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A B S T R A C T

Bike-sharing systems are present in many cities as a valid alternative to fuel-based public transports 

since they are eco-friendly, prevent traffic congestions, reduce the probability of social contacts. On 

the other hand, bike-sharing present some problems such as the irregular distribution of bikes on the 

stations/racks/areas (still very used for e-bikes) and for the final users the difficulty of knowing in 

advance their status with a certain degree of confidence, whether there will be available bikes at a 

specific bike-station at a certain time of the day, or a free slot for leaving the rented bike. Therefore, 

providing predictions can be useful for improving the quality of e-bike services. This paper presents 

a technique to predict the number of available bikes and free bike slots in bike-sharing stations (the 

best solution for e-bikes). To this end, a set of features and predictive models have been developed 

and compared to identify the best prediction model for long-term predictions (24 hours in advance). 

The solution and its validation have been performed by using data collected in bike stations in the 

cities of Siena and Pisa, in the context of Sii-Mobility National Research Project on Mobility and 

Transport and Snap4City Smart City IoT infrastructure. The Random Forest (RF) and Gradient 

Boosting Machine (GBM) offer a robust approach for the implementation of reliable and fast 

predictions of available bikes in terms of flexibility and robustness to critical cases, producing long-

terms predictions in critical conditions (i.e., when there are only few remaining available bikes on the 

rack). 

 © 2021 KSI Research 

1. Introduction

Today, about 55% of the world’s population lives in 

urban areas, and this figure is expected to reach 68% in 

2050, according to the "World Urbanization Prospects 

2018", published by the United Nations Department of 

Economics and Social Affairs [17]. Fuel-based 

transportations are one of the most important causes of 

certain gas emissions and thus of air pollution. Bike-

sharing systems may represent a part of the solution. 

Therefore, their use is increasing in many cities, being 

a more sustainable alternative to public transportation 

reducing congestion and pollution. The bike-sharing 

solution adopting bike rack stations are capable to 

detect the presence of the bike, to assess their status, to 

recharge e-bikes, and release/manage the bike-sharing 

system. In this case, the bikes can be very simple even 

when they are e-bikes. The alternative solution could be 

floating bike-sharing systems in which the users can 

take the bikes from the road and leave them in any 

place, in some cases with specific rules and areas. The 

bikes have to be more intelligent, and capable to 

communicate with the central management servers their 

position, etc., such as Mobike solution. Floating 

solutions are still not very effective in the case of e-bike 

since the recharging can be easier on racks. The 

recharging of floating bikes has to be performed by 

collecting bikes and/or by recovering them to put a 

charged battery. All these activities are very expensive 

to be performed for a large number of bikes.  

In the context of this article, the solution with simple 

bikes (even e-bike) and smarter stations is addressed. 

The bikes can be typically released at any station 

providing that a free slot is available, this may create 
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discomfort to the users when the station is full, and the 

user has to search for an empty slot in near bike racks to 

leave the bike, and then return by walk. One of the 

problems of bike-sharing is related to the irregular 

distribution of bikes among the various stations and the 

impossibility to know with a certain confidence where 

to find at least a bike at the desired station in a precise 

time slot of the day, or just few minutes in advance. The 

same for the possibility to find a free slot to leave the 

bike. Therefore, predicting the availability of bikes (as 

well as to predict the presence of free slots) per station 

over time can be very useful for managing the demands 

for bikes per station and to plan/schedule a bike 

redistribution [2].  

1.1 Related Works 

    In recent years, many researchers have studied urban 

bike-sharing systems, mainly on four main areas of 
interest.  

    The first area is the design of Bike-Sharing Systems.  

In [3], a mathematical model has been proposed to 

determine the number of docking stations needed, their 

location and the possible structure of the cycle path 

network, as well as models to make predictions about 

possible routes taken by users between stations of origin 

and destination.  

    The second area is related to the analysis of the 

behavior and dynamics of a Bike-Sharing system. In [4] 

and [5], clustering and forecasting techniques are used 

on the network of Bike-Sharing stations in Barcelona to 

obtain useful information to describe the city's mobility. 

In [6], the authors studied the Vélo' system. They 

interpreted the system as a dynamic network by 

analysing how bicycle flows distribute spatially along 

the network. In [8], clustering techniques are used to 

analyse the Vienna docking station network. In [7], 

different Bike-Sharing services are analysed 

highlighting the differences in bike flows and routes.  

