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Abstract—Why doesn’t my code work? Instructors for 

introductory programming courses frequently are asked 

that question. Often students understand the problem they 

are trying to solve well enough to specify a variety of input 

and output scenarios. However, they lack the ability to 

identify where the bug is occurring in their code. Mastering 

the use of a full-feature debugger can be difficult at this 

stage in their computer science education. But simply 

providing a hint as to where the problem lies may be 

sufficient to guide the student to add print statements or do 

a hand-trace focusing on a certain section of the code. 

Herein we present a software tool which, given a C++ 

program, some sample inputs, and respective expected 

outputs, uses discriminative graph mining to identify which 

lines in the program are most likely the source of a bug. 

Additionally, the particular operators (relational, logical, 

and arithmetic) that are used in the code may be considered 

in recommending where the bug may be. The tool includes 

a visual display of the control flow graph for each test case, 

allowing the user to step through the statements executed.  
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I.  INTRODUCTION 

As discussed in [1], instructors and teaching assistants for 
introductory programming courses frequently are asked by their 
students: why doesn’t my program work? Often the students 
understand the problem they are trying to solve well enough to 
articulate a variety of input and output scenarios. For example, 
if they are trying to find the sum of all even values in a list of 
numbers, they know that the input list {1, 2, 3, 4, 5} should 
produce a result of 6, and the input list {1, 3, 5, 7} should 
produce a result of 0. However, they frequently lack the ability 
to identify, or even narrow down, where a bug is occurring in 
their code when it does not produce the correct results. The 
recommendation to add print statements, although easy for 
experienced programmers, can require some skill and practice to 
master, and the use of a full-feature debugger can be 
cumbersome and intimidating to a novice programmer. 

Herein we present BugHint, a software tool which, given a 
C++ program, some sample inputs, and respective outputs, uses 

discriminative graph mining to identify which lines in the C++ 
program are most likely causing the erroneous results. 
Additionally, the particular relational, logical, and arithmetic 
operators that are used in the program may be considered since 
beginning programmers tend to make more semantic errors with 
certain operators and in expressions that utilize multiple 
operators. The tool includes a visual display of the control flow 
graph for each test case (i.e., sample input), allowing the user to 
step through the statements as they are executed. The goal is that 
the student will take the bug hint and subsequently scrutinize the 
logic and code in the identified section of the program, thereby 
finishing the debugging process on his/her own.  

The organization of this paper is as follows. Section II 
provides a brief overview of related work in debugging 
experiences with beginning programmers and the use of 
visualization in debugging. Section III discusses the foundation 
for and implementation of our software tool in terms of the graph 
mining analysis algorithms. Section IV presents the graphic user 
interface. A summary and conclusions are given in Section V. 
Future work is discussed in Section VI.  

II. RELATED WORK 

A. Debugging Experiences with Beginning Programmers 

Several studies (e.g., [1], [2], and [3]) have identified 
problems that students experience with coding in introductory 
computer science courses, resulting in a proliferation of program 
bugs. Debugging strategies such as strategically placed print 
statements can be difficult to teach [1]. There are full-feature 
debugging tools such as GDB, which allow one to set 
breakpoints in the code and/or watch the values of variables 
change during execution of the program. However, for some 
novice programmers these tools can be too cumbersome and/or 
intimidating to use. After years of study, there is no consensus 
as to whether beginning programmers should be exposed to a 
full-feature debugger. 

There have been studies that have successfully integrated the 
teaching of programming and a debugger at the introductory 
level. In [2] the authors used a debugger to demonstrate 
construction of Java objects and function calls in addition to 
using the debugger to find bugs in programs. Similarly, the 
authors of [4] used debugging exercises and simple debugger 
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functions to reinforce programming concepts (e.g., loops) that 
they were teaching. 

