
Volume 4, December, 2018

Journal of
Visual Languages and
Sentient Systems

VLSS

 i

Journal of

Visual Languages and Sentient Systems

Editor-in-Chief
Shi-Kuo Chang, University of Pittsburgh, USA

Co-Editors-in-Chief

Gennaro Costagliola, University of Salerno, Italy

Paolo Nesi, University of Florence, Italy

Gem Stapleton, University of Brighton, UK

Franklyn Turbak, Wellesley College, USA

An Open Access Journal published by

KSI Research Inc.

156 Park Square Lane, Pittsburgh, PA 15238 USA

 ii

VLSS Editorial Board
Tim Arndt, Cleveland State University, USA

Alan F. Blackwell, University of Cambridge, United Kingdom

Paolo Bottoni, University of Rome, Italy

Francesco Colace, Univeristy of Salerno, Italy

Maria Francesca Costabile, University of Bari, Italy

Philip T. Cox, Dalhousie University, Canada

Martin Erwig, Oregon State University, USA

Vittorio Fuccella, University of Salerno, Italy

Angela Guercio, Kent State University, USA

Erland Jungert, Swedish Defence Research Establishment, Sweden

Kamen Kanev, Shizuoka University, Japan

Robert Laurini, University of Lyon, France

Jennifer Leopold, Missouri University of Science & Technology, USA

Mark Minas, University of Munich, Germany

Brad A. Myers, Carnegie Mellon University, USA

Joseph J. Pfeiffer, Jr., New Mexico State University, USA

Genny Tortora, University of Salerno, Italy

Kang Zhang, University of Texas at Dallas, USA

Copyright ⓒ 2018 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

DOI: 10.18293/VLSS2018

Proceedings preparation, editing and printing are sponsored by KSI Research Inc.

 iii

Journal of

Visual Languages and Sentient Systems
Volume 4, 2018

Table of Contents

Information for Authors.iv

Regular Papers

A Visual Debugging Aid based upon Discriminative Graph Mining.… . 1
Jennifer Leopold, Nathan Eloe, Jeff Gould and Eric Willard

An Edge-based Graph Grammar Formalism and its Support System. … 11
Xiaoqin Zeng, Yufeng Liu, Zhan Shi, Yingfeng Wang, Yang Zou, Jun Kong and Kang Zhang

Spider Diagrams with Absence: Inference Rules for Clutter Reduction ………………. …. . . . 20
Gem Stapleton, Lopamudra Choudhury and Mihir Chakraborty

Dominant Colors as Image Content Descriptors: A Study with Users………………….... 38
Soraia M. Alarcão, Ruben Pavão and Manuel J. Fonseca

Enriching Image Datasets with Unrestrained Emotional Data: A Study with Users ….. 47
Soraia M. Alarcão and Manuel J. Fonseca

Event-Based Data Input, Modeling and Analysis for Meditation Tracking using TDR
System. ……….56
Shi-Kuo Chang, Cuiling Chen, Wei Guo and Nannan Wen

Research Notes

A Logic User-Based Algorithm to Improve Node Distribution in Wireless Sensor Network . ….68
Walter Balzano and Silvia Stranieri

Smart City Control Room Dashboards: Big Data Infrastructure, from data to decision support……… 75
Marazzini, Nicola Mitolo, Paolo Nesi and Michela Paolucci

 iv

INFORMATION FOR AUTHORS

The Journal of Visual Languages and Sentient Systems (VLSS) is intended to be a forum for researchers,
practitioners and developers to exchange ideas and research results, for the advancement of visual languages
and sentient multimedia systems. Sentient systems are distributed systems capable of actively interacting
with the environment by gathering, processing, interpreting, storing and retrieving multimedia information
originated from sensors, robots, actuators, websites and other information sources. In order for sentient
systems to function efficiently and effectively, visual languages may play an important role.

VLSS publishes research papers, state-of-the-art surveys, review articles, in the areas of visual languages,
sentient multimedia systems, distributed multimedia systems, sensor networks, multimedia interfaces, visual
communication, multi-media communications, cognitive aspects of sensor-based systems, and
parallel/distributed/neural computing & representations for multimedia information processing. Papers are
also welcome to report on actual use, experience, transferred technologies in sentient multimedia systems
and applications. Timely research notes, viewpoint articles, book reviews and tool reviews, not to exceed
three pages, can also be submitted to VLSS.

Manuscripts shall be submitted electronically to VLSS. Original papers only will be considered.
Manuscripts should follow the double-column format and be submitted in the form of a pdf file. Page 1
should contain the article title, author(s), and affiliation(s); the name and complete mailing address of the
person to whom correspondence should be sent, and a short abstract (100-150 words). Any footnotes to the
title (indicated by *, +, etc.) should be placed at the bottom of page 1.

Manuscripts are accepted for review with the understanding that the same work has not been and will not be
nor is presently submitted elsewhere, and that its submission for publication has been approved by all of the
authors and by the institution where the work was carried out; further, that any person cited as a course of
personal communications has approved such citation. Written authorization may be required at the Editor's
discretion. Articles and any other material published in VLSS represent the opinions of the author(s) and
should not be construed to reflect the opinions of the Editor(s) and the Publisher.

Paper submission should be through: vlss@ksiresearch.org

For further information contact: vlss@ksiresearch.org

DOI Reference Number: 10.18293/VLSS2018-029

A Visual Debugging Aid

Based on Discriminative Graph Mining

Jennifer L. Leopold1, Nathan W. Eloe2, Jeff Gould1, and Eric Willard1
1Missouri University of Science & Technology

Department of Computer Science

Rolla, MO, USA
2Northwest Missouri State University

School of Computer Science and

Information Systems

Maryville, MO, USA

leopoldj@mst.edu, nathane@nwmissouri.edu, jg7f9@mst.edu, emwwwc@mst.edu

Abstract—Why doesn’t my code work? Instructors for

introductory programming courses frequently are asked

that question. Often students understand the problem they

are trying to solve well enough to specify a variety of input

and output scenarios. However, they lack the ability to

identify where the bug is occurring in their code. Mastering

the use of a full-feature debugger can be difficult at this

stage in their computer science education. But simply

providing a hint as to where the problem lies may be

sufficient to guide the student to add print statements or do

a hand-trace focusing on a certain section of the code.

Herein we present a software tool which, given a C++

program, some sample inputs, and respective expected

outputs, uses discriminative graph mining to identify which

lines in the program are most likely the source of a bug.

Additionally, the particular operators (relational, logical,

and arithmetic) that are used in the code may be considered

in recommending where the bug may be. The tool includes

a visual display of the control flow graph for each test case,

allowing the user to step through the statements executed.

Keywords-debugging; graph; data mining; visualization

I. INTRODUCTION

As discussed in [1], instructors and teaching assistants for
introductory programming courses frequently are asked by their
students: why doesn’t my program work? Often the students
understand the problem they are trying to solve well enough to
articulate a variety of input and output scenarios. For example,
if they are trying to find the sum of all even values in a list of
numbers, they know that the input list {1, 2, 3, 4, 5} should
produce a result of 6, and the input list {1, 3, 5, 7} should
produce a result of 0. However, they frequently lack the ability
to identify, or even narrow down, where a bug is occurring in
their code when it does not produce the correct results. The
recommendation to add print statements, although easy for
experienced programmers, can require some skill and practice to
master, and the use of a full-feature debugger can be
cumbersome and intimidating to a novice programmer.

