.

The ForceAtlas2 algorithm is used to avoid overlapping
between near nodes. In particular, we used ForceAtlas2 em-
bedded into SimgaJS [11]. ForceAtlas2 is a layout algorithm
for force-directed graphs. This algorithm allows us to posi-
tion each node depending on the other nodes using the dis-
tances between them as edge weights. Just because of this
condition, the position of a node must always be confronted
with the other nodes. The fundamental advantage of using
ForceAtlas2 for the representation of protein graphs is to
have an easier view of the structure because the structural
proximity present in the original datasets is converted to vi-
sual proximity.

In order to better empathize the functionality distance
between GO, we defined a spatial distance SD with the fol-
lowing equation (Equation 6). Given two nodes, A and B
and their own distance d:

SD = loge(d) (6)
where d is the distance and the loge is the natural logarithmwith the number of Nepero as base.

Note that SD is used only for graphical purposes in the
rendering routines. Figure 7 shows no linear proportional-
ity into edge lengths: see the distance between (Q8IZY2,
Q9BS0) and (Q93045, Q9BS0). Still, for graphical purposes,
we defined a threshold tℎ_i as the mean of all the distances
into the dataset i used for node expansion. As an example,
given the node Q9BXS0 (see Figure 7), the threshold for the
protein Q9BXS0 is the mean of the edge’s weight between
Q9BXS0 and the related nodes. When the distance SD be-
tween two nodeA andB is greater than tℎ_i, then nodeA and
B are considered belonging to a different cluster. A dotted
line renders each class separation. For the first prototype of
the proposed method see the Prototype Page7. The input re-
quires a symmetry (or distance) matrix in TSV format. After
clustering, it is also possible to download the table of coordi-
nates between the various proteins, represented here graph-

7https://smcovid19.org/simtest/
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Figure 1: The contextual menu is available for each node.

ically as dynamic dots. The prototype is still being updated
for further improvements to guarantee the user full control
of the visualization process.

4. Results
4.1. K-means visualization

Figures 2-5 report how the GO objects are partitioned re-
garding the BP andMF features for AD and PD, withK equal
to 3 and 5. The axis reports the distance between each item
to its centroid. We used cluster and factoextra packages in
R to perform clusterization. We considered only the Lin’s
measure for graphical example. We have found that cluster-
ing with the K-means algorithm produces visually mislead-
ing and uninformative overlaps. This is due to the density of
clusters that involve very close intra-cluster distances.
4.2. DCDG visualization

To test our methods, we used protein data based on cal-
culated similarity of Lin. In particular, we considered the
G9BXS0 protein from the similarity matrices and we iden-
tified the proteins of its neighborhood to build our view of
node expansion. Before testing DCDG view, we carried out
a simple statistic of the common GO terms, for the only BP
component, between this root protein and its neighbors. We
represented them with a Venn diagram [10] (see Figure 6),
on the basis of GO Lin’s similarity matrix.

In this scenario, each protein is represented by a closed
curving line in the Venn diagram (a circle). A set of GO
terms is associated with each protein. In our representa-
tion the overlapping area of the circles measures the size of
common GO terms for the BP among the proteins. So, this
view allows us to evaluate how many common elements are
among the different sets of the terms GO for all the selected
proteins. It is evident that a simple analysis of terms pro-
vides no helpful information beyond the simple observation
that there are terms common to all five sets of GO terms for
each protein. Instead, introduce similarity based on the in-
formation content of the GO terms is useful for expanding
knowledge regarding biological aspects that would be omit-
ted by a simple statistical analysis.

Figure 7 shows the BP expansion with the DCDG view
for the node G9BXS0, a protein produced byCOL25A1 gene
for Homo Sapiens organism. This protein inhibits the fib-
rillization of �-amyloid peptide which constitutes amyloid
plaques present in Alzheimer’s disease. It also assembles
the amyloid fibrils in aggregates which are resistant to the
demerger mechanisms.

The DCDG view allows the user to see and understand
immediately the proteins belonging to the two distinct BP
classes: CLASS 1, related tomany biological processes such
as signaling pathway and positive and negative regulation of
cellular and chemical complexes and CLASS 2, concerning
the organization of fibrils, microtubules, and structures of
the cytoskeleton.

Figure 8 highlights the successive expansion of Q8IZY2
and Q9P0L2 proteins. Due to distances, a new class was
identified by the system (CLASS 3). In terms of biological
meaning, the visualization clearly shows that the additional
third class emphasizes further involvement of proteins indi-
cated in different biological processes compared to previous
classes. In particular, this class intervenes in broader biolog-
ical regulation processes involving energy homeostasis and
cell cycle regulation systems.