However, full-feature debugger tools are not without 
criticism. In addition to the complaint that they may further 
confound the debugging experience for novice programmers 
who are already dealing with learning about an editor, operating 
system commands, compiler error messages, and programming 
language syntax, there is the issue that debuggers can potentially 
introduce additional bugs. A heisenbug is a software bug that is 
introduced when one attempts to study or analyze a program. 
Running a program in a debugger can actually modify the 
original code, changing memory addresses of variables and the 
timing of the execution. Debuggers often provide watches or 
other user interfaces that cause additional code to be executed, 
which, in turn, modify the state of the program. Time also can 
be a factor in heisenbugs, because race conditions may not occur 
when the program is slowed down by single-stepping through 
lines of code with the debugger. 

Many visual debugging tools (such as DDD [5], Nemiver [6], 
or those debugging tools built into IDEs) provide a more user-
friendly interface to command line debugging tools. Command 
line debugging tools suffer from the limitations of the interface; 
viewing where execution has stopped or paused requires 
programmer intervention, determining where breakpoints are to 
be placed (or have been placed) can be difficult (often requiring 
the programmer to figure out the exact line number at which they 
want to break), and determining the path that the execution 
followed can be difficult if breakpoints are not set appropriately.  
Additionally, if the programmer wants to figure out how their 
code behaves with multiple inputs, they will need to change the 
code, recompile, and run the debugging tool again.  For veteran 
programmers this task is routine (and often more tedious than 
difficult); for novice programmers the complexity and power of 
these tools can be daunting and difficult to grasp. 

Herein we do not seek to answer the question of whether the 
use of a full-feature debugger should be integrated into an 
introductory programming course. Rather, it is our intention to 
present a simple tool which the student can use as a debugging 
aid and training tool. Our aim is similar to the function of the 
instructor or teaching assistant who provides a hint as to where 
in the student’s code the bug might be occurring. It is still up to 
the student to add print statements, do a hand-trace focusing on 
those particular statements, or use other techniques to try to fix 
the problem on his/her own, considering various input-output 
test cases. 

B. Visualization in Debugging 

Many contemporary debugging tools provide some type of 
visual representation of the source code in addition to displaying 
the program as text. This visual representation could be in the 
form of a flow chart (e.g., Visustin [7]), a control flow graph 
(e.g. KDevelop [8] and Dr. Garbage [9]), or UML diagrams 
(e.g., Eclipse ObjectAid [10]). The objective of the visualization 
is to facilitate understanding of some properties of the program 
such as the logic and/or the interactions between code blocks. To 
this end, animation (not just a static representation) of program 
execution has long been found to be useful. 

Just as UML diagrams were deemed to be particularly 
helpful for object-oriented programming languages like Java and 
C++, control flow graphs have been found to be useful in 
debuggers for various programming paradigms. The authors of 
[11] presented GRASP, a graphical environment for analyzing 
Prolog (i.e., logic) programs; the tool dynamically animates the 
executed sequence of Prolog subgoals as a control flow graph 
and allows the user to inspect instantiation of variables as s/he 
steps through the execution. In [12] the authors introduced a 
debugging tool for MPI (i.e., parallel) programs that displays a 
message-passing graph of the execution of an MPI application; 
parts of the graph are hidden or highlighted based on the 
sequence of MPI calls that occur during a particular execution. 
Mochi [13] was created as a visual debugging tool for Hadoop 
(i.e., distributed programs); it displays the control flow of the 
workloads of each processor as a graph, allowing the user to 
observe the map and shuffle processing that takes place, and 
possibly identify erroneous sequencing and/or data partitioning.  

III. IMPLEMENTATION 

A. Discriminative Graph Mining 

Our tool, BugHint, was motivated by the work presented in 
[14] for identifying bug signatures using discriminative graph 
mining. The basic idea is to first produce a control flow graph 
for a program written in a procedural programming language (in 
our case, this is C++). In brief, a control flow graph is a directed 
graph made up of nodes representing basic blocks. Each basic 
block contains one or more statements from the program. There 
is an edge from basic block Bi to basic block Bj if program 
execution can flow from Bi to Bj. For more information on 
control flow graphs and determination of basic blocks, see [15]. 
For C and C++ programs, a control flow diagram can be 
generated by compiling the program with clang and opt (we 
specify no optimization), and then creating the graph as a dot 
graph description language file using dot.  