Herein we present BugHint, a software tool which, given a
C++ program, some sample inputs, and respective outputs, uses

discriminative graph mining to identify which lines in the C++
program are most likely causing the erroneous results.
Additionally, the particular relational, logical, and arithmetic
operators that are used in the program may be considered since
beginning programmers tend to make more semantic errors with
certain operators and in expressions that utilize multiple
operators. The tool includes a visual display of the control flow
graph for each test case (i.e., sample input), allowing the user to
step through the statements as they are executed. The goal is that
the student will take the bug hint and subsequently scrutinize the
logic and code in the identified section of the program, thereby
finishing the debugging process on his/her own.

The organization of this paper is as follows. Section II
provides a brief overview of related work in debugging
experiences with beginning programmers and the use of
visualization in debugging. Section III discusses the foundation
for and implementation of our software tool in terms of the graph
mining analysis algorithms. Section IV presents the graphic user
interface. A summary and conclusions are given in Section V.
Future work is discussed in Section VI.

II. RELATED WORK

A. Debugging Experiences with Beginning Programmers

Several studies (e.g., [1], [2], and [3]) have identified
problems that students experience with coding in introductory
computer science courses, resulting in a proliferation of program
bugs. Debugging strategies such as strategically placed print
statements can be difficult to teach [1]. There are full-feature
debugging tools such as GDB, which allow one to set
breakpoints in the code and/or watch the values of variables
change during execution of the program. However, for some
novice programmers these tools can be too cumbersome and/or
intimidating to use. After years of study, there is no consensus
as to whether beginning programmers should be exposed to a
full-feature debugger.

There have been studies that have successfully integrated the
teaching of programming and a debugger at the introductory
level. In [2] the authors used a debugger to demonstrate
construction of Java objects and function calls in addition to
using the debugger to find bugs in programs. Similarly, the
authors of [4] used debugging exercises and simple debugger

1

functions to reinforce programming concepts (e.g., loops) that
they were teaching.

However, full-feature debugger tools are not without
criticism. In addition to the complaint that they may further
confound the debugging experience for novice programmers
who are already dealing with learning about an editor, operating
system commands, compiler error messages, and programming
language syntax, there is the issue that debuggers can potentially
introduce additional bugs. A heisenbug is a software bug that is
introduced when one attempts to study or analyze a program.
Running a program in a debugger can actually modify the
original code, changing memory addresses of variables and the
timing of the execution. Debuggers often provide watches or
other user interfaces that cause additional code to be executed,
which, in turn, modify the state of the program. Time also can
be a factor in heisenbugs, because race conditions may not occur
when the program is slowed down by single-stepping through
lines of code with the debugger.

Many visual debugging tools (such as DDD [5], Nemiver [6],
or those debugging tools built into IDEs) provide a more user-
friendly interface to command line debugging tools. Command
line debugging tools suffer from the limitations of the interface;
viewing where execution has stopped or paused requires
programmer intervention, determining where breakpoints are to
be placed (or have been placed) can be difficult (often requiring
the programmer to figure out the exact line number at which they
want to break), and determining the path that the execution
followed can be difficult if breakpoints are not set appropriately.
Additionally, if the programmer wants to figure out how their
code behaves with multiple inputs, they will need to change the
code, recompile, and run the debugging tool again. For veteran
programmers this task is routine (and often more tedious than
difficult); for novice programmers the complexity and power of
these tools can be daunting and difficult to grasp.

Herein we do not seek to answer the question of whether the
use of a full-feature debugger should be integrated into an
introductory programming course. Rather, it is our intention to
present a simple tool which the student can use as a debugging
aid and training tool. Our aim is similar to the function of the
instructor or teaching assistant who provides a hint as to where
in the student’s code the bug might be occurring. It is still up to
the student to add print statements, do a hand-trace focusing on
those particular statements, or use other techniques to try to fix
the problem on his/her own, considering various input-output
test cases.

B. Visualization in Debugging

Many contemporary debugging tools provide some type of
visual representation of the source code in addition to displaying
the program as text. This visual representation could be in the
form of a flow chart (e.g., Visustin [7]), a control flow graph
(e.g. KDevelop [8] and Dr. Garbage [9]), or UML diagrams
(e.g., Eclipse ObjectAid [10]). The objective of the visualization
is to facilitate understanding of some properties of the program
such as the logic and/or the interactions between code blocks. To
this end, animation (not just a static representation) of program
execution has long been found to be useful.

Just as UML diagrams were deemed to be particularly
helpful for object-oriented programming languages like Java and
C++, control flow graphs have been found to be useful in
debuggers for various programming paradigms. The authors of
[11] presented GRASP, a graphical environment for analyzing
Prolog (i.e., logic) programs; the tool dynamically animates the
executed sequence of Prolog subgoals as a control flow graph
and allows the user to inspect instantiation of variables as s/he
steps through the execution. In [12] the authors introduced a
debugging tool for MPI (i.e., parallel) programs that displays a
message-passing graph of the execution of an MPI application;
parts of the graph are hidden or highlighted based on the
sequence of MPI calls that occur during a particular execution.
Mochi [13] was created as a visual debugging tool for Hadoop
(i.e., distributed programs); it displays the control flow of the
workloads of each processor as a graph, allowing the user to
observe the map and shuffle processing that takes place, and
possibly identify erroneous sequencing and/or data partitioning.

III. IMPLEMENTATION

A. Discriminative Graph Mining

Our tool, BugHint, was motivated by the work presented in
[14] for identifying bug signatures using discriminative graph
mining. The basic idea is to first produce a control flow graph
for a program written in a procedural programming language (in
our case, this is C++). In brief, a control flow graph is a directed
graph made up of nodes representing basic blocks. Each basic
block contains one or more statements from the program. There
is an edge from basic block Bi to basic block Bj if program
execution can flow from Bi to Bj. For more information on
control flow graphs and determination of basic blocks, see [15].
For C and C++ programs, a control flow diagram can be
generated by compiling the program with clang and opt (we
specify no optimization), and then creating the graph as a dot
graph description language file using dot.

As an example, consider the C++ program shown in Fig. 1
which is supposed to replace only the first occurrence of either x
or y in an array a with the value of z. This program does not
perform that task correctly; it contains a bug. For simplicity, the
code to output the final values of the array is commented out in
this program since it is not where the bug occurs.

An example of a control flow graph for this program is
shown in Fig. 2. In this graph there are eight blocks; the figure
shows which lines of code are contained in each block.

After constructing a control flow graph for the program to be
analyzed, our tool needs to consider test cases. These need to be
specified in terms of sample input and expected output. The test
cases should be as representative as possible of all boundary
conditions for the program. However, a novice programmer may
be unfamiliar with that notion. At the very least, the user must
specify at least one input sample that is known to produce correct
output and at least one input sample that is known to produce
incorrect output; the user must distinguish these as ‘correct’ and
‘incorrect.’ In Table 1 we list some sample test cases for the
example program shown in Fig. 1.