    The third area is referring to the redistribution of 

bicycles among stations of the city that is necessary to 

compensate for the imbalance created during their use. 

For example, in [18], [19], [20], the authors studied the 

optimization of the routes taken by vehicles with the 

aim of balancing the number of bicycles in each station. 

    The last area concerns the prediction of bikes 

availability. 

In [4], four different predictive models for estimating 

the availability of bikes in stations have been compared. 

The authors use a Bayesian network to predict the status 

of a bike station (full, almost empty or empty) using 

bicycle parking information only 2 hours in advance. 

They achieve a forecast accuracy of about 80%. In [5], 

ARMA models have been used to predict the number of 

vacancies one hour in advance, while in [1], the authors 

present a system for predicting bike traffic of a bike-

sharing network in Lyon. In [21], data mining and 

cluster techniques based on historical data series are 

used to estimate pickup and return activity patterns at  

bike stations in Vienna; while in [22], the authors 

presented an ARIMA model that takes into account 

both spatial and temporal factors to predict the number 

of available seats in each docker station.  

    In most cases, the prediction algorithm aimed at 

understanding the total number of used bikes in the 

whole network over time, which is a topic of interest for 

the operator. This is also much simpler than the 

prediction of the bike or slot on single rack. 

    In [23], the authors presented a predictive model of 

the state of the public bike-sharing stations in Barcelona 

2 days in advance. Thus, the Random Forest has been 

applied to predict the status of a station (i.e., when a 

station is full, almost full, if there are slots and bikes 

available, almost empty or empty, two days in advance) 

with a maximum accuracy of about 75%. The authors 

also consider in the model some external factors as 

holidays, and weather information observing that the 

inclusion of these external factors was not relevant. In 

[24] and [25], a probabilistic approach based on

dynamics modelling of a single bicycle parking using

Markov chains in continuous time has been proposed.

In [24], the authors predict the number of available

bikes per bike station in Paris with an error measure of

about 3.5 in terms of RMSE (which is very high for

small size racks), for a prediction horizon of one hour

in slots of 10 minutes. In [25], The authors use statistical

methods to model the spatio-temporal shifts of bikes

between stations, and then estimate bike check-in

results based on the model and online check-out

records. A random forest-based prediction mechanism

is further proposed to model and forecast the users’

check-out behaviours. In [26], an approach based on

Graph Convolutional Neural Network has been used to

analyse the dynamics between the different bike-

sharing stations in the city. In [27], a deep learning

model for short-term prediction of the number of

available bikes is presented. In [27], the authors adopt

LSTM and GRU models to predict the number of bikes

per docker station 1, 5 and 10 minutes in advance with

one-month historical data, and they apply a Random

Forest as a benchmark. In [28], the authors present an

approach based on the application of machine learning

models as Random Forest and LSBoost algorithms to

create univariate models to predict the number of

available bikes at each of the 70 stations of the Bay Area

Bike Share network. RF with a MAE of 0.37

outperformed LSBoost with a MAE of 0.58

bikes/station with a prediction horizon of 15 minutes.

The authors also apply a Partial Least-Squares

Regression to model available bikes at the spatially

correlated stations of each region obtained from the

trip’s adjacency matrix. Results show that the MAE was

approximately 0.6 bikes. Finally, in [29], the authors

propose a framework based on recurrent neural

networks to predict bike demand for each station in a

bike-sharing system one hour in advance. Table 1

shows a comparative overview of the most relevant

related works.
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Table 1: Related Work implementation overview 

Paper Models Type Features 
Pred. 

Horizon 

Accuracy/ 

Error 

Measures 

[4] 

Bayesian 

network 

(station status: 

full; almost 

empty; empty) 

Holiday, 

Weather 

and 

Historica

l data

2 hours 
Accuracy 

about 80% 

[23] 

Random Forest 

(RF) 

(station status: 

full; almost full; 

bikes available; 

almost empty; 

empty) 

Weather 

and 

Historica

l data

2 days 
Accuracy 

about 70% 

[24] 

Markov chains 

(#available 

bikes) 

Historica

l data
1 hour 

RMSE 

about 3.5 

[27] 

- GRU

-LSTM

- RF

(#available

bikes)

Historica

l data

3-time

intervals:

1, 5, 10

min

- 

[28] 

- RF

- LSBoost

- PLSR

(#available

bikes)