As an example, consider the C++ program shown in Fig. 1 
which is supposed to replace only the first occurrence of either x 
or y in an array a with the value of z. This program does not 
perform that task correctly; it contains a bug. For simplicity, the 
code to output the final values of the array is commented out in 
this program since it is not where the bug occurs.  

An example of a control flow graph for this program is 
shown in Fig. 2. In this graph there are eight blocks; the figure 
shows which lines of code are contained in each block.  

After constructing a control flow graph for the program to be 
analyzed, our tool needs to consider test cases. These need to be 
specified in terms of sample input and expected output. The test 
cases should be as representative as possible of all boundary 
conditions for the program. However, a novice programmer may 
be unfamiliar with that notion. At the very least, the user must 
specify at least one input sample that is known to produce correct 
output and at least one input sample that is known to produce 
incorrect output; the user must distinguish these as ‘correct’ and 
‘incorrect.’ In Table 1 we list some sample test cases for the 
example program shown in Fig. 1.  

  



  

 

 

int main( )   // line 1 

{ 

  // inputs to the program 

  int x = 1; 

  int y = 7; 

  int z = 0; 

  int a[2] = {1, 2}; 

  int arraySize = 2; 

  

  for (int i = 0; i < arraySize; i++)  // line 2 

  { 

    if (a[i] == x)  // line 3 

    { 

      a[i] = z;  // line 4 

    }   // line 5 

    if (a[i] == y)  // line 6 

    { 

      a[i] = z;  // line 7 

    }   // line 8 

  }   // line 9 

  // code to output a[ ]… 

  return(0);  // line 10 

} 

Figure 1. Example C++ program 

For each sample case, our tool produces a code trace in terms 
of the lines executed for the specified input. The code traces for 
the four sample cases shown in Table 1 are listed in Table 2. It 
should be noted that if there is an infinite loop (which is a 
common bug) during execution of one of the sample input cases, 
the output from the code trace should be sufficient to identify the 
line(s) where the bug is occurring and no further analysis should 
be necessary. From each code trace, we also generate a control 
flow graph for that sequence. The control flow graphs for code 
traces 1 and 2 from Table 2 are shown in Fig. 3; the control flow 
graphs for code traces 3 and 4 are the same as the graph shown 
in Fig. 2.  

The collection of graphs for the sample cases is next 
analyzed to identify non-discriminative edges. A non-
discriminative edge is an edge that appears in every graph that is 
in the collection of execution graphs. Such edges are removed 
from each graph in the collection since they are the same in each 
execution, and, as such, are not informative in distinguishing 
where the bug occurs. The collection of control flow graphs with 
non-discriminative edges removed for our running example is 
shown in Fig. 4. Finally, the collection of graphs is analyzed to 
determine what subgraph is common to the faulty (i.e., incorrect 
output) execution graphs, but not common to the correct 
execution graphs. This corresponds to the section of code where 
the bug likely occurs. For our running example, such a 
discriminative control flow graph is shown in Fig. 5. It tells us 
that the bug involves blocks B4, B6, and B7, which correspond 
to lines 4-8 in the program. The hope is that the student will use 
this information to realize that, after changing the value to z in 
line 4, the program should not proceed to lines 6-8 since the 
specifications of the problem were to change either, not both, the 
occurrence of x or y to z. 

The discriminative graph, and hence the bug in the program, 
may not consist of lines that are executed in the incorrect cases, 
but not executed in the correct cases (as was the situation in this 
example program); it could be the reverse situation. Or it could 
be the case that we cannot find a subgraph that is common to all 
faulty (or correct) execution graphs, but not common to the 
correct (or faulty) execution graphs. The algorithms we utilize 
for identifying the “best” discriminative graph are explained 
next. These differ slightly from those proposed in [14] and [16] 
for discriminative graph mining.  