2

Figure 4. Control flow graphs with non-discriminative edges removed for
(a) trace 1, (b) trace 2, and (c) traces 3 and 4 from Table 2

Figure 5. Discriminative control flow graph for the example program

Let C+ and C- represent the sets of control flow graphs for
the sample test cases producing correct and incorrect results,
respectively; we require that there be at least one graph in each
such set. The function FindDiscriminativeGraph (Fig. 6) first
removes non-discriminative edges from the graphs in both sets.
It then calls CreateDiscriminativeGraph (Fig. 7) to try to find a
subgraph that is common to all faulty execution graphs, but not
common to all the correct execution graphs. If we are unable to
find such a graph, then the function RelaxedCreate-
DiscriminativeGraph (Fig. 8) is called, which relaxes the
requirement that the subgraph we seek not be present in all of
the correct execution graphs; instead the subgraph only has to
not be present in α * |C+| of the correct execution graphs, where
α is a user-specified parameter (our default is α = 0.5).

FindDiscriminativeGraph and CreateDiscriminativeGraph
use a function called Augment; this function takes the subgraph
G and adds to it an edge (and possibly a node) such that the
source vertex exists in G, and the edge (and destination node)
exists in all graphs in S1. In this way, a subgraph with an
additional edge that exists in all elements of S1 is created and
considered by the algorithm.

If we still fail to find a discriminative subgraph, then the bug
likely does not involve code that is executed in all faulty cases
and not in correct cases, but rather involves code that is
executed in correct cases and not in faulty cases. Thus, we again
call CreateDiscriminativeGraph, but reverse the order of the
parameters (C+ and C-) from our previous call. If we still fail to
find a discriminative subgraph, we again call Relaxed-
CreateDiscriminativeGraph and look for a subgraph that only
has to not be present in β * |C+| of the correct execution graphs,
where β is a user-specified parameter (our default is β = 0.5).

It is possible that the resulting discriminative graph will be
disconnected. We output the smallest connected component in
that graph using the assumption that a novice programmer will
want to focus on a single, sequential section of his/her program

for scrutinizing the bug, rather that examining multiple,
“fragmented” sections of code.

It should be noted that it is possible that our algorithm will
not find any graph that meets the discriminative conditions.
This could be because the specified test cases do not adequately
exercise all paths through the control flow graph or it could be
that the path through the control flow graph will be the same
regardless of the input. Additionally, it could be the case that
multiple subgraphs could be viable candidates to be the source
of the bug. These last two situations are addressed in the next
section.

Algorithm: FindDiscriminativeGraph(C+, C-, α, β)

C+: set of control flow graphs for inputs producing correct

output

C-: set of control flow graphs for inputs producing incorrect

output

α: percentage of graphs that discriminative subgraph need not

be present in C+ when relaxing conditions

β: percentage of graphs that discriminative subgraph need not

be present in C- when relaxing conditions

1. remove non-discriminative edges from graphs in C+ and

C-;

2. G = CreateDiscriminativeGraph(C-, C+);

3. if G is empty then

4. G = RelaxedCreateDiscriminativeGraph(C-, C+,

 |C+| * α);

5. if G is empty then

6. G = CreateDiscriminativeGraph(C+, C-);

7. if G is empty then

8. G = RelaxedCreateDiscriminativeGraph(C+, C-,

 |C-| * β);

9. end-if;

10. end-if;

11. end-if;

12. G' = smallest connected component in G;

13. output G'
Figure 6. Algorithm for FindDiscriminativeGraph

Algorithm: CreateDiscriminativeGraph(S1, S2)

S1: set of control flow graphs

S2: set of control flow graphs

1. FreqSG = queue of 1-edge subgraphs in S1;

2. while FreqSG is not empty do

3. G = FreqSG.dequeue();

4. if G is not in any graph in S2 then

5. return(G);

6. end-if;

7. NewGraphs = Augment(G);

8. for each graph G’ in NewGraphs do

9. FreqSG.enqueue(G’);

10. end-for;

11. end-while;

12. return(empty graph)
Figure 7. Algorithm for CreateDiscriminativeGraph

4

Algorithm: RelaxedCreateDiscriminativeGraph(S1, S2, γ)

S1: set of control flow graphs

S2: set of control flow graphs

γ: threshold for number of graphs discriminative subgraph

must be present in

1. FreqSG = queue of 1-edge subgraphs in S1;

2. while FregSG is not empty do

3. G = FreqSG.dequeue();

4. if G is in < γ graphs in S2 then

5. return(G);

6. end-if;

7. NewGraphs = Augment(G);

8. for each graph G’ in NewGraphs do

9. FreqSG.enqueue(G’);

10. end-for;

11. end-while;

12. return(empty graph)
Figure 8. Algorithm for RelaxedCreateDiscriminativeGraph

B. Operator Complexity

Earlier versions of BugHint [21] focused solely on the

discriminative graphs. This approach is effective when the

erroneous code causes the execution to follow a different code

path in the CFG. However, it is often the case with novice

programmers that, in an attempt to be clever, they introduce

some relatively complex calculation in the condition of a loop

or an if-statement that effectively short-circuits the branch and

forces the code to always execute the same branches. In our

testing of BugHint, we identified cases where no basic blocks

were identified as problematic despite the presence of a bug. As

such, the decision was made to augment the CFG analysis with

more information based on additional scrutinization.

Semantic errors frequently occur in lines of code that are

more complex in structure. Unless the errors encountered are

in output formatting, a simple C printf statement or C++ cout

statement is unlikely to introduce a semantic error into a

program. Instead, bugs are often introduced in lines of code that

compare or change the values of variables in the program. The

more complex a line (or basic block) is in terms of relational,

logical, and arithmetic operators, the more likely it is that a

sematic error will occur. Additionally, some operators like &&

or ||, while familiar to seasoned programmers, seem foreign in

their functionality to new coders. BugHint takes this into

account by looking not only at the CFG analysis of the program

(with good and bad traces) but at the complexity of each basic

block encountered in the program.

Since there is no published formal study analyzing the

frequency of semantic errors for various relational, logical, and

arithmetic operators by beginning programmers, the complexity

of various C++ operators was determined by over 40 years of

collective teaching and tutoring experience of the authors for

BugHint consideration. Several frequently used operators were

sorted into ranks which were used to create a complexity score

for each operator. Table 3 shows the ranks of these operators

as well as the (informal) rationale for their relative ranking. A

lower ranking indicates that the operator is less likely to cause

a semantic error when used in an expression (on its own). For

example, +, *, and – correspond to familiar arithmetic concepts

for beginning programmers; students have used those

operations since grade school. It should be noted that division

(/) is not grouped with addition, multiplication, and, subtraction

because integer division (e.g., 3 / 4 evaluates to 0 in C++) is the

source of many semantic errors for novice programmers. The

comparison operator == also is a frequent source of bugs since

many students confuse it with the assignment operator =. In

contrast to multiplication, subtraction, and addition, the logical

operators && and || are new concepts to most beginning

programmers and require higher order thinking than addition,

multiplication, and subtraction; thus, they are ranked much

higher. If not explicitly listed in the table, an operator defaults

to a rank of 0.

