
DOI Reference Number: 10.18293/VLSS2018-029

A Visual Debugging Aid

Based on Discriminative Graph Mining

Jennifer L. Leopold1, Nathan W. Eloe2, Jeff Gould1, and Eric Willard1
1Missouri University of Science & Technology

Department of Computer Science

Rolla, MO, USA
2Northwest Missouri State University

School of Computer Science and

Information Systems

Maryville, MO, USA

leopoldj@mst.edu, nathane@nwmissouri.edu, jg7f9@mst.edu, emwwwc@mst.edu

Abstract—Why doesn’t my code work? Instructors for

introductory programming courses frequently are asked

that question. Often students understand the problem they

are trying to solve well enough to specify a variety of input

and output scenarios. However, they lack the ability to

identify where the bug is occurring in their code. Mastering

the use of a full-feature debugger can be difficult at this

stage in their computer science education. But simply

providing a hint as to where the problem lies may be

sufficient to guide the student to add print statements or do

a hand-trace focusing on a certain section of the code.

Herein we present a software tool which, given a C++

program, some sample inputs, and respective expected

outputs, uses discriminative graph mining to identify which

lines in the program are most likely the source of a bug.

Additionally, the particular operators (relational, logical,

and arithmetic) that are used in the code may be considered

in recommending where the bug may be. The tool includes

a visual display of the control flow graph for each test case,

allowing the user to step through the statements executed.

Keywords-debugging; graph; data mining; visualization

I. INTRODUCTION

As discussed in [1], instructors and teaching assistants for
introductory programming courses frequently are asked by their
students: why doesn’t my program work? Often the students
understand the problem they are trying to solve well enough to
articulate a variety of input and output scenarios. For example,
if they are trying to find the sum of all even values in a list of
numbers, they know that the input list {1, 2, 3, 4, 5} should
produce a result of 6, and the input list {1, 3, 5, 7} should
produce a result of 0. However, they frequently lack the ability
to identify, or even narrow down, where a bug is occurring in
their code when it does not produce the correct results. The
recommendation to add print statements, although easy for
experienced programmers, can require some skill and practice to
master, and the use of a full-feature debugger can be
cumbersome and intimidating to a novice programmer.

Herein we present BugHint, a software tool which, given a
C++ program, some sample inputs, and respective outputs, uses

discriminative graph mining to identify which lines in the C++
program are most likely causing the erroneous results.
Additionally, the particular relational, logical, and arithmetic
operators that are used in the program may be considered since
beginning programmers tend to make more semantic errors with
certain operators and in expressions that utilize multiple
operators. The tool includes a visual display of the control flow
graph for each test case (i.e., sample input), allowing the user to
step through the statements as they are executed. The goal is that
the student will take the bug hint and subsequently scrutinize the
logic and code in the identified section of the program, thereby
finishing the debugging process on his/her own.

The organization of this paper is as follows. Section II
provides a brief overview of related work in debugging
experiences with beginning programmers and the use of
visualization in debugging. Section III discusses the foundation
for and implementation of our software tool in terms of the graph
mining analysis algorithms. Section IV presents the graphic user
interface. A summary and conclusions are given in Section V.
Future work is discussed in Section VI.

II. RELATED WORK

A. Debugging Experiences with Beginning Programmers

Several studies (e.g., [1], [2], and [3]) have identified
problems that students experience with coding in introductory
computer science courses, resulting in a proliferation of program
bugs. Debugging strategies such as strategically placed print
statements can be difficult to teach [1]. There are full-feature
debugging tools such as GDB, which allow one to set
breakpoints in the code and/or watch the values of variables
change during execution of the program. However, for some
novice programmers these tools can be too cumbersome and/or
intimidating to use. After years of study, there is no consensus
as to whether beginning programmers should be exposed to a
full-feature debugger.

There have been studies that have successfully integrated the
teaching of programming and a debugger at the introductory
level. In [2] the authors used a debugger to demonstrate
construction of Java objects and function calls in addition to
using the debugger to find bugs in programs. Similarly, the
authors of [4] used debugging exercises and simple debugger

mailto:chaman@mst.edu
mailto:leopoldj@mst.edu
mailto:nathane@nwmissouri.edu
mailto:jg7f9@mst.edu

functions to reinforce programming concepts (e.g., loops) that
they were teaching.