Historica

l data

From 15 

min to 

120 min 

MAE (RF) 

about 0.37 

for 15 min 

pred. 

horizon 

[29] 

RNNs 

(#check-

in/check-out) 

Weather 

and 

Historica

l data

1 hour 
MAE about 

1.2 

1.2 Article Overview 

    The main contribution of this paper consists in 

presenting a solution for long-term prediction of 

available bikes on bike-sharing stations, and thus of the 

number of free slots by knowing the size of the station 

and the number of broken bikes. To this aim, a model 

has been identified to predict the availability of bikes 24 

hours in advance (long-term predictions) with a 

resolution of 15 minutes, and thus also the free slots in 

the stations. The prediction of available bikes is a non-

linear process whose dynamic changes involve multiple 

kinds of factors, coming from the context. To this end, 

the solution has been obtained by taking into account 

different cities and locations, and despite the 

differences characterizing the two cities (namely Siena 

and Pisa), in both cases the identified features and 

model have been the same, thus demonstrating the 

validity of the derived results. The precision obtained 

for long terms prediction has been much better than 

those provided in the literature.  

     The solutions have been implemented in the context 

of Sii-Mobility project (national mobility and transport 

smart city project of Italian Ministry of Research for 

terrestrial mobility and transport, http://www.sii-

mobility.org) and Snap4City infrastructure 

(https://www.km4city.org ) [9], [10], [11], which in 

turn is based on Km4City model. Sii-Mobility aimed at 

defining solutions for sustainable mobility, engaging 

city users, providing predictions on parking, suggesting 

bikes availability status to users at least 15 minutes/1 

hour in advance to allow them to make a conscious 

decision, and maybe change their own plan. As a result, 

the solution has been capable to produce reliable 

prediction even 24 hours in advance. 

    The paper is structured as follows. Section 2 provides 

a description of the bike-sharing data and their 

characterization in terms of clustering in groups. In 

addition, the identification of several features at the 

basis of the predictive models is reported. In Section 3, 

the machine learning approaches adopted to identify 

and validate the predictive models and framework are 

presented. Section 3.1 presents the metrics for the 

assessment, Section 3.2 the ARIMA model. In Section 

3.3, the machine learning approaches are presented. A 

computational cost analysis on the proposed solutions 

is presented in Section 3.4 . The feature relevance of the 

predictive model is discussed in Section 3.5 and Section 

3.6 reports the results based on a feature reduction 

analysis. Conclusions are drawn in Section 4. 

2. Data Description And Feature

Identification

    As mentioned in the introduction, the main goal was 

to find a solution to predict the number of bikes 

available in each bike station 24 hours in advance. Thus, 

by knowing the size of the bike station and the number 

of broken bikes on the rack, we can derive the number 

of free slots to leave the rented bike. Typically, the 

status of each bike station is checked and registered on 

the central server every 15 minutes. The data we 

adopted refer to 15 stations located in the municipality 

of Siena and 24 stations located in Pisa. In order to 

understand the typical time trend H24 (multiple 

seasonality may be present, i.e.: daily, weekly and 

seasons over the year) of bikes availability per station. 

Since the service acceptance is evolving quite rapidly 

over time, the seasonal trends taken into account are the 

daily and weekly ones. This means that the learning and 

predictions have to be continuously updated. We took 

into account data from June 2019 to March 2020 for 

Siena and Pisa stations. A clustering approach has been 

applied in order to classify together Pisa and Siena’s 

stations based on their time trend of bikes availability 

over the day, which is also correlated to the typical 

services in the neighbourhoods. In detail, the K-means 

clustering method has been applied to identify clusters. 

In K-means clustering, there is an ideal center point that 

represents a cluster. The clustering has been performed 

on the basis of the H24 time trend, considering the 

normalized trend of bikes availability measure. The 

optimal number of clusters resulted to be equal to 3, and 

it has been identified by using the Elbow criteria [12]. 

In particular, each cluster represents a group of bike-

sharing stations. For each cluster, we selected the 

representative bike rack as the one closer to the center 

of the considered cluster. Figure 1 reports the typical 
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trends during the day of the representative bike rack for 

each cluster. 

Figure 1:  Typical day trend of available bikes of bike rack 
clusters. Cluster 1 is represented by “Stazione FS.” in 
Pisa, Cluster 2 by “PoloMarzotto” in Pisa, and Cluster 3 
by “Due Ponti” rack in Siena. 