The complexity score of an operator is defined as its rank

/5.0, or more generally:

complexity = rank / number_of_ranks

This results in a complexity score in the range [0, 1) that

increases as the complexity of an operator increases. The

generalization of the calculation of the complexity is such that

the ranks and relative complexities can be fine-tuned based on

empirical testing and observation.

TABLE 3. OPERATOR COMPLEXITY RANKS

Rank Ops Rationale

0 + * - Most familiar

1 < > <= >= ! += -= *= Easy concepts, but more foreign

than rank 0

2 == / == confused with =, / is integer
division

3 ++ -- % New concepts, pre/post

increment/decrement can give
different results

4 && || Requires higher order thinking

The complexity of a basic block is calculated as the sum of

the number of operators in the basic block (a non-negative

integer) and the average complexity of an operator in the basic

block (a real value less than 1). This ensure that basic blocks

with more operators are indicated as more complex, but,

between basic blocks of the same number of operations, those

with higher average operator complexity are classified as more

complex; these are indications of two common Code Smells

[19]. If the basic block has relatively few lines of code but a

high number of operations, this may indicate an excessively

long line of code (or a God Line); if the basic block has a large

number of lines, it may hint at the presence of the Long Method

code smell. While these code smells are not an indication that a

bug is present, they are frequent indicators that something is

wrong, or that a refactoring may result in code that is easier to

debug and maintain.

BugHint augments the CFG analysis of source code with the

complexity analysis. After identifying basic blocks that could

be problematic using the discriminative graph mining, the basic

blocks that were identified as potentially problematic are sorted

by complexity. The top N (a user-specified parameter that

5

defaults to 2) are reported to the user as the most likely to

contain the bug.

This augmentation to the CFG analysis has some benefits.

Consider the following main function (where here the value of

answer is hard-coded on the second line instead of being

entered by the user to allow for BugHint to operate on the

source):

// block 1

bool validEntry;

char answer = 'n';

cout << "Is this yes or no?" << endl;

validEntry = (answer == 'y' && answer == 'Y') ||

 (answer == 'n' && answer == 'N');

// block 2

if (validEntry)

 cout << "Valid entry!" << endl;

// block 3

else

 cout << "Invalid Entry" << endl;

// block 4

return 0;

Veteran programmers will quickly notice that the condition

in line 4 is incorrect and will always return false regardless of

the value of answer. However, CFG analysis will not indicate

erroneous blocks because all traces will contain blocks 1, 3, and

4 in that order. Examination of the complexity of the basic

blocks will show that blocks 2 through 4 have a complexity of

0, but block 1 has a complexity of 3 + (0.8 * 3) / 3 = 3.8.

BugHint would augment the CFG analysis (which would be

unable to find a discriminative subgraph) with the information

from the complexity analysis and indicate to the user that the

problem exists in block one.

IV. USER INTERFACE

Some of the tools used to generate the information needed
to display to the user are not easily installable/usable on all
platforms (specifically, clang/LLVM and some bash tools are
not easily installable on Windows). Making the BugHunt
platform independent was a top priority so that it could be
readily available to as broad a range of novice programmers as
possible. BugHunt has been developed as a web application
written in Node.js and using vis.js for the visualization of the
control flow graphs. The web application backend interfaces
with various utilities written in Python, which make the
appropriate system calls to clean, format, instrument, and run
the source code with various starting conditions. Additionally,
the backend analyzes the traces and basic blocks of the provided
source code.

Web applications inherently have a large number of security
concerns, and a system designed specifically to compile and run
arbitrary C/C++ code exhibits an exceptionally large attack
surface area. This application was not designed to run as a
globally hosted web application, but rather was intended to be

deployed to individuals using emerging technologies such as
Docker (for platform-independent deployments of the web
application that run locally) or the Linux Subsystem for
Windows (which would allow a more native desktop interface
to be quickly developed using Electron Shell [20]).

Initially, the user is presented with a single toolbar with a
button that allows them to upload a single C++ source file.
When the system receives the file, it generates the CFG using
clang's analysis tools (specifically DumpCFG), calculates the
complexity of each basic block, maps lines of code to basic
blocks, and instruments the code by adding output statements at
the beginning of each basic block (see Fig. 9). The system then
runs the instrumented program and sends the resulting traces
back to the UI. A student can choose individual starting
configurations and walk forwards and backwards through the
execution (with lines of code highlighted) using arrow buttons
on the UI.

#include <iostream>

using namespace std;

int main()

{

 int a = 0;

 double d = 1.1;

 for (int i=0; i<10; i++)

 {

 cout << "hi" << endl;

 }

 return 0;

}

Figure 9a) Original C++ source

#include <iostream>
#include <sstream>
#include <unistd.h>
void __bbinstr(const char bbid[]) {
 std::cerr << bbid << std::endl;
 return;
}
#include <iostream>

using namespace std;
/*:B6:*/ int main() /*:/B6:*/
{
 /*:B5:*/ __bbinstr("B5");
 int a = /*%a%*/ 0 /*%~a%*/; /*:/B5:*/
 /*:B5:*/ double d = /*%d%*/ 1.1 /*%~d%*/;

/*:/B5:*/
 for (int i = 0; __bbinstr("B4"), i < 10;

__bbinstr("B2"), i++) {
 /*:B3:*/ __bbinstr("B3");
 cout << "hi" << endl; /*:/B3:*/
 }
 /*:B1:*/ __bbinstr("B1");
 return 0; /*:/B1:*/
}

Figure 9b) Instrumented C++ source (formatted for more readability)

The system assumes that the initial configuration that was
uploaded by the student produced a good trace. However, the
user can add additional starting conditions (by changing the
starting values of the variables at initialization) and specify
whether or not it produces a good trace (i.e., correct results) or
a bad trace (i.e., incorrect results). At any point, the student may

6

select "Get Hint." The UI will then send the traces to the
backend, which will analyze the CFG, the traces, and the
complexity of the basic blocks. The resulting list of basic blocks
is sent to the GUI for display.

The CFG analysis requires at least one “good” trace. While
the student might not understand why their code is producing
the correct answer in some cases, it must be assumed that the
novice programmer has managed to get correct output in at least
one case. As use of this tool requires knowledge of inputs and
expected outputs (and thus what inputs result in correct output),
it can be reasonably assumed that the student can identify at
least one scenario where their code produces a correct result.

Fig. 10 shows a screenshot of the main view in the BugHunt
GUI with the example program from Fig. 1 and the test cases
from Table 1. The hints have been augmented using the
complexity information. The arrow buttons in the GUI allow
the user to step forwards and backwards through a selected
execution case; both the corresponding nodes and (text) lines in
the program subsequently will be highlighted. Any particular
block in an execution sequence (listed below the graph display)
also can be selected (i.e., clicked-on) with the mouse.