However, full-feature debugger tools are not without
criticism. In addition to the complaint that they may further
confound the debugging experience for novice programmers
who are already dealing with learning about an editor, operating
system commands, compiler error messages, and programming
language syntax, there is the issue that debuggers can potentially
introduce additional bugs. A heisenbug is a software bug that is
introduced when one attempts to study or analyze a program.
Running a program in a debugger can actually modify the
original code, changing memory addresses of variables and the
timing of the execution. Debuggers often provide watches or
other user interfaces that cause additional code to be executed,
which, in turn, modify the state of the program. Time also can
be a factor in heisenbugs, because race conditions may not occur
when the program is slowed down by single-stepping through
lines of code with the debugger.

Many visual debugging tools (such as DDD [5], Nemiver [6],
or those debugging tools built into IDEs) provide a more user-
friendly interface to command line debugging tools. Command
line debugging tools suffer from the limitations of the interface;
viewing where execution has stopped or paused requires
programmer intervention, determining where breakpoints are to
be placed (or have been placed) can be difficult (often requiring
the programmer to figure out the exact line number at which they
want to break), and determining the path that the execution
followed can be difficult if breakpoints are not set appropriately.
Additionally, if the programmer wants to figure out how their
code behaves with multiple inputs, they will need to change the
code, recompile, and run the debugging tool again. For veteran
programmers this task is routine (and often more tedious than
difficult); for novice programmers the complexity and power of
these tools can be daunting and difficult to grasp.

Herein we do not seek to answer the question of whether the
use of a full-feature debugger should be integrated into an
introductory programming course. Rather, it is our intention to
present a simple tool which the student can use as a debugging
aid and training tool. Our aim is similar to the function of the
instructor or teaching assistant who provides a hint as to where
in the student’s code the bug might be occurring. It is still up to
the student to add print statements, do a hand-trace focusing on
those particular statements, or use other techniques to try to fix
the problem on his/her own, considering various input-output
test cases.

B. Visualization in Debugging

Many contemporary debugging tools provide some type of
visual representation of the source code in addition to displaying
the program as text. This visual representation could be in the
form of a flow chart (e.g., Visustin [7]), a control flow graph
(e.g. KDevelop [8] and Dr. Garbage [9]), or UML diagrams
(e.g., Eclipse ObjectAid [10]). The objective of the visualization
is to facilitate understanding of some properties of the program
such as the logic and/or the interactions between code blocks. To
this end, animation (not just a static representation) of program
execution has long been found to be useful.

Just as UML diagrams were deemed to be particularly
helpful for object-oriented programming languages like Java and
C++, control flow graphs have been found to be useful in
debuggers for various programming paradigms. The authors of
[11] presented GRASP, a graphical environment for analyzing
Prolog (i.e., logic) programs; the tool dynamically animates the
executed sequence of Prolog subgoals as a control flow graph
and allows the user to inspect instantiation of variables as s/he
steps through the execution. In [12] the authors introduced a
debugging tool for MPI (i.e., parallel) programs that displays a
message-passing graph of the execution of an MPI application;
parts of the graph are hidden or highlighted based on the
sequence of MPI calls that occur during a particular execution.
Mochi [13] was created as a visual debugging tool for Hadoop
(i.e., distributed programs); it displays the control flow of the
workloads of each processor as a graph, allowing the user to
observe the map and shuffle processing that takes place, and
possibly identify erroneous sequencing and/or data partitioning.

III. IMPLEMENTATION

A. Discriminative Graph Mining

Our tool, BugHint, was motivated by the work presented in
[14] for identifying bug signatures using discriminative graph
mining. The basic idea is to first produce a control flow graph
for a program written in a procedural programming language (in
our case, this is C++). In brief, a control flow graph is a directed
graph made up of nodes representing basic blocks. Each basic
block contains one or more statements from the program. There
is an edge from basic block Bi to basic block Bj if program
execution can flow from Bi to Bj. For more information on
control flow graphs and determination of basic blocks, see [15].
For C and C++ programs, a control flow diagram can be
generated by compiling the program with clang and opt (we
specify no optimization), and then creating the graph as a dot
graph description language file using dot.

As an example, consider the C++ program shown in Fig. 1
which is supposed to replace only the first occurrence of either x
or y in an array a with the value of z. This program does not
perform that task correctly; it contains a bug. For simplicity, the
code to output the final values of the array is commented out in
this program since it is not where the bug occurs.