 

Figure 2. Control flow graph for the example program 

TABLE 1. SAMPLE TEST CASES FOR THE EXAMPLE PROGRAM 

(INCORRECT CASES HIGHLIGHTED 

Sample No. a x y z Result 

1 {1, 2} 1 7 0 {0, 2} 

2 {1, 2} 7 1 0 {0, 2} 

3 {1, 7} 1 7 0 {0, 0} 

4 {1, 7} 7 1 0 {0, 0} 

 

TABLE 2. CODE TRACES FOR THE EXAMPLE PROGRAM 

 Trace Line Numbers Trace Block Numbers 

1 1 2 3 4 5 6 9 2 3 6 9 2 10 B1 B2 B3 B4 B6 B9 B2 B3 B6 B9 B2 B10 

2 1 2 3 6 7 8 9 2 3 6 9 2 10 B1 B2 B3 B6 B7 B9 B2 B3 B6 B9 B2 B10 

3 1 2 3 4 5 6 9 2 3 6 7 8 9 2 10 B1 B2 B3 B4 B6 B9 B2 B3 B6 B7 B9 B2 B10 

4 1 2 3 6 7 8 9 2 3 4 5 6 9 2 10 B1 B2 B3 B6 B7 B9 B2 B3 B4 B6 B9 B2 B10 

 

 

Figure 3. Control flow graphs for (a) trace 1 and (b) trace 2 from Table 2 



  

 

 

Figure 4. Control flow graphs with non-discriminative edges removed for 
(a) trace 1, (b) trace 2, and (c) traces 3 and 4 from Table 2 

 

Figure 5. Discriminative control flow graph for the example program 

Let C+ and C- represent the sets of control flow graphs for 
the sample test cases producing correct and incorrect results, 
respectively; we require that there be at least one graph in each 
such set. The function FindDiscriminativeGraph (Fig. 6) first 
removes non-discriminative edges from the graphs in both sets. 
It then calls CreateDiscriminativeGraph (Fig. 7) to try to find a 
subgraph that is common to all faulty execution graphs, but not 
common to all the correct execution graphs. If we are unable to 
find such a graph, then the function RelaxedCreate-
DiscriminativeGraph (Fig. 8) is called, which relaxes the 
requirement that the subgraph we seek not be present in all of 
the correct execution graphs; instead the subgraph only has to 
not be present in α * |C+| of the correct execution graphs, where 
α is a user-specified parameter (our default is α = 0.5).  

FindDiscriminativeGraph and CreateDiscriminativeGraph 
use a function called Augment; this function takes the subgraph 
G and adds to it an edge (and possibly a node) such that the 
source vertex exists in G, and the edge (and destination node) 
exists in all graphs in S1. In this way, a subgraph with an 
additional edge that exists in all elements of S1 is created and 
considered by the algorithm. 

If we still fail to find a discriminative subgraph, then the bug 
likely does not involve code that is executed in all faulty cases 
and not in correct cases, but rather involves code that is 
executed in correct cases and not in faulty cases. Thus, we again 
call CreateDiscriminativeGraph, but reverse the order of the 
parameters (C+ and C-) from our previous call. If we still fail to 
find a discriminative subgraph, we again call Relaxed-
CreateDiscriminativeGraph and look for a subgraph that only 
has to not be present in β * |C+| of the correct execution graphs, 
where β is a user-specified parameter (our default is β = 0.5). 

It is possible that the resulting discriminative graph will be 
disconnected. We output the smallest connected component in 
that graph using the assumption that a novice programmer will 
want to focus on a single, sequential section of his/her program 

for scrutinizing the bug, rather that examining multiple, 
“fragmented” sections of code.  

It should be noted that it is possible that our algorithm will 
not find any graph that meets the discriminative conditions. 
This could be because the specified test cases do not adequately 
exercise all paths through the control flow graph or it could be 
that the path through the control flow graph will be the same 
regardless of the input. Additionally, it could be the case that 
multiple subgraphs could be viable candidates to be the source 
of the bug. These last two situations are addressed in the next 
section. 