BugHint also supports user-defined functions. When
loading a single cpp source file containing multiple functions,
the system splits the information so that the CFG for each
function and the code for each function displays in a tab. When
walking through the traces, the tabbed view switches
automatically to the function which is currently being executed
in the trace. Fig. 11, 12, and 13 show this tabbed view for an
implementation of a function that finds the maximum of two
integer values; the function contains a bug (Fig. 13). When
giving hints, BugHunt will highlight all lines of code that are
suspected of being in the vicinity of the bug (i.e., are in the
detected block).

V. SUMMARY AND CONCLUSIONS

Herein we have presented a simple debugging tool, which,
given a C++ program that has a logic error just serious enough
to occasionally produce erroneous output while sometimes
producing correct output, and some sample inputs with
corresponding outputs, uses discriminative graph mining to
identify which lines in the program are most likely the source
of the bug. Additionally, it may examine the particular
relational, logical, and arithmetic operators that are used in the
code to determine what lines in the code are probably causing
the bug. The tool includes a visual display of the control flow
graph for each test case, allowing the user to step through the
statements executed.

In a previous study [21], we found that students who
completed pre-training using BugHint did better on post-testing
than students who completed pre-training without BugHint,
even though all groups had no help for post-training. During a
post-training exercise where both groups completed the exact
same activity of debugging three practice programs, the
treatment group found more of the bugs, self-generated more
informative test cases and reasoning regarding those test cases,
and self-generated more helpful comments to add to the code
itself. Hence, it appears that the extra-formalized method of

using BugHint may improve the way students think about the
debugging practice.

We look forward to utilizing BugHint in our introductory
programming courses, and performing additional usefulness
and usability studies to guide further refinement of this tool, and
reduce some of the time that novice students spend debugging
their programs.

VI. FUTURE WORK

As with any visual programming environment, we expect
that there will be a challenge in accommodating the additional
visual complexity in the graphical user interface that will result
from larger programs. We intend to perform usefulness and
usability studies with novice programmers to find ways of
implementing visual representation and navigation of a fairly
large number of modules of the control flow graph in a manner
that they (the students) can best understand. By fairly large
number we mean a number commensurate with the size of
programs that beginning programmers write. From our own
teaching experience that has been approximately 50 lines of
code (with no user-defined functions) at the beginning of the
CS1 semester, and 1500 or more lines of code (with 20 or more
user-defined functions) by the end of the semester.

We also intend to compare our system to the hints that
would be produced by utilizing other existing algorithms for
finding discriminative subgraphs (e.g., [17] and [18]) and/or
adding other options (in addition to our current α and β
parameters) to our algorithm in order to find the best
discriminative subgraph, and hence provide the best suggestion
for the bug hint.

Additionally, the system currently has rather strict rules on
the formatting of the files it can handle due to the nature of the
parser. Years of introductory computer science education
experience has demonstrated that these rules are frequently not
followed by students despite the insistence of course
instructors. The backend will be made more robust to reduce
these restrictions.

REFERENCES

[1] C. Lewis and C. Gregg, “How Do You Teach Debugging?: Resources and
Strategies for Better Student Debugging”, Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, Memphis, TN,
Mar. 2-5, 2016, p. 706.

[2] R.C. Bryce, A. Cooley, A. Hansen, and N. Hayrapetyan, “A One Year
Empirical Study of Student Programming Bugs”, Frontiers in Education
Conference, Washington, DC, Oct. 27-30, 2010, pp. 1-7.

[3] J.H.I.I. Cross, T.D. Hendrix, and L.A. Barowski, “Using the Debugger as
an Integral Part of Teaching CS1”, “Frontiers in Education, Boston, MA,
Nov. 6-9, 2002. pp. 1-6.

[4] G.C. Lee and J.C. Wu, “Debug It: A Debugging Practicing System”,
Computers & Education, 32, 1999, pp. 165-179.

[5] DataDisplayDebugger, https://www.gnu.org/software/ddd/

[6] Nemiver, https://wiki.gnome.org/Apps/Nemiver

[7] Visustin, http://www.aivosto.com/visustin.html

[8] KDevelop, https://liveblue.wordpress.com/2009/07/21/3-visualize-your-
code-in-kdevelop/

[9] Dr. Garbage, https://sourceforge.net/projects/drgarbagetools/files/

[10] Eclipse ObjectAid, http://www.objectaid.com/sequence-diagram

7

[11] H. Shinomi, “Graphical Representation and Execution Animation for
Prolog Programs”, International Workshop on Industrial Applications of
Machine Intelligence and Vision (MIV-89), Tokyo, Apr. 10-12, 1989, pp.
181-186.

[12] B. Schaeli, A. Al-Shabibi, and R.D. Hersch, “Visual Debugging of MPI
Applications”, in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, A. Lastovetsky, T. Kechadi, J. Dongarra
(eds)., EuroPVM/MPI, Lecture Notes in Computer Science, vol. 5205,
Springer, Berlin, Heidelberg, 2008, pp. 239-247.

[13] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi: Visual
Log-Analysis Based Tools for Debugging Hadoop”, CMU-PDL-09-103,
Parallel Data Laboratory, Carnegie Mellon University, Pittsburg, PA,
May 2009.

[14] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining”, ISSTA, Chicago, IL,
Jul. 19-23, 2009, pp. 141-151.

[15] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison Wesley, 2nd edition, 2006.

[16] X. Yan, H. Cheng, J. Han, and P.S. Yu, “Mining Significant Graph
Patterns by Leap Search”, SIGMOD 2008, Jun. 9-12, 2008, Vancouver,
BC, Canada, pp. 433-444.

[17] N. Jin and W. Wei, “LTS: Discriminative Subgraph Mining by Learning
from Search History”, IEEE 27th International Conference on Data
Engineering (ICDE), 2011, pp. 207-218.

[18] M.G.A. El-Wahab, A.E. Aboutabl, and W.M.H. El Behaidy, “Graph
Mining for Software Fault Localization: An Edge Ranking Based
Approach”, Journal of Communications Software and Systems, Vol. 13.
No. 4, Dec. 2017, pp. 178-188.

[19] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D., 1999.
Refactoring improving the design of existing code. Addison-Wesley
Professional. pp. 76-78.

[20] Electron, https://electronjs.org/

[21] J.L. Leopold, N.W. Eloe, and P. Taylor, “BugHint: A Visual Debugger
Based on Graph Mining”, Proceedings of the 24th International
Conference on Visualization and Visual Languages, San Francisco, CA,
June 29-30, 2018, pp. 109-118

Figure 10. BugHunt GUI, showing the possible erroneous lines as determined by control flow graph trace analysis and complexity analysis

8

Figure 11. BugHunt GUI after loading a file that calls a user-defined function

Figure 12. BugHunt GUI when switching function views

9

Figure 13. Hint to the location of a bug in max function

10

DOI Reference Number: 10.18293/VLSS-028
	

Edge-based graph grammar: theory and support

system

Xiaoqin Zeng1 Yufeng Liu1 Zhan Shi1 Yingfeng Wang2 Yang Zou1 Jun Kong3 Kang Zhang4
1Institute of Intelligence Science and Technology, Hohai University, Nanjing, Jiangsu, China

2School of Information Technology, Middle Georgia State University, Macon, GA 31206, USA
3Department of Computer Science, North Dakota State University, Fargo, ND 58102, USA

4Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract—As a useful formal tool, graph grammar provides a
rigorous but intuitive way for defining graphical languages and
analyzing graphs. This paper presents a new context-sensitive
graph grammar formalism called Edge-based Graph Grammar
or EGG, in which a new methodology is proposed to tackle issues,
such as the embedding problem, the membership problem and
the parsing algorithm. It presents the formal definitions of EGG
and its language with a proof of its decidability. Then, a new
parsing algorithm with an analyses of its computational
complexity is given for checking the structural correctness or
validity of a given host graph. The paper finally describes the
development of an EGG support system with friendly GUI.