An example of a control flow graph for this program is
shown in Fig. 2. In this graph there are eight blocks; the figure
shows which lines of code are contained in each block.

After constructing a control flow graph for the program to be
analyzed, our tool needs to consider test cases. These need to be
specified in terms of sample input and expected output. The test
cases should be as representative as possible of all boundary
conditions for the program. However, a novice programmer may
be unfamiliar with that notion. At the very least, the user must
specify at least one input sample that is known to produce correct
output and at least one input sample that is known to produce
incorrect output; the user must distinguish these as ‘correct’ and
‘incorrect.’ In Table 1 we list some sample test cases for the
example program shown in Fig. 1.

int main() // line 1

{

 // inputs to the program

 int x = 1;

 int y = 7;

 int z = 0;

 int a[2] = {1, 2};

 int arraySize = 2;

 for (int i = 0; i < arraySize; i++) // line 2

 {

 if (a[i] == x) // line 3

 {

 a[i] = z; // line 4

 } // line 5

 if (a[i] == y) // line 6

 {

 a[i] = z; // line 7

 } // line 8

 } // line 9

 // code to output a[]…

 return(0); // line 10

}

Figure 1. Example C++ program

For each sample case, our tool produces a code trace in terms
of the lines executed for the specified input. The code traces for
the four sample cases shown in Table 1 are listed in Table 2. It
should be noted that if there is an infinite loop (which is a
common bug) during execution of one of the sample input cases,
the output from the code trace should be sufficient to identify the
line(s) where the bug is occurring and no further analysis should
be necessary. From each code trace, we also generate a control
flow graph for that sequence. The control flow graphs for code
traces 1 and 2 from Table 2 are shown in Fig. 3; the control flow
graphs for code traces 3 and 4 are the same as the graph shown
in Fig. 2.

The collection of graphs for the sample cases is next
analyzed to identify non-discriminative edges. A non-
discriminative edge is an edge that appears in every graph that is
in the collection of execution graphs. Such edges are removed
from each graph in the collection since they are the same in each
execution, and, as such, are not informative in distinguishing
where the bug occurs. The collection of control flow graphs with
non-discriminative edges removed for our running example is
shown in Fig. 4. Finally, the collection of graphs is analyzed to
determine what subgraph is common to the faulty (i.e., incorrect
output) execution graphs, but not common to the correct
execution graphs. This corresponds to the section of code where
the bug likely occurs. For our running example, such a
discriminative control flow graph is shown in Fig. 5. It tells us
that the bug involves blocks B4, B6, and B7, which correspond
to lines 4-8 in the program. The hope is that the student will use
this information to realize that, after changing the value to z in
line 4, the program should not proceed to lines 6-8 since the
specifications of the problem were to change either, not both, the
occurrence of x or y to z.

The discriminative graph, and hence the bug in the program,
may not consist of lines that are executed in the incorrect cases,
but not executed in the correct cases (as was the situation in this
example program); it could be the reverse situation. Or it could
be the case that we cannot find a subgraph that is common to all
faulty (or correct) execution graphs, but not common to the
correct (or faulty) execution graphs. The algorithms we utilize
for identifying the “best” discriminative graph are explained
next. These differ slightly from those proposed in [14] and [16]
for discriminative graph mining.

Figure 2. Control flow graph for the example program

TABLE 1. SAMPLE TEST CASES FOR THE EXAMPLE PROGRAM

(INCORRECT CASES HIGHLIGHTED

Sample No. a x y z Result

1 {1, 2} 1 7 0 {0, 2}

2 {1, 2} 7 1 0 {0, 2}

3 {1, 7} 1 7 0 {0, 0}

4 {1, 7} 7 1 0 {0, 0}

TABLE 2. CODE TRACES FOR THE EXAMPLE PROGRAM

 Trace Line Numbers Trace Block Numbers

1 1 2 3 4 5 6 9 2 3 6 9 2 10 B1 B2 B3 B4 B6 B9 B2 B3 B6 B9 B2 B10

2 1 2 3 6 7 8 9 2 3 6 9 2 10 B1 B2 B3 B6 B7 B9 B2 B3 B6 B9 B2 B10

3 1 2 3 4 5 6 9 2 3 6 7 8 9 2 10 B1 B2 B3 B4 B6 B9 B2 B3 B6 B7 B9 B2 B10

4 1 2 3 6 7 8 9 2 3 4 5 6 9 2 10 B1 B2 B3 B6 B7 B9 B2 B3 B4 B6 B9 B2 B10

Figure 3. Control flow graphs for (a) trace 1 and (b) trace 2 from Table 2

Figure 4. Control flow graphs with non-discriminative edges removed for
(a) trace 1, (b) trace 2, and (c) traces 3 and 4 from Table 2