    The bike stations/racks belonging to Cluster 1 are 

typically characterized by a decrement of bike 

availability at lunchtime, and they are mainly located 

close to the railway stations, airport, mobility hubs, etc. 

Bike racks belonging to Cluster 2 are typically 

positioned in the central area of the cities, and they are 

characterized by an increment of the bikes availability 

in the central part of the day (lunch hours, since most of 

the people are parking their bikes to get lunch). Cluster 

3 presents an almost uniform trend in the bike 

availability and bike racks are mainly positioned in the 

peripheral areas of the city. 

    Moreover, we have also detected some changes in the 

typical time trends from working days and weekends as 

shown in Figure 2. Figure 2a reports the comparison 

between the trend for working days and weekends for 

“Curtatone” station in Siena, while Figure 2b shows the 

trends of working days/weekends for the bike rack 

called “Stazione F.S” in Pisa. 

(a) 

(b) 

Figure 2:  Working days/weekend trends of the (a) 
“Curtatone” bike-sharing stations in Siena and (b) 
“Stazione F.S” stations in Pisa municipality. 

2.1 Feature Identification 

    With the aim of designing a prediction model, a set 

of features have been proposed, identified, and tested. 

Typically, the values are recorded every 15 minutes. 

Please note that the temporal window for the training is 

not based only on 15 minutes, but the measures over 

months are taken every 15 minutes.  

    Features belonging to the Baseline (time series) 

category refer to aspects related to the direct 

observation of bike status over time as in [13]. Date and 

time when measures are taken,  the number of bikes on 

racks, information on weather the observation day was 

a weekend etc., belong to this category.  

    We considered also features describing the 

differences over time. Usually, the trend of the number 

of bikes is similar from one week to another for the 

same day (e.g., Monday to prev/next Monday), in the 

same month for example. Therefore, the following 

features have been included and refer to the number of 

available bikes at the observation time t in the day d, 

with respect to the previous week (d-7) (PwB) and the 

previous day (d-1) (PdB), as: 
PwB = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−7,𝑡 

PdB = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−1,𝑡 

And thus, other features have been included in the 

model for capturing the difference between the number 

of bikes captured at the observation time (time slot t and 

day d) and the available bikes in the:  

• previous time slot (t-1) of previous week (d-7)

dPw:

 𝑑𝑃𝑤 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑,𝑡

− 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−7,𝑡−1

• successive time slot (t+1) of previous week (d-7)

dSw:

𝑑𝑆𝑤 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑,𝑡 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−7,𝑡+1

• previous time slot (t-1) of the previous day (d-1)

dPd:

𝑑𝑃𝑑 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑,𝑡 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−1,𝑡−1

• successive time slot (t+1) of the previous day (d-1)

dSd:

𝑑𝑆𝑑 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑,𝑡 −  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−1,𝑡+1
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Other features have been included in the model for 

capturing the difference between the number of bikes 

captured at the observation time: • week (d-7) and the one of two weeks prior (d-14)

dP2w:
dP2w = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−7,𝑡

− 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−14,𝑡

• day (d-1) and the one of two days prior (d-2) dP2d:
dP2d = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−1,𝑡 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑘𝑒𝑠𝑑−2,𝑡

Features belonging to the real-time weather and

weather forecast are also collected every 15 minutes

(i.e., temperature, humidity and rainfall). Please note

that, according to our analysis, the significant values for

the weather are those related to the current time and the

hour just before the measured bike availability time. For

example, in order to predict the number of available

bikes at the rack at 3 pm, the weather features at 2 pm

and at the current time are relevant. Thus, the weather

conditions influence the decisions on using the bike or

other transportation means. Similarly, the weather

forecast influences the plan to get the bike.

    The data collected from historical values of each bike 

rack are in practice all the data in the learning window 

(several weeks or months) of the past, as described in 

Section 2. For each time sample, the features of Table 2 

are collected and when needed estimated and stored. 