Keywords-component; graph grammar; graphical language;
embedding problem; parsing; production rule

I. INTRODUCTION
With the development of human-computer interaction

techniques, graphical languages have been applied to various
application domains, such as modeling visual interaction
processes [1, 2], designing graphical user interface in
multimedia applications [3], visual queries to databases [4], and
defining the layout of a GUI in multimedia applications [3].
Conceptually, objects described by graphical languages can be
abstracted as graphs consisting of nodes and edges. For the
specification and analysis of these types of graphs, graph
grammars [5, 6] are an ideal formal and intuitive tool.

 It is well-known that formal string grammar lays a solid
theoretical foundation for the definition and parsing of
programming languages. For the same reason, graphical
languages also need the corresponding formal graph grammars.
Compared with string grammar, graph grammars set a
theoretical basis to visual languages [7]. However, the
implementation of a graphical language is usually not as easy
as implementing string languages [8]. This is mostly due to the
fact that the extension from one-dimensional string grammars
to two-dimensional graph grammars raises new issues [9] such
as the embedding problem, the membership problem, high
parsing complexity.

There have been a number of graph grammars and their
applications in the literature [10-27]. According to the type of
grammatical productions, graph grammars could be mainly
divided into two categories: context-free and context-sensitive.
The main differences between the two are the production
formation and the expressive power. On the one hand, a
context-free grammar requires that only a single non-terminal
node be allowed on the left-hand side of a production [16]. In
early years, many context-free grammars were proposed [17-
21]. Since the productions of these graph grammars are quite
simple, their expressive power is limited, which hinders the
scope of their applications. On the other hand, in response to
the increasing demands of intricate graph-oriented applications,
researchers have developed several context-sensitive graph
grammars, such as PLC (picture layout grammar) [21], CMG
(constrain multiset grammar) [22], LGG (layered graph
grammar) [23], RGG (reserved graph grammar) [8], SGG
(spatial graph grammar) [24, 25]. These context-sensitive graph
grammars allow the left-hand side of a production to be a graph
rather than a node, so bring more expressive power. LGG and
RGG are the most representatives of context-sensitive graph
grammars.

Rekers and Schürr [23] proposed a context-sensitive graph
grammar formalism called Layered Graph Grammar (LGG)
for defining and parsing graphical visual languages. First,
productions in LGG differ widely from others by introducing
context nodes that are not replaced in a derivation or reduction
operation. Second, to solve the embedding problem, LGG puts
a restriction on the definition of a redex in a host graph by
requiring its nodes that are isomorphic to non-context nodes in
productions can only link to other nodes in the host graph that
are isomorphic to the context nodes in the productions. This
restriction ensures no creation of dangling edges when a redex
in a host graph is replaced. Third, a very intricate layer
decomposition constraint is introduced to solve the
membership problem.

 Based and improved on LGG, Zhang et al. [8] proposed
another context-sensitive grammar called Reserved Graph

11

	
	

Grammar (RGG), which defines the structure of graphs by
introducing a two-level structure for each node as a super-
vertex containing sub-vertices connected with edges. In
addition, RGG introduces a marking mechanism to tackle the
embedding problem, in which a unique label is used to identify
all context elements. Further, with the introduction of selection-
free productions to graph grammars, a Selection-Free Parsing
Algorithm (SFPA) is designed for a selection-free RGG, which
only needs to consider one parsing path and thus can efficiently
parse graphs with polynomial time complexity [8]. Later on,
Kong et al. [24, 25] extended RGG by introducing spatial
notations and mechanisms. The spatial specifications of the
extended RGG, called Spatial Graph Grammar (SGG), can
qualitatively express the spatial relationships among objects
and reduce the parsing complexity using the spatial
information.
 Both LGG and RGG have been applied widely to the
definition, analysis and transformation of visual languages [28-
37], such as Visual XML Schemas [29, 30], Design Pattern
Evolution and Verification [32, 33], Generic Visual Language
Generation Environments [28]. However, they still have
deficiencies. For example, the LGG’s context nodes and layer
decomposition constraint make productions difficult to design.
RGG’s two-level node structure and marking mechanism are
not intuitive and make them difficult to apply to general
graphs.
 This paper presents our work on the improvements over the
existing graph grammars with the following contributions.

• A new context-sensitive graph grammar formalism
called EGG, which uses edges instead of nodes to
concisely express the context in productions for simply
and efficiently solving the embedding problem.

• A size-increasing constraint applied to the structure of
productions for solving the membership problem,
easing the design of productions.

• A new general parsing algorithm for checking the
structural correctness and validity of given host graphs;
and the implementation of an EGG graph grammar
support system, which provides friendly GUI for end
users to design and apply graph grammars.

 The rest of the paper is organized as follows. Section 2
presents graphical and grammatical preliminaries, introducing
new terms used in Section 3, which gives the formal definitions
of EGG and its language with a proof of its decidability.
Section 4 presents a parsing algorithm and its complexity
analysis. Section 5 describes the developed EGG support
system. Finally, Section 6 concludes the paper.

II. Graphical and Grammatical Preliminaries
 In node-edge graphs, a node typically represents an abstract
object and an edge represents some kind of relationship
between two connected nodes. Each node 𝑛 in a node set 𝑁 can
be connected with none or more edges, and each edge e in an
edge set 𝐸 is only connected with two nodes. An edge can be
directed or undirected depending on whether it has a direction
between the two connected nodes. Because an undirected edge
can be treated as two directed edges with reverse directions,

without loss of generality this paper only considers directed
edges.
 In string grammars, labels play an important role as
identifiers, and so do labels in graph grammars. Let 𝐿 be a
finite set of labels. Depending on the usage of a label, 𝐿 can
further be divided into terminal label set 𝐿% , nonterminal label
set 𝐿&% , and mark label set 𝐿', namely	𝐿 𝐿% ∪ 𝐿&% ∪ 𝐿' ,
𝐿% ∩ 𝐿&% 𝛷, and 𝐿' ∩ (𝐿% ∪ 𝐿&%) 𝛷.
 By combining the techniques of both graph theory and
formal language, we introduce a series of new definitions and
notations here.
Definition 2.1 n (l) is a node with label l in a given finite
label set L.
 Definition 2.2 e (n3, n5) is a directed edge, where

• n3 is the start node of the directed edge;
• n5 is the end node of the directed edge.