 

Algorithm: FindDiscriminativeGraph(C+, C-, α, β) 

C+: set of control flow graphs for inputs producing correct 

output 

C-: set of control flow graphs for inputs producing incorrect 

output 

α: percentage of graphs that discriminative subgraph need not 

be present in C+ when relaxing conditions 

β: percentage of graphs that discriminative subgraph need not 

be present in C- when relaxing conditions 

1. remove non-discriminative edges from graphs in C+ and 

C-; 

2. G = CreateDiscriminativeGraph(C-, C+); 

3. if G is empty then 

4.   G = RelaxedCreateDiscriminativeGraph(C-, C+,                                                        

                                                                           |C+| * α); 

5.   if G is empty then 

6.     G = CreateDiscriminativeGraph(C+, C-); 

7.     if G is empty then 

8.       G = RelaxedCreateDiscriminativeGraph(C+, C-,    

                                                                               |C-| * β); 

9.     end-if; 

10.   end-if; 

11. end-if; 

12. G' =  smallest connected component in G; 

13. output G' 
Figure 6. Algorithm for FindDiscriminativeGraph 

 

Algorithm: CreateDiscriminativeGraph(S1, S2) 

S1: set of control flow graphs 

S2: set of control flow graphs 

1. FreqSG = queue of 1-edge subgraphs in S1; 

2. while FreqSG is not empty do 

3.    G = FreqSG.dequeue(); 

4.    if G is not in any graph in S2 then 

5.      return(G); 

6.    end-if; 

7.    NewGraphs = Augment(G);  

8.    for each graph G’ in NewGraphs do 

9.       FreqSG.enqueue(G’); 

10.    end-for; 

11. end-while;  

12. return(empty graph) 
Figure 7. Algorithm for CreateDiscriminativeGraph 



  

 

Algorithm: RelaxedCreateDiscriminativeGraph(S1, S2, γ) 

S1: set of control flow graphs 

S2: set of control flow graphs 

γ: threshold for number of graphs discriminative subgraph 

must be present in 

1. FreqSG = queue of 1-edge subgraphs in S1; 

2. while FregSG is not empty do 

3.     G = FreqSG.dequeue();  

4.     if G is in < γ graphs in S2 then 

5.        return(G); 

6.     end-if; 

7.     NewGraphs = Augment(G); 

8.     for each graph G’ in NewGraphs do 

9.        FreqSG.enqueue(G’); 

10.     end-for; 

11. end-while; 

12. return(empty graph) 
Figure 8. Algorithm for RelaxedCreateDiscriminativeGraph 

B. Operator Complexity 

Earlier versions of BugHint [21] focused solely on the 

discriminative graphs. This approach is effective when the 

erroneous code causes the execution to follow a different code 

path in the CFG. However, it is often the case with novice 

programmers that, in an attempt to be clever, they introduce 

some relatively complex calculation in the condition of a loop 

or an if-statement that effectively short-circuits the branch and 

forces the code to always execute the same branches.  In our 

testing of BugHint, we identified cases where no basic blocks 

were identified as problematic despite the presence of a bug.  As 

such, the decision was made to augment the CFG analysis with 

more information based on additional scrutinization. 

Semantic errors frequently occur in lines of code that are 

more complex in structure.  Unless the errors encountered are 

in output formatting, a simple C printf statement or C++ cout 

statement is unlikely to introduce a semantic error into a 

program.  Instead, bugs are often introduced in lines of code that 

compare or change the values of variables in the program. The 

more complex a line (or basic block) is in terms of relational, 

logical, and arithmetic operators, the more likely it is that a 

sematic error will occur.  Additionally, some operators like && 

or ||, while familiar to seasoned programmers, seem foreign in 

their functionality to new coders.  BugHint takes this into 

account by looking not only at the CFG analysis of the program 

(with good and bad traces) but at the complexity of each basic 

block encountered in the program. 