Figure 5. Discriminative control flow graph for the example program

Let C+ and C- represent the sets of control flow graphs for
the sample test cases producing correct and incorrect results,
respectively; we require that there be at least one graph in each
such set. The function FindDiscriminativeGraph (Fig. 6) first
removes non-discriminative edges from the graphs in both sets.
It then calls CreateDiscriminativeGraph (Fig. 7) to try to find a
subgraph that is common to all faulty execution graphs, but not
common to all the correct execution graphs. If we are unable to
find such a graph, then the function RelaxedCreate-
DiscriminativeGraph (Fig. 8) is called, which relaxes the
requirement that the subgraph we seek not be present in all of
the correct execution graphs; instead the subgraph only has to
not be present in α * |C+| of the correct execution graphs, where
α is a user-specified parameter (our default is α = 0.5).

FindDiscriminativeGraph and CreateDiscriminativeGraph
use a function called Augment; this function takes the subgraph
G and adds to it an edge (and possibly a node) such that the
source vertex exists in G, and the edge (and destination node)
exists in all graphs in S1. In this way, a subgraph with an
additional edge that exists in all elements of S1 is created and
considered by the algorithm.

If we still fail to find a discriminative subgraph, then the bug
likely does not involve code that is executed in all faulty cases
and not in correct cases, but rather involves code that is
executed in correct cases and not in faulty cases. Thus, we again
call CreateDiscriminativeGraph, but reverse the order of the
parameters (C+ and C-) from our previous call. If we still fail to
find a discriminative subgraph, we again call Relaxed-
CreateDiscriminativeGraph and look for a subgraph that only
has to not be present in β * |C+| of the correct execution graphs,
where β is a user-specified parameter (our default is β = 0.5).

It is possible that the resulting discriminative graph will be
disconnected. We output the smallest connected component in
that graph using the assumption that a novice programmer will
want to focus on a single, sequential section of his/her program

for scrutinizing the bug, rather that examining multiple,
“fragmented” sections of code.

It should be noted that it is possible that our algorithm will
not find any graph that meets the discriminative conditions.
This could be because the specified test cases do not adequately
exercise all paths through the control flow graph or it could be
that the path through the control flow graph will be the same
regardless of the input. Additionally, it could be the case that
multiple subgraphs could be viable candidates to be the source
of the bug. These last two situations are addressed in the next
section.

Algorithm: FindDiscriminativeGraph(C+, C-, α, β)

C+: set of control flow graphs for inputs producing correct

output

C-: set of control flow graphs for inputs producing incorrect

output

α: percentage of graphs that discriminative subgraph need not

be present in C+ when relaxing conditions

β: percentage of graphs that discriminative subgraph need not

be present in C- when relaxing conditions

1. remove non-discriminative edges from graphs in C+ and

C-;

2. G = CreateDiscriminativeGraph(C-, C+);

3. if G is empty then

4. G = RelaxedCreateDiscriminativeGraph(C-, C+,

 |C+| * α);

5. if G is empty then

6. G = CreateDiscriminativeGraph(C+, C-);

7. if G is empty then

8. G = RelaxedCreateDiscriminativeGraph(C+, C-,

 |C-| * β);

9. end-if;

10. end-if;

11. end-if;

12. G' = smallest connected component in G;

13. output G'
Figure 6. Algorithm for FindDiscriminativeGraph

Algorithm: CreateDiscriminativeGraph(S1, S2)

S1: set of control flow graphs

S2: set of control flow graphs

1. FreqSG = queue of 1-edge subgraphs in S1;

2. while FreqSG is not empty do

3. G = FreqSG.dequeue();

4. if G is not in any graph in S2 then

5. return(G);

6. end-if;

7. NewGraphs = Augment(G);

8. for each graph G’ in NewGraphs do

9. FreqSG.enqueue(G’);

10. end-for;

11. end-while;