 Based on the above definitions of node and directed edge,
we further introduce the following notations:

• E3 is a set of directed edges starting from a node;
• E5 is a set of directed edges ending to a node;
• d(n) is the degree indicating the number of directed

edges connected to n, i.e. d(n) |E3 ∪ E5|;
• d3(n) is the out-degree indicating the number of

directed edges starting from n, i.e. d3(n) |E3|;
• d5(n) is the in-degree indicating the number of

directed edges ending to n, i.e. d5(n) |E5|.
 Obviously, 𝑑(𝑛) 𝑑:(𝑛) + 𝑑<(𝑛). For simplicity, notations
like 𝑛. 𝑙 and 𝑛. 𝐸: express the corresponding components of
node n, and are applicable to other definitions throughout this
paper.
 Unlike an undirected edge, a directed edge needs to
distinguish start node and end node. Besides, an edge may also
carry a label for clear identification.
Definition 2.3 G (N, E) is a graph on given label set L, where

• N is a node set that is associated with a two-way
partition into NA and NBA , the elements of NA are
called terminal nodes and the elements of NBA are
called non-terminal nodes;

• E is a directed edge set with E ⊆ N× N.
 We then have the following mappings for mathematically
expressing grammatical items.

• fBF: N → L, a mapping from node n to label l ∈ L, i.e.,
fBF(n) n. l;

• fJBK: E → N, a mapping from directed edge e to its
start node, i.e., fJBK(e) e. n3;

• fJBL: E → N, a mapping from directed edge e to its
end node, i.e., fJBL(e) e. n5.

 In EGG, dangling edge set 𝐸̇ is introduced to represent
contexts, in which each edge is connected with only one node
being either a start or end node, namely 𝐸̇ 𝐸̇: ∪ 𝐸̇< with 𝐸̇:
{𝑒̇:|𝑒̇: 	 (𝑛:, ∅)}	 , 𝐸̇< {𝑒̇<|𝑒̇< 	 (∅, 𝑛<)} and 𝐸̇: ∩ 𝐸̇< 𝛷 .
In addition to dangling edges, a marking mechanism is also
introduced to mark dangling edges. The concepts of dangling
edge and marking mechanism solves the embedding problem in
EGG. Fig. 1 illustrates a graph including dangling edges with

12

	
	

𝐸̇ {1,2,3}. The graph is called a dangling edge graph and
can be defined as follows.
Definition 2.4 G (N, E,M) is a dangling edge graph on given
label set L, in which,

• N is a node set;
• E is an edge set including dangling edges, which is

associated with a two-way partition into E and Ė;
• M ⊆ LW is a mark set for marking dangling edges to

distinguish different contexts.
 Essentially, G is an extension of G by introducing dangling
edge and G can be regarded as a special case of G. Similarly,
there is an extra mapping as follows.

• fJW: Ė → M, an injective mapping from dangling edge
ė to its mark m, i.e., fJW(ė) m.

 Note that dangling edge set Ė may be empty, which leads to
the empty corresponding mark set M and mapping 𝑓Z' . Based
on the above defined dangling edge graph, a grammatical
production can be defined as follows.
Definition 2.5 A production 	p is the expression GF ≔ G] ,
which consists of a left dangling edge graph GF and right
dangling edge graph G] satisfying GF.M G].M.
 In a production, dangling edges represent contexts and each
pair of corresponding dangling edges between the left and
right graphs are labeled by a unique mark to maintain their
corresponding relationship. Using dangling edges and their
corresponding marks, the replacement of a redex by either a
left or right graph in a production can be done without
ambiguity. In some special cases, a wildcard dangling edge is
needed to represent an arbitrary number of edges, e.g., one
entity may be connected with any number of attributes in an
entity relationship diagram. For simplicity and without
generality, the concept of wildcard edge is not discussed here.
Fig. 2 is an example of a set of EGG productions specifying a
process flow diagram with
{begin, assign, fork, join, send, receive, if, endif} ⊆ LA	 and
{stat} ⊆ LBA.
 The function of a production is to transform a graph to
another graph. However, the transformation needs to satisfy
some conditions in which isomorphism is fundamental.
Definition 2.6 Graphs G and Q are isomorphic, denoted as G ≈
Q, fBF and fBF

lare two mappings for G and Q respectively, if
and only if there exist two bijective mappings fBB: G.N ↔ Q.N
and fJJ:G. E ↔ Q. E, and the following are satisfied:

• ∀n(((n ∈ G.N)⋁(n ∈ Q.N)) → (fBF(n)
fBF

l(fBB(n))));
• ∀e(((e ∈ G. E)⋁(e ∈ Q. E)) → (fBB(fJBK(e))

fJBK(fJJ(e)))⋀(fBB(fJBL(e)) fJBL(fJJ(e)))).
An isomorphism between two graphs means that their

corresponding nodes have the same label, and the same out-
degree and in-degree. In addition, the corresponding edges
have the same start and end nodes.

Figure 1. A dangling edge graph

Definition 2.7 Graph Q is the sub-graph of G, denoted as Q ∈
Sub(G), if and only if the following are satisfied:

• (Q.N ⊆ G.N)⋀(Q. E ⊆ G. E).
 Graph Q is a sub-graph of G means that Q is part of G.
Definition 2.8 Graph Q is the core graph of G, denoted as Q
Cor(G), if and only if the following is satisfied:

• (Q.N G.N)⋀tQ.E (G. E G. Ė)v⋀(Q. L G. L).
Core graph Q is the sub-graph of graph G	obtained by

removing all dangling edges from graph G and keeping all the
nodes and non-dangling edges of graph G. The graph in Fig. 3
is the core graph of that in Fig. 1.
Definition 2.9 If graph Q is a sub-graph of graph G and may
include dangling edges, and GF] is a graph being left or right
side of a production, Q is a redex of G with respect to GF],
denoted as Q ∈ Redex(G,GF]) , if and only if there exits
bijective mappings fBB:	Q. N ↔ GF].N and fJJ:Q. E ↔
GF]. E, and the following are satisfied:

• Cor(Q) ≈ Cor(GF]);
• ∀n((n ∈ Q) → (d3(n) d3(fBB(n))) ∧ (d5(n)

d5(fBB(n)))).
To explain the above definition, we provide an example in

the following three figures. Fig. 4 is graph GF], and Fig. 5 is a
given host graph G. Obviously, graph Q in Fig. 6 is the sub-
graph of G. According to Definition 2.9, Q is a redex of G with
respect to GF].

In host graph G, if there is sub-graph Q being the redex of G
with respect to GF] that is a left or right side graph of a
production, then one could use the right or left side graph of
the production to replace Q in G. This process is called graph
transformation or replacement, as formally defined below.

a e

b

dc

1 2

3Dangling
Edges

Dangling
Edge

(1)

(5)

(4)

(3)

(2)

：=

1 2 ：= 1 2

1 2 ：= n n

n n
1 2

1 2 ：= 1 n 2

1 2

3 4

：=
1 2

3 4

1 2 ：=

1 2(6)

begin stat end

stat assign

stat fork join

stat

stat

stat statstat

stat

stat

receive

send

stat if

stat

stat

endif

l

13

	
	

applications. Also, the constraint is weak with little impact on
the flexibility of context-sensitive grammars and easier to
implement than that of LGG and RGG for grammar designers.