Table 2: Overview of the feature used in the prediction 
models 

Category Feature 

Baseline-

Historical 

Available Bikes in the past 

Time, month, day 

Day of the week 

Weekend, Holiday 

Previous week (PwB) 

Previous day  (PdB) 

Diff. from 

actual 

values and 

prev. 

observatio

ns 

Previous observation’s difference of the 

previous week (dPw) 

Subsequent observation’s diff. of the previous 

week (dSw) 

Previous observation’s difference of the 

previous day (dPd) 

Subsequent observation’s difference of the 

previous day (dSd) 

Previous observation’s difference between the 

previous week and two weeks earlier (dP2w) 

Previous observation’s difference between the 

previous day and two days earlier (dP2d) 

Real-time 

weather 

and 

weather 

forecast 

Max Temperature Forecasted 

Min Temperature Forecasted 

Temperature 

Humidity 

Pressure 

Wind Speed 

Cloud Cover Percentage 

    When the long-term prediction is performed 24 hours 

in advance, the training/learning is performed once a 

day for each bike rack. Please note that performing the 

training more often may not produce significantly better 

results, and it is very computational expensive since the 

prediction should be performed for each bike rack.   

3. Prediction Models

    In the study of the model, we have tested several 

machine learning solutions to predict the number of 

available bikes at bike-sharing stations/racks. Several 

techniques have been discharged since they did not 

produce satisfactory results for long-term prediction, 

among them: Bayesian Regularized Neural Network 

that achieves an R2 (defined in the sequel) of about 0.4 

for each bike-sharing station. 

    In this section, the results of the two best solutions 

are considered and compared to predict the number of 

available bikes at bike racks and to identify the features 

that could be the best predictors for the purpose. Thus, 

the techniques compared and reported in this paper are 

those that resulted to be the most effective. And in 

particular: Random Forest (RF) [14], Gradient 

Boosting Machine (GBM) [15] and the Auto-

Regressive Integrated Moving Average (e.g., 

ARIMA) as a representative of the traditional statistical 

approaches [16]. Those solutions have been applied  on 

the features presented in Table 1. 

3.1 Assessment metrics 

    The accuracy of the resulting models has been 

evaluated against different metrics. Thus, before 

presenting the results, the assessment metrics are 

presented in this subsection.  

The R-squared which is defined as: 

𝑅2 = 1 − (
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2𝑛

𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑦)2𝑛
𝑖=1

) 

Where 

𝑦 =
1

𝑛
 ∑ 𝑜𝑏𝑠𝑖

𝑛

𝑖=1

 

The MASE (Mean Absolute Scaled Error) which is 

calculated as: 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛 (|𝑞𝑡|), 𝑡 = 1, … , 𝑛 

where 

𝑞𝑡 =
𝑜𝑏𝑠𝑡 − 𝑝𝑟𝑒𝑑𝑡

1
𝑛−1  ∑ |𝑛

𝑖=2 𝑜𝑏𝑠𝑖− 𝑜𝑏𝑠𝑖−1|

And 𝑜𝑏𝑠𝑡 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 , 𝑝𝑟𝑒𝑑𝑡 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, 𝑛   is the number of the values 

predicted over all test sets (96 daily observations per 7 

days). The RMSE (Root Mean Square Error) calculated 

as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2𝑛

𝑖=1

𝑛

The MAE (Mean Absolute Error): 

𝑀𝐴𝐸 =
∑ |𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖|𝑛

𝑖=1

𝑛
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Among them, the MASE is clearly independent from 

the scale of the data. When MASE is used to compare 

predictive models, the best model is the one presenting 

the smaller MASE.  

3.2 ARIMA model 

    The ARIMA model has been executed as multi-step 

forward with updated iteration technique: the forecast 

was computed one hour in advance. The best ARIMA 

model has been identical for all the clusters and resulted 

to be a so called (1,1,2), respectively for p, d, q order in 

AutoArima. ARIMA model cannot be used for 

medium-long term forecasts due to the relevant errors 

produced. An approach to cope with this problem could 

be to apply the forecasting ARIMA technique as a 

multi-step forward to make 24-hour predictions (96 

time slots). In other words, to compute 24 forecasts (i.e., 

1 hour in advance per 24 times): the real observations 

recorded in that hour (four slots of 15 minutes) are 

inserted into the training set, and the prediction for the 

next hour is computed with the new information. 

Therefore, the model needs to be trained every hour, so 

that 24 times per day per 15/20 bike-sharing stations per 

city, which is computationally more expensive than the 

others. Moreover, this approach cannot be claimed as 

long-term prediction. Then, the training set is updated 

with the observations recorded in the predicted hour and 

a new forecast is executed for the next hour. Table 3 

shows the results for the ARIMA model for the main 

bike-sharing stations in the different clusters for short-

term prediction.  