12. return(empty graph)
Figure 7. Algorithm for CreateDiscriminativeGraph

Algorithm: RelaxedCreateDiscriminativeGraph(S1, S2, γ)

S1: set of control flow graphs

S2: set of control flow graphs

γ: threshold for number of graphs discriminative subgraph

must be present in

1. FreqSG = queue of 1-edge subgraphs in S1;

2. while FregSG is not empty do

3. G = FreqSG.dequeue();

4. if G is in < γ graphs in S2 then

5. return(G);

6. end-if;

7. NewGraphs = Augment(G);

8. for each graph G’ in NewGraphs do

9. FreqSG.enqueue(G’);

10. end-for;

11. end-while;

12. return(empty graph)
Figure 8. Algorithm for RelaxedCreateDiscriminativeGraph

B. Operator Complexity

Earlier versions of BugHint [21] focused solely on the

discriminative graphs. This approach is effective when the

erroneous code causes the execution to follow a different code

path in the CFG. However, it is often the case with novice

programmers that, in an attempt to be clever, they introduce

some relatively complex calculation in the condition of a loop

or an if-statement that effectively short-circuits the branch and

forces the code to always execute the same branches. In our

testing of BugHint, we identified cases where no basic blocks

were identified as problematic despite the presence of a bug. As

such, the decision was made to augment the CFG analysis with

more information based on additional scrutinization.

Semantic errors frequently occur in lines of code that are

more complex in structure. Unless the errors encountered are

in output formatting, a simple C printf statement or C++ cout

statement is unlikely to introduce a semantic error into a

program. Instead, bugs are often introduced in lines of code that

compare or change the values of variables in the program. The

more complex a line (or basic block) is in terms of relational,

logical, and arithmetic operators, the more likely it is that a

sematic error will occur. Additionally, some operators like &&

or ||, while familiar to seasoned programmers, seem foreign in

their functionality to new coders. BugHint takes this into

account by looking not only at the CFG analysis of the program

(with good and bad traces) but at the complexity of each basic

block encountered in the program.

Since there is no published formal study analyzing the

frequency of semantic errors for various relational, logical, and

arithmetic operators by beginning programmers, the complexity

of various C++ operators was determined by over 40 years of

collective teaching and tutoring experience of the authors for

BugHint consideration. Several frequently used operators were

sorted into ranks which were used to create a complexity score

for each operator. Table 3 shows the ranks of these operators

as well as the (informal) rationale for their relative ranking. A

lower ranking indicates that the operator is less likely to cause

a semantic error when used in an expression (on its own). For

example, +, *, and – correspond to familiar arithmetic concepts

for beginning programmers; students have used those

operations since grade school. It should be noted that division

(/) is not grouped with addition, multiplication, and, subtraction

because integer division (e.g., 3 / 4 evaluates to 0 in C++) is the

source of many semantic errors for novice programmers. The

comparison operator == also is a frequent source of bugs since

many students confuse it with the assignment operator =. In

contrast to multiplication, subtraction, and addition, the logical

operators && and || are new concepts to most beginning

programmers and require higher order thinking than addition,

multiplication, and subtraction; thus, they are ranked much

higher. If not explicitly listed in the table, an operator defaults

to a rank of 0.

The complexity score of an operator is defined as its rank

/5.0, or more generally:

complexity = rank / number_of_ranks

This results in a complexity score in the range [0, 1) that

increases as the complexity of an operator increases. The

generalization of the calculation of the complexity is such that

the ranks and relative complexities can be fine-tuned based on

empirical testing and observation.

TABLE 3. OPERATOR COMPLEXITY RANKS

Rank Ops Rationale

0 + * - Most familiar

1 < > <= >= ! += -= *= Easy concepts, but more foreign

than rank 0

2 == / == confused with =, / is integer
division

3 ++ -- % New concepts, pre/post

increment/decrement can give
different results

4 && || Requires higher order thinking

The complexity of a basic block is calculated as the sum of

the number of operators in the basic block (a non-negative

integer) and the average complexity of an operator in the basic

block (a real value less than 1). This ensure that basic blocks

with more operators are indicated as more complex, but,

between basic blocks of the same number of operations, those

with higher average operator complexity are classified as more

complex; these are indications of two common Code Smells

[19]. If the basic block has relatively few lines of code but a

high number of operations, this may indicate an excessively

long line of code (or a God Line); if the basic block has a large

number of lines, it may hint at the presence of the Long Method

code smell. While these code smells are not an indication that a

bug is present, they are frequent indicators that something is

wrong, or that a refactoring may result in code that is easier to

debug and maintain.