Since there is no published formal study analyzing the 

frequency of semantic errors for various relational, logical, and 

arithmetic operators by beginning programmers, the complexity 

of various C++ operators was determined by over 40 years of 

collective teaching and tutoring experience of the authors for 

BugHint consideration.  Several frequently used operators were 

sorted into ranks which were used to create a complexity score 

for each operator.  Table 3 shows the ranks of these operators 

as well as the (informal) rationale for their relative ranking. A 

lower ranking indicates that the operator is less likely to cause 

a semantic error when used in an expression (on its own). For 

example, +, *, and – correspond to familiar arithmetic concepts 

for beginning programmers; students have used those 

operations since grade school. It should be noted that division 

(/) is not grouped with addition, multiplication, and, subtraction 

because integer division (e.g., 3 / 4 evaluates to 0 in C++) is the 

source of many semantic errors for novice programmers. The 

comparison operator == also is a frequent source of bugs since 

many students confuse it with the assignment operator =. In 

contrast to multiplication, subtraction, and addition, the logical 

operators && and || are new concepts to most beginning 

programmers and require higher order thinking than addition, 

multiplication, and subtraction; thus, they are ranked much 

higher. If not explicitly listed in the table, an operator defaults 

to a rank of 0. 

The complexity score of an operator is defined as its rank 

/5.0, or more generally: 

complexity = rank / number_of_ranks 

This results in a complexity score in the range [0, 1) that 

increases as the complexity of an operator increases.  The 

generalization of the calculation of the complexity is such that 

the ranks and relative complexities can be fine-tuned based on 

empirical testing and observation.  

 
TABLE 3. OPERATOR COMPLEXITY RANKS 

Rank Ops Rationale 

0 + * - Most familiar 

1 < > <= >= ! += -= *= Easy concepts, but more foreign 

than rank 0 

2 == / == confused with =, / is integer 
division 

3 ++ -- % New concepts, pre/post 

increment/decrement can give 
different results 

4 && || Requires higher order thinking 

 

The complexity of a basic block is calculated as the sum of 

the number of operators in the basic block (a non-negative 

integer) and the average complexity of an operator in the basic 

block (a real value less than 1).  This ensure that basic blocks 

with more operators are indicated as more complex, but, 

between basic blocks of the same number of operations, those 

with higher average operator complexity are classified as more 

complex; these are indications of two common Code Smells 

[19].  If the basic block has relatively few lines of code but a 

high number of operations, this may indicate an excessively 

long line of code (or a God Line); if the basic block has a large 

number of lines, it may hint at the presence of the Long Method 

code smell. While these code smells are not an indication that a 

bug is present, they are frequent indicators that something is 

wrong, or that a refactoring may result in code that is easier to 

debug and maintain. 

BugHint augments the CFG analysis of source code with the 

complexity analysis. After identifying basic blocks that could 

be problematic using the discriminative graph mining, the basic 

blocks that were identified as potentially problematic are sorted 

by complexity. The top N (a user-specified parameter that 



  

 

defaults to 2) are reported to the user as the most likely to 

contain the bug.  

This augmentation to the CFG analysis has some benefits.  

Consider the following main function (where here the value of 

answer is hard-coded on the second line instead of being 

entered by the user to allow for BugHint to operate on the 

source): 

// block 1 

bool validEntry; 

char answer = 'n'; 

cout << "Is this yes or no?" << endl; 

validEntry = (answer == 'y' && answer == 'Y') ||                           

                     (answer == 'n' && answer == 'N'); 

// block 2 

if (validEntry) 

    cout << "Valid entry!" << endl; 

// block 3 

else 

    cout << "Invalid Entry" << endl; 

// block 4 

return 0; 

 

Veteran programmers will quickly notice that the condition 

in line 4 is incorrect and will always return false regardless of 

the value of answer.  However, CFG analysis will not indicate 

erroneous blocks because all traces will contain blocks 1, 3, and 

4 in that order.  Examination of the complexity of the basic 

blocks will show that blocks 2 through 4 have a complexity of 

0, but block 1 has a complexity of 3 + (0.8 * 3) / 3 = 3.8.  