Table 3: ARIMA multi-step forward (short term online 
predictions) with updated iteration results in terms of MASE 
and RMSE per station in Siena. 

ARIMA Model Results 

MASE RMSE Cluster city 

0.10 2.22 1 Pisa 

1.23 1.58 2 Siena 

0.52 1.15 3 Siena 

    For this reason, the solution has been discharged, 

despite the fact that for the ARIMA, the obtained 

accuracy in terms of MASE on the short-term is better 

than those obtained by machine learning techniques for 

long terms, as presented in Table 5. Please remind that, 

the goal was to find a computationally viable solution 

to make satisfactory long-term predictions in terms of 

precision for several different cases.  

The comparison of the needed processing time per each 

bike-sharing station, among the models considered 

above, is also relevant and it is reported in Table 6.  

3.3 Experimental Results via machine 

learning 

    In detail, for GBM a regression tree with a maximum 

depth of 9 was used as a basic learner and the total 

number of trees was increased to 500 while the 

minimum number of observations in each leaf was 

increased to 5. The learning rate has been set to 0.1. 

Note that, determining the optimal (hyperparameter) 

settings for the model is crucial for the bias-reduced 

assessment of a model’s predictive power. The choice 

of GBM parameters has been obtained by a 

hyperparameter tuning implementation. Different 

combinations of parameter values have been tried on 

the dataset (see Table 4).  

Table 4: Hyperparameter ranges and types for GBM 
model 

Hyperparameter Type Start End Default 

n.tree Integer 100 10000 100 

shrinkage Numeric 0.01 0.3 0.1 

interaction.depth Integer 3 10 1 

bag.fraction Numeric 0.1 1 0.5 

    The RF has been set with number of trees composing 

the forest equal to 500 and the candidate feature set 

equal to 1/3 of the number of the data set variables.  

    The result of RF and GBM machine learning 

solutions are compared in Table 5 with respect to the 

clusters, exploiting all the features presented in Table 2. 

The predictive models have been estimated on a 

training period of 7 months. MAE, MASE, RMSE and 

R2 measures have been estimated on a testing period of 

1 week after the 7th January 2020. This comparison has 

highlighted that both the approaches produce similar 

results. On the other hand, RF is more precise in most 

cases obtaining a better R2. The GBM approach 

achieved better results only in cluster 3, which presents 

almost stable trends (see Figure 1) and thus less critical 

cases since the risk to find the rack empty is low. 

Moreover, the values are not very far from those 

obtained by RF in the same cluster.  

Table 5: Machine Learning Models results and 
comparison for different clusters. In bold the best results 
for the comparison 

“Stazione FS” (cluster 1) RF GBM 

MAE 3.467 3.481 

MASE 0,600 0,603 

RMSE 4.136 4.296 

R2 0.989 0.820 

“Polo Marozotto” (cluster 2) RF GBM 

MAE 3.108 3.214 

MASE 1.209 1.250 

RMSE 3.605 3.764 

R2 0.985 0.763 

“due Ponti” (cluster 3) RF GBM 

MAE 1.632 1.529 

MASE 0,999 0,936 

RMSE 2.148 1,991 

R2 0,966 0,655 
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Figure 3: RF predicted values vs real in testing period for 
Cluster 1 reference bike rack. 

3.4 Computational Costs 

    Table 6 shows that almost all the approaches may 

produce predictions every hour for the next hour in a 

reasonable estimation time. On one hand, in order to 

produce satisfactory predictions, the ARIMA approach 

needs to re-compute the training every hour (even if the 

online training can be seen as an alternative it is also a 

computational cost). This is a quite expensive cost of 

about 30s for each bike-sharing station, due to the fact 

that the charging stations can be hundreds. On the other 

hand, machine learning models (i.e., GBM and RF) 

provide predictive models with 96 values in advance 

with quite satisfactory results, they produce better 

results with less effort with respect to ARIMA. GBM 

processing time is quite low and results in terms of error 

measure are better with respect to the RF. GBM model 

can be considered the best solution for a real-time 

application. 