BugHint augments the CFG analysis of source code with the

complexity analysis. After identifying basic blocks that could

be problematic using the discriminative graph mining, the basic

blocks that were identified as potentially problematic are sorted

by complexity. The top N (a user-specified parameter that

defaults to 2) are reported to the user as the most likely to

contain the bug.

This augmentation to the CFG analysis has some benefits.

Consider the following main function (where here the value of

answer is hard-coded on the second line instead of being

entered by the user to allow for BugHint to operate on the

source):

// block 1

bool validEntry;

char answer = 'n';

cout << "Is this yes or no?" << endl;

validEntry = (answer == 'y' && answer == 'Y') ||

 (answer == 'n' && answer == 'N');

// block 2

if (validEntry)

 cout << "Valid entry!" << endl;

// block 3

else

 cout << "Invalid Entry" << endl;

// block 4

return 0;

Veteran programmers will quickly notice that the condition

in line 4 is incorrect and will always return false regardless of

the value of answer. However, CFG analysis will not indicate

erroneous blocks because all traces will contain blocks 1, 3, and

4 in that order. Examination of the complexity of the basic

blocks will show that blocks 2 through 4 have a complexity of

0, but block 1 has a complexity of 3 + (0.8 * 3) / 3 = 3.8.

BugHint would augment the CFG analysis (which would be

unable to find a discriminative subgraph) with the information

from the complexity analysis and indicate to the user that the

problem exists in block one.

IV. USER INTERFACE

Some of the tools used to generate the information needed
to display to the user are not easily installable/usable on all
platforms (specifically, clang/LLVM and some bash tools are
not easily installable on Windows). Making the BugHunt
platform independent was a top priority so that it could be
readily available to as broad a range of novice programmers as
possible. BugHunt has been developed as a web application
written in Node.js and using vis.js for the visualization of the
control flow graphs. The web application backend interfaces
with various utilities written in Python, which make the
appropriate system calls to clean, format, instrument, and run
the source code with various starting conditions. Additionally,
the backend analyzes the traces and basic blocks of the provided
source code.

Web applications inherently have a large number of security
concerns, and a system designed specifically to compile and run
arbitrary C/C++ code exhibits an exceptionally large attack
surface area. This application was not designed to run as a
globally hosted web application, but rather was intended to be

deployed to individuals using emerging technologies such as
Docker (for platform-independent deployments of the web
application that run locally) or the Linux Subsystem for
Windows (which would allow a more native desktop interface
to be quickly developed using Electron Shell [20]).

Initially, the user is presented with a single toolbar with a
button that allows them to upload a single C++ source file.
When the system receives the file, it generates the CFG using
clang's analysis tools (specifically DumpCFG), calculates the
complexity of each basic block, maps lines of code to basic
blocks, and instruments the code by adding output statements at
the beginning of each basic block (see Fig. 9). The system then
runs the instrumented program and sends the resulting traces
back to the UI. A student can choose individual starting
configurations and walk forwards and backwards through the
execution (with lines of code highlighted) using arrow buttons
on the UI.

#include <iostream>

using namespace std;

int main()

{

 int a = 0;

 double d = 1.1;

 for (int i=0; i<10; i++)

 {

 cout << "hi" << endl;

 }

 return 0;

}

Figure 9a) Original C++ source

#include <iostream>
#include <sstream>
#include <unistd.h>
void __bbinstr(const char bbid[]) {
 std::cerr << bbid << std::endl;
 return;
}
#include <iostream>

using namespace std;
/*:B6:*/ int main() /*:/B6:*/
{
 /*:B5:*/ __bbinstr("B5");
 int a = /*%a%*/ 0 /*%~a%*/; /*:/B5:*/
 /*:B5:*/ double d = /*%d%*/ 1.1 /*%~d%*/;

/*:/B5:*/
 for (int i = 0; __bbinstr("B4"), i < 10;

__bbinstr("B2"), i++) {
 /*:B3:*/ __bbinstr("B3");
 cout << "hi" << endl; /*:/B3:*/
 }
 /*:B1:*/ __bbinstr("B1");
 return 0; /*:/B1:*/
}

Figure 9b) Instrumented C++ source (formatted for more readability)

The system assumes that the initial configuration that was
uploaded by the student produced a good trace. However, the
user can add additional starting conditions (by changing the
starting values of the variables at initialization) and specify
whether or not it produces a good trace (i.e., correct results) or
a bad trace (i.e., incorrect results). At any point, the student may

select "Get Hint." The UI will then send the traces to the
backend, which will analyze the CFG, the traces, and the
complexity of the basic blocks. The resulting list of basic blocks
is sent to the GUI for display.