BugHint would augment the CFG analysis (which would be 

unable to find a discriminative subgraph) with the information 

from the complexity analysis and indicate to the user that the 

problem exists in block one. 

IV. USER INTERFACE 

Some of the tools used to generate the information needed 
to display to the user are not easily installable/usable on all 
platforms (specifically, clang/LLVM and some bash tools are 
not easily installable on Windows). Making the BugHunt 
platform independent was a top priority so that it could be 
readily available to as broad a range of novice programmers as 
possible. BugHunt has been developed as a web application 
written in Node.js and using vis.js for the visualization of the 
control flow graphs. The web application backend interfaces 
with various utilities written in Python, which make the 
appropriate system calls to clean, format, instrument, and run 
the source code with various starting conditions.  Additionally, 
the backend analyzes the traces and basic blocks of the provided 
source code. 

Web applications inherently have a large number of security 
concerns, and a system designed specifically to compile and run 
arbitrary C/C++ code exhibits an exceptionally large attack 
surface area.  This application was not designed to run as a 
globally hosted web application, but rather was intended to be 

deployed to individuals using emerging technologies such as 
Docker (for platform-independent deployments of the web 
application that run locally) or the Linux Subsystem for 
Windows (which would allow a more native desktop interface 
to be quickly developed using Electron Shell [20]).   

Initially, the user is presented with a single toolbar with a 
button that allows them to upload a single C++ source file.  
When the system receives the file, it generates the CFG using 
clang's analysis tools (specifically DumpCFG), calculates the 
complexity of each basic block, maps lines of code to basic 
blocks, and instruments the code by adding output statements at 
the beginning of each basic block (see Fig. 9).  The system then 
runs the instrumented program and sends the resulting traces 
back to the UI. A student can choose individual starting 
configurations and walk forwards and backwards through the 
execution (with lines of code highlighted) using arrow buttons 
on the UI. 

#include <iostream> 

using namespace std; 

int main() 

{ 

    int a = 0; 

    double d = 1.1; 

    for (int i=0; i<10; i++) 

    { 

        cout << "hi" << endl; 

    } 

    return 0; 

} 

Figure 9a) Original C++ source  

 
#include <iostream>  
#include <sstream>  
#include <unistd.h>  
void __bbinstr(const char bbid[]) {  
 std::cerr << bbid << std::endl;  
 return;  
}  
#include <iostream>  

 
using namespace std;  
/*:B6:*/ int main() /*:/B6:*/  
{  
 /*:B5:*/ __bbinstr("B5");  
 int a = /*%a%*/ 0 /*%~a%*/; /*:/B5:*/  
 /*:B5:*/ double d = /*%d%*/ 1.1 /*%~d%*/;    

/*:/B5:*/  
 for (int i = 0; __bbinstr("B4"), i < 10; 

__bbinstr("B2"), i++) {  
   /*:B3:*/ __bbinstr("B3");  
   cout << "hi" << endl; /*:/B3:*/  
 }  
 /*:B1:*/ __bbinstr("B1");  
 return 0; /*:/B1:*/  
} 
 

Figure 9b) Instrumented C++ source (formatted for more readability) 

 

The system assumes that the initial configuration that was 
uploaded by the student produced a good trace.  However, the 
user can add additional starting conditions (by changing the 
starting values of the variables at initialization) and specify 
whether or not it produces a good trace (i.e., correct results) or 
a bad trace (i.e., incorrect results). At any point, the student may 



  

 

select "Get Hint." The UI will then send the traces to the 
backend, which will analyze the CFG, the traces, and the 
complexity of the basic blocks. The resulting list of basic blocks 
is sent to the GUI for display.    

The CFG analysis requires at least one “good” trace.  While 
the student might not understand why their code is producing 
the correct answer in some cases, it must be assumed that the 
novice programmer has managed to get correct output in at least 
one case.  As use of this tool requires knowledge of inputs and 
expected outputs (and thus what inputs result in correct output), 
it can be reasonably assumed that the student can identify at 
least one scenario where their code produces a correct result. 