Table 6: Forecasting Models comparison in terms of 
processing time 

Processing 

Time 

ARIMA RF GBM 

Average 

training time 

30.9 sec 410.3 sec 21.8 sec 

Training 

frequency 

1 time per 

hour 

1 time per 

day 

1 time per 

day 

Training 

period 

1 months 7 months 7 months 

Forecast 

window 

1 hour 1 day 1 day 

3.5 Feature Relevance 

    In Figure 4, the feature’s relevance [15] for the three 

clusters has been reported by considering RF and GBM. 

From the comparison it should be noted that both 

techniques present almost the same features in the first 

5 most relevant features.  

    The most important features are those related to the 

past values of the time series (available bikes), to Time, 

Day of the Week, weekend (yes or no), Day. The 

information regarding weather such as Air pressure, 

humidity and temperature are less relevant.  

(a) 

(b) 

Figure 4:  Feature relevance for the RF and GBM with 
respect to the clusters of bike racks. 

3.6 Feature Reduction 

    According to Table 2, the features are classified into 

three main groups: temporal, weather, and differential. 

In addition, it can be observed that the top 5 features are 

those belonging to the temporal category. In Table 7, 

the impact of reducing the feature space is reported, the 

case in which all features are considered has been 

already reported in Table 5.  

Table 7: Impact of feature reduction to precision of 
predictions in  the different clusters: C1, C2 and C3. 

RF GBM 

c1 c2 c3 c1 c2 c3 

Temporal 

MAE 4.36 3.85 4.22 3.93 4.27 1.85 

MASE 0.75 1.33 0.73 0.68 1.47 1.13 

RMSE 5.71 4.61 5.03 4.89 4.88 2.41 

R2 0.98 0.98 0.98 0.78 0.72 0.63 

Temporal 

+ Weather 

MAE 4.22 3.12 1.68 3.69 3.26 1.52 

MASE 0.73 1.18 1.03 0.64 1.22 0.93 

RMSE 5.03 3.6 2.19 4.38 3.84 1.96 

R2 0.98 0.98 0.96 0.81 0.76 0.65 

Temporal 

+ 

differential 

MAE 3.19 3.89 1.72 3.32 4.21 1.58 

MASE 0.55 1.35 1.05 0.57 1.47 0.97 

RMSE 3.87 4.50 2.31 4.19 4.88 2.08 

R2 0.98 0.98 0.96 0.79 0.73 0.65 

    It can be noted that the RF results to be the best 

ranked in terms of R2 with respect to GBM in all cases. 
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In addition, it can be observed a general improvement of 

performance with the increment of features, as usual in 

RF and GBM. The weather, as well as the differential 

features, may lead to gain about 1% in terms of MAE 

(the average MAE for RF is about 4.14 for Temporal 

only, and 3.01 for  Temporal + Weather, and 2.93 for 

Temporal + Differential). This analysis is providing 

some evidence that to compute all the features may 

increase the precision of a small amount at the expense 

of much higher computational costs. 

4. Conclusions

    In this paper, we proposed machine learning methods 

to predict the number of available bikes 24 hours in 

advance in any station of bike sharing systems.     The 

proposed methods use a model which takes high 

dimensional time-series data from the smart bike station 

and uses real-time and forecast weather information as 

input to perform the long-term prediction. ARIMA 

model cannot be used for long term forecasts (24 hours 

in advance) because the iterative forecasting model 

should be trained at least 24 times per day per several 

bike-sharing stations per city. To this aim, RF and GBM 

algorithms have been considered as alternative finding a 

satisfactory computationally viable solutions to make 

long-term predictions that produce satisfactory results 

in terms of precision. 

     In the models, we have considered several features, 

such as the Baseline-Historical data, the difference 

among actual values and previous observations, the 

Real-time weather and weather forecast. In almost all 

predictive models, the top 5 features are those 

belonging to the Baseline-Historical category according 

to the feature relevance analysis performed. Please note 

that, despite the different trends of the clusters, in all 

cases the identified features and model have been the 

same, thus demonstrating the validity of the derived 

results. Using all the features may increase the precision 

of the models of a small amount compared to reducing 

the feature space to the top 5 or including also the 

weather or the differential metrics. 

    The entire approach resulted to be very flexible and 

robust with respect of the sporadic lack of data samples. 

The predictive models can produce predictions 24 hours 

in advance via mobile Apps. The solution has been 

deployed as a feature of Smart City Mobile Apps in the 

Tuscany area to encourage sustainable mobility. 

https://play.google.com/store/apps/details?id=org.disit. 
toscana 
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