The CFG analysis requires at least one “good” trace. While
the student might not understand why their code is producing
the correct answer in some cases, it must be assumed that the
novice programmer has managed to get correct output in at least
one case. As use of this tool requires knowledge of inputs and
expected outputs (and thus what inputs result in correct output),
it can be reasonably assumed that the student can identify at
least one scenario where their code produces a correct result.

Fig. 10 shows a screenshot of the main view in the BugHunt
GUI with the example program from Fig. 1 and the test cases
from Table 1. The hints have been augmented using the
complexity information. The arrow buttons in the GUI allow
the user to step forwards and backwards through a selected
execution case; both the corresponding nodes and (text) lines in
the program subsequently will be highlighted. Any particular
block in an execution sequence (listed below the graph display)
also can be selected (i.e., clicked-on) with the mouse.

BugHint also supports user-defined functions. When
loading a single cpp source file containing multiple functions,
the system splits the information so that the CFG for each
function and the code for each function displays in a tab. When
walking through the traces, the tabbed view switches
automatically to the function which is currently being executed
in the trace. Fig. 11, 12, and 13 show this tabbed view for an
implementation of a function that finds the maximum of two
integer values; the function contains a bug (Fig. 13). When
giving hints, BugHunt will highlight all lines of code that are
suspected of being in the vicinity of the bug (i.e., are in the
detected block).

V. SUMMARY AND CONCLUSIONS

Herein we have presented a simple debugging tool, which,
given a C++ program that has a logic error just serious enough
to occasionally produce erroneous output while sometimes
producing correct output, and some sample inputs with
corresponding outputs, uses discriminative graph mining to
identify which lines in the program are most likely the source
of the bug. Additionally, it may examine the particular
relational, logical, and arithmetic operators that are used in the
code to determine what lines in the code are probably causing
the bug. The tool includes a visual display of the control flow
graph for each test case, allowing the user to step through the
statements executed.

In a previous study [21], we found that students who
completed pre-training using BugHint did better on post-testing
than students who completed pre-training without BugHint,
even though all groups had no help for post-training. During a
post-training exercise where both groups completed the exact
same activity of debugging three practice programs, the
treatment group found more of the bugs, self-generated more
informative test cases and reasoning regarding those test cases,
and self-generated more helpful comments to add to the code
itself. Hence, it appears that the extra-formalized method of

using BugHint may improve the way students think about the
debugging practice.

We look forward to utilizing BugHint in our introductory
programming courses, and performing additional usefulness
and usability studies to guide further refinement of this tool, and
reduce some of the time that novice students spend debugging
their programs.

VI. FUTURE WORK

As with any visual programming environment, we expect
that there will be a challenge in accommodating the additional
visual complexity in the graphical user interface that will result
from larger programs. We intend to perform usefulness and
usability studies with novice programmers to find ways of
implementing visual representation and navigation of a fairly
large number of modules of the control flow graph in a manner
that they (the students) can best understand. By fairly large
number we mean a number commensurate with the size of
programs that beginning programmers write. From our own
teaching experience that has been approximately 50 lines of
code (with no user-defined functions) at the beginning of the
CS1 semester, and 1500 or more lines of code (with 20 or more
user-defined functions) by the end of the semester.

We also intend to compare our system to the hints that
would be produced by utilizing other existing algorithms for
finding discriminative subgraphs (e.g., [17] and [18]) and/or
adding other options (in addition to our current α and β
parameters) to our algorithm in order to find the best
discriminative subgraph, and hence provide the best suggestion
for the bug hint.

Additionally, the system currently has rather strict rules on
the formatting of the files it can handle due to the nature of the
parser. Years of introductory computer science education
experience has demonstrated that these rules are frequently not
followed by students despite the insistence of course
instructors. The backend will be made more robust to reduce
these restrictions.