Fig. 10 shows a screenshot of the main view in the BugHunt 
GUI with the example program from Fig. 1 and the test cases 
from Table 1. The hints have been augmented using the 
complexity information. The arrow buttons in the GUI allow 
the user to step forwards and backwards through a selected 
execution case; both the corresponding nodes and (text) lines in 
the program subsequently will be highlighted. Any particular 
block in an execution sequence (listed below the graph display) 
also can be selected (i.e., clicked-on) with the mouse. 

BugHint also supports user-defined functions. When 
loading a single cpp source file containing multiple functions, 
the system splits the information so that the CFG for each 
function and the code for each function displays in a tab.  When 
walking through the traces, the tabbed view switches 
automatically to the function which is currently being executed 
in the trace.  Fig. 11, 12, and 13 show this tabbed view for an 
implementation of a function that finds the maximum of two 
integer values; the function contains a bug (Fig. 13).  When 
giving hints, BugHunt will highlight all lines of code that are 
suspected of being in the vicinity of the bug (i.e., are in the 
detected block). 

V. SUMMARY AND CONCLUSIONS 

Herein we have presented a simple debugging tool, which, 
given a C++ program that has a logic error just serious enough 
to occasionally produce erroneous output while sometimes 
producing correct output, and some sample inputs with 
corresponding outputs, uses discriminative graph mining to 
identify which lines in the program are most likely the source 
of the bug. Additionally, it may examine the particular 
relational, logical, and arithmetic operators that are used in the 
code to determine what lines in the code are probably causing 
the bug. The tool includes a visual display of the control flow 
graph for each test case, allowing the user to step through the 
statements executed.  

In a previous study [21], we found that students who 
completed pre-training using BugHint did better on post-testing 
than students who completed pre-training without BugHint, 
even though all groups had no help for post-training. During a 
post-training exercise where both groups completed the exact 
same activity of debugging three practice programs, the 
treatment group found more of the bugs, self-generated more 
informative test cases and reasoning regarding those test cases, 
and self-generated more helpful comments to add to the code 
itself. Hence, it appears that the extra-formalized method of 

using BugHint may improve the way students think about the 
debugging practice. 

We look forward to utilizing BugHint in our introductory 
programming courses, and performing additional usefulness 
and usability studies to guide further refinement of this tool, and 
reduce some of the time that novice students spend debugging 
their programs. 

VI. FUTURE WORK 

As with any visual programming environment, we expect 
that there will be a challenge in accommodating the additional 
visual complexity in the graphical user interface that will result 
from larger programs. We intend to perform usefulness and 
usability studies with novice programmers to find ways of 
implementing visual representation and navigation of a fairly 
large number of modules of the control flow graph in a manner 
that they (the students) can best understand. By fairly large 
number we mean a number commensurate with the size of 
programs that beginning programmers write. From our own 
teaching experience that has been approximately 50 lines of 
code (with no user-defined functions) at the beginning of the 
CS1 semester, and 1500 or more lines of code (with 20 or more 
user-defined functions) by the end of the semester. 

We also intend to compare our system to the hints that 
would be produced by utilizing other existing algorithms for 
finding discriminative subgraphs (e.g., [17] and [18]) and/or 
adding other options (in addition to our current α and β 
parameters) to our algorithm in order to find the best 
discriminative subgraph, and hence provide the best suggestion 
for the bug hint.  

Additionally, the system currently has rather strict rules on 
the formatting of the files it can handle due to the nature of the 
parser. Years of introductory computer science education 
experience has demonstrated that these rules are frequently not 
followed by students despite the insistence of course 
instructors. The backend will be made more robust to reduce 
these restrictions. 
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Figure 10. BugHunt GUI, showing the possible erroneous lines as determined by control flow graph trace analysis and complexity analysis 
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Figure 11. BugHunt GUI after loading a file that calls a user-defined function 

 

 
Figure 12. BugHunt GUI when switching function views 

 



  

 

 
Figure 13. Hint to the location of a bug in max function 

 