5. AD and PD similarity
Diseases similarity can be determined based on three do-

mains of the GO: molecular function (MF) similarity, bio-
logical process similarity (BP) and cellular component sim-
ilarity (CC). We used the GoSemSim package [24]. We used
Wang’s technique, which leverages the graph structure topol-
ogy for the GO to compute semantic similarity between the
two sets of Alzheimer’s and Parkinson’s proteins. We have
also calculated the similarity of Lin, based on the IC of the
three GO domains, betweenAD e PD in order to compare the
differences between these two used methods, as reported in
Table 1. We can note as the values are similar for both sim-
ilarity measure, except for a 5% waste for BP. In Table 2 we
reported the common proteins between the two diseases with
their ID UNIPROT and the description for each of them.
Based on the similarities of BP, MF and CC, we can build a
protein network for each of the three domains under consid-
eration. This could respond to the end user request regarding
the presence of similar proteins in the function, biological
process or cellular location of a series of disorders. As ex-
ample, in Figure 9 and Figure 10, the similarities of the BP
and MF domains for the P03886 protein, present in the AD
and PD, are shown. The threshold chosen for the represen-
tation is 80%. The protein in question is highlighted in the
chord graph. With the threshold previously chosen for BP
and MF, the similarities between proteins in PD and AD are
depicted as a whole in Figure 11 and Figure 12.

6. Conclusion
Graphs are the most natural way to model interactions

between entities in many fields. Dynamic graph representa-
tions result from the intrinsically dynamic character of such
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Figure 2: K-means for BP for AD with Lin’s measure (K=3 on the left and K=5 on the right).

Figure 3: K-means for BP for PD with Lin’s measure (K=3 on the left and K=5 on the right).

data [7]. In this paper, we explored an alternative way to
graphically view the relationships between the GO terms
based on their information content. In particular, we have
proposed a human interaction-based viewing system that al-
lows the users to have a complete omic vision of data. In
particular, we ensured the direct representation of the inter-

class and intra-class correlations between involved proteins.
The strategy proposes an instrument to investigate the GO
with a customizable and flexible approach providing infor-
mation to a more general or selective level.

We presented a distance cyclic distance graph (DCDG)
as a GO terms visualization approach to immediately repre-

Figure 4: K-means for MF for AD with Lin’s measure (K=3 on the left and K=5 on the right).
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Figure 5: K-means for MF for PD with Lin’s measure (K=3 on the left and K=5 on the right).

Figure 6: Venn Diagram for G9BXS0.

Figure 7: The result of Q9BX80 expansion by BP dataset.

Table 1
Similarity value for AD and PD.

Measure BP similarity MF similarity CC similarity

Wang 88.3% 91.3% 96.7%
Lin 93% 92% 96.6%

sent interconnection between elements. The prototype was
written as a web app by using the SigmaJS framework.

We used two similarity methods, Lin’s and Wang’s mea-
sure, on the three GO vocabularies (Biological Process, Cel-

Table 2
Common proteins in AD and PD.

UNIPROT ID

P03886 NADH-ubiquinone oxidoreductase chain 1
P05067 Amyloid-beta precursor protein
P09936 Ubiquitin carboxyl-terminal hydrolase

isozyme L1
P10636 Microtubule-associated protein tau
P25021 Histamine H2 receptor
P37840 Alpha-synuclein
P49754 Vacuolar protein sorting-associated

protein 41 homolog
P61026 Ras-related protein Rab-10
P68036 Ubiquitin-conjugating enzyme E2 L3
P78380 Oxidized low-density lipoprotein

receptor 1
Q5S007 Leucine-rich repeat

serine/threonine-protein kinase 2
Q9H4Y5 Glutathione S-transferase omega-2
Q96IZ0 PRKC apoptosis WT1 regulator protein
Q00535 Cyclin-dependent-like kinase 5
Q13127 RE1-silencing transcription factor
Q13501 Sequestosome-1
Q16143 Beta-synuclein
Q92508 Piezo-type mechanosensitive ion channel

component 1
Q92876 Kallikrein-6

lular Component andMolecular Function) for two neurode-
generative diseases, Alzheimer and Parkinson. Thanks to
these metrics, we built three different distance matrices (BP,
CC, and MF) for each condition.

We explored the differences between the standard cluster
view and the proposed DCDG view. The datasets were clus-
tered using the K-means algorithm to show a classic cluster-
ing plot. Also, we use the proposed DCDG method to plot
the same information into a graph view.

By applying a classic display of clustering, visually was
not possible to recover the information immediately, also due
to the problem of overlapping of some clusters elements. On
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Figure 8: The result of Q8IZY2 and Q9P0L2 expansion by BP dataset.

Figure 9: Similarity of BP (on left) and MF (on right) for the protein P03886 in AD.

the other hand, the display with DCDG allows a more imme-
diate understanding of the interactions present between the
proteins based on the similarity representative of the three
vocabularies of the GO. The existence of well-outed protein
clusters in a system is one of the purposes of our work as
it represents a fundamental topological characteristic to un-
derstand the entire network of connections. This subdivision
makes it possible to view the existing relationships between
proteins and provides a tool which meets the need to identify
and understand why some structural elements are grouped
at different levels (cellular, biological and molecular) of in-

depth.
As future work, we plan to improve the web-based tool

prototype into a web app with more functionality for the
user for exploring protein data based on the proposed as-
sumptions in this research study, guaranteeing user-target
customization of the tools available.
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