REFERENCES

[1] C. Lewis and C. Gregg, “How Do You Teach Debugging?: Resources and
Strategies for Better Student Debugging”, Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, Memphis, TN,
Mar. 2-5, 2016, p. 706.

[2] R.C. Bryce, A. Cooley, A. Hansen, and N. Hayrapetyan, “A One Year
Empirical Study of Student Programming Bugs”, Frontiers in Education
Conference, Washington, DC, Oct. 27-30, 2010, pp. 1-7.

[3] J.H.I.I. Cross, T.D. Hendrix, and L.A. Barowski, “Using the Debugger as
an Integral Part of Teaching CS1”, “Frontiers in Education, Boston, MA,
Nov. 6-9, 2002. pp. 1-6.

[4] G.C. Lee and J.C. Wu, “Debug It: A Debugging Practicing System”,
Computers & Education, 32, 1999, pp. 165-179.

[5] DataDisplayDebugger, https://www.gnu.org/software/ddd/

[6] Nemiver, https://wiki.gnome.org/Apps/Nemiver

[7] Visustin, http://www.aivosto.com/visustin.html

[8] KDevelop, https://liveblue.wordpress.com/2009/07/21/3-visualize-your-
code-in-kdevelop/

[9] Dr. Garbage, https://sourceforge.net/projects/drgarbagetools/files/

[10] Eclipse ObjectAid, http://www.objectaid.com/sequence-diagram

https://www.gnu.org/software/ddd/
http://www.aivosto.com/visustin.html
https://liveblue.wordpress.com/2009/07/21/3-visualize-your-code-in-kdevelop/
https://liveblue.wordpress.com/2009/07/21/3-visualize-your-code-in-kdevelop/
https://sourceforge.net/projects/drgarbagetools/files/
http://www.objectaid.com/sequence-diagram

[11] H. Shinomi, “Graphical Representation and Execution Animation for
Prolog Programs”, International Workshop on Industrial Applications of
Machine Intelligence and Vision (MIV-89), Tokyo, Apr. 10-12, 1989, pp.
181-186.

[12] B. Schaeli, A. Al-Shabibi, and R.D. Hersch, “Visual Debugging of MPI
Applications”, in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, A. Lastovetsky, T. Kechadi, J. Dongarra
(eds)., EuroPVM/MPI, Lecture Notes in Computer Science, vol. 5205,
Springer, Berlin, Heidelberg, 2008, pp. 239-247.

[13] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi: Visual
Log-Analysis Based Tools for Debugging Hadoop”, CMU-PDL-09-103,
Parallel Data Laboratory, Carnegie Mellon University, Pittsburg, PA,
May 2009.

[14] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining”, ISSTA, Chicago, IL,
Jul. 19-23, 2009, pp. 141-151.

[15] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison Wesley, 2nd edition, 2006.

[16] X. Yan, H. Cheng, J. Han, and P.S. Yu, “Mining Significant Graph
Patterns by Leap Search”, SIGMOD 2008, Jun. 9-12, 2008, Vancouver,
BC, Canada, pp. 433-444.

[17] N. Jin and W. Wei, “LTS: Discriminative Subgraph Mining by Learning
from Search History”, IEEE 27th International Conference on Data
Engineering (ICDE), 2011, pp. 207-218.

[18] M.G.A. El-Wahab, A.E. Aboutabl, and W.M.H. El Behaidy, “Graph
Mining for Software Fault Localization: An Edge Ranking Based
Approach”, Journal of Communications Software and Systems, Vol. 13.
No. 4, Dec. 2017, pp. 178-188.

[19] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D., 1999.
Refactoring: improving the design of existing code. Addison-Wesley
Professional. pp. 76-78.

[20] Electron, https://electronjs.org/

[21] J.L. Leopold, N.W. Eloe, and P. Taylor, “BugHint: A Visual Debugger
Based on Graph Mining”, Proceedings of the 24th International
Conference on Visualization and Visual Languages, San Francisco, CA,
June 29-30, 2018, pp. 109-118

Figure 10. BugHunt GUI, showing the possible erroneous lines as determined by control flow graph trace analysis and complexity analysis

https://electronjs.org/

Figure 11. BugHunt GUI after loading a file that calls a user-defined function

Figure 12. BugHunt GUI when switching function views

Figure 13. Hint to the location of a bug in max function