Theoretically, a graph grammar is a formal tool for
rigorously defining a graph language, which is a set of graphs
that can be derived from the initial graph. Below is the formal
definition of a graph language.
Definition 3.2 Let egg (λ, L, P) be a grammar of EGG, its
language Γ(egg) can be formally defined as Γ(egg)
{G|(λ →∗ G)⋀(fBF(G.N) ⊆ LA)}.

Practically, a graph grammar is a useful tool for
automatically analyzing graphs’ validity. If a given graph can
be reduced to the initial graph with a finite series of R-
applications of a graph grammar, this graph is regarded as
belonging to the grammar’s language. Otherwise, the graph
does not belong to the graph language or the graph grammar
is not decidable.
3.2 Decidability of EGG
 When an EGG is given, its language is determined. It is
decidable whether an arbitrarily given graph is in the language
or not because of the support of the following theorem.
Theorem 1. For EGG egg (λ, L, P) and arbitrary nonempty
graph G, it is decidable whether or not G is in Γ(egg).

Proof: For arbitrarily given graph G with a finite number of
terminal nodes, a sequence of graphs can be generated in an
R-application process starting from G. Because of the size-
increasing constraint and the number of nodes in the graph G
being finite, the R-application process cannot execute
circularly and must stop in finite steps, namely, G ↦∗ G� and
G� being unable to reduce any more by R-application.
Further, the number of such sequences without a loop is also
finite. Thus it is feasible to enumerate all such sequences and
check whether G ↦∗ G� and G� λ are held for at least one
of the sequences. If there exists one, then G ∈ Γ(egg) ,
otherwise G ∉ Γ(egg).
 In the proof, the size-increasing constraint on the
productions of EGG guarantees the decidability of EGG
because the constraint requires that each R-application should
at least either remove a node or change a terminal node to a
non-terminal node in the reduced graph. Therefore, R-
application can only be applied finite times to any host graph
of a given size.

IV. PARSING ALGORITHM OF EGG
 Generally, a graph grammar needs to be equipped with a
parsing mechanism for automatically checking whether a given
graph, called host graph, is structurally correct or valid with
respect to the graph language defined by the grammar. Having
proved that the membership problem is decidable for EGG in
the previous section, this section presents a parsing algorithm,
which checks if a host graph can be reduced to the initial graph
by applying the EGG grammar’s productions to perform a
series of R-applications. A parsing algorithm usually needs to
incorporate the following three interrelated actions:

• Search in the host graph for the redexes of a
production’s right graph;

• Perform an R-application with a found redex to
generate a new host graph from the current host graph;
and

• Trace all the R-application paths by applying in turn
the above two actions until a path leading to the initial
graph is found or all possible paths have been
exhausted.

In the following, the above three actions are discussed in
more detail. The first is the searching. The second is the R-
application. Finally, the tracing combines the two to perform a
parsing.
4.1 Search for redexes

A procedure for searching all redexes is given below, which
takes host graph G and right graph G] as input and returns a set
of redexes found.
FindRedexForRight(Graph G, Graph G])
{
 RedexSet = Φ;
 G-Nodes = OrderNodeSequence(G);
 G]-Nodes = OrderNodeSequence(G]);
 CandidateNodeSet = FindCandidateSet(G-Nodes, G]-Nodes);
 for each Candidate Î CandidateNodeSet

 RedexSet = RedexSet ∪ GenerateRedex(Candidate, G, G]);
 return(RedexSet);
}

In the procedure, function OrderNodeSequence sequences
the nodes in host graph G and right graph G] separately
according to their labels’ alphabetical order. Function
FindCandidateSet finds all possible node sequences from G-
Nodes as candidates under the condition that all nodes in a
candidate have the corresponding nodes in the G]-Nodes of the
same degree. Function GenerateRedex generates all possible
redexes derived from a candidate. Note that a candidate with all
nodes plus their connected edges including dangling edges,
notated as C�, only has the same structure as G], and may
generate more than one redex. This is because a node in G]
may have more than one dangling edge in the same direction
and different matches of the dangling edges between C� and G]
may generate different redexes. Fig. 8 illustrates a case that
uses the marking mechanism, where Fig. 8(a) is host graph G
containing C� in a dotted box, and Fig. 8(b) is a production
containing the corresponding right graph G]. Since the node
labelled ‘b’ in G] is connected with two outgoing dangling
edges, there are two ways of assigning the marks numbered ‘1’
and ‘ 2 ’ to C�. Ė , and thus two redexes are generated
accordingly as illustrated in Fig. 8(c) and Fig. 8(d). Fig. 8(e)
and Fig. 8(f) demonstrate that the two redexes are different and
can reduce graph G to two different graphs.
4.2 R-application

A procedure for performing an R-application is given
below, which takes host graph 𝐺, redex 𝑄, and production p
relevant to 𝑄 as inputs and generates a reduced graph.

RightApplication(Graph G, redex Q, Production p)
{

AddMark(p. G], G);
InsertLeftGraph(p. GF, G);

15

	
	

production is C�� A�� /r! (by reasonably assuming r ≪ h for
making sure that C�� is maximal) and each candidate can
generate at most (d!)� redexes by taking dangling edges into
consideration, it has l� ≤ (d!)�C�� O(h�). Since l�l� is the
total number of actions on pushing redexes into the redex stack
and l� is the partial number of actions on popping redexes from
the redex stack, l� should be no more than l�l�, and thus can be
ignored. The left is iteration number l}, the worst case is when
the algorithm’s result is ‘invalid’, and all redexes found during
parsing enter the stack. Each of the redexes, when popped out
of the stack, leads to an iteration of the outmost loop.
Therefore, l} is equal to the number of all redexes found.

An iteration of the outmost loop generates no more than
n(d!)�C�� redexes for n productions and performs one R-
application. According to the size-increasing condition, each R-
application would reduce the size of the derived host graph.
Since there are at most ℎ R-applications that may not reduce
the host graph size and an R-application would reduce the host
graph size by at least 1, the following holds for l}:
 L} ≤ (n(d!)�C��)�§}n(d!)�C� }

� n(d!)�C� �
� …n(d!)�

C� (� � })
� n(d!)�C� (� �)

�
 (n(d!)�)�� �§}(C��)�C� }

� C� �
� …C�§}� C��

 (n(d!)�)�� �§}(�
(� �) �

)� (� })
(� } �) �

… (�§})
} �

�
¨ �

 (n(d!)�)�� �§}(�
(� �) �

)� ∏ (ª§�)
� ª

� � }
ª«}

 (�(¬)­)~®¯­°

(�)~®¯­¯
th(h 1)…(h r + 1)v

� ∏ (u +� � }
ª«}

																		r)(u + r 1)…(u + 2)(u + 1)
 O((n (¬)

­

�
)��h�� ∏ u�� � }

ª«})

 O((n (¬)
­

�
)��h��((h r 1)!)�)

 O((n (¬)
­

�
)�th�h!v

�
)

 O(��
�
�
�
(h!)�(d! h)��) (1)

Combining all the above discussions, one can finally obtain:

t O(��
�
�
�
(hh!)�(d! h)��).

4.3.2 Space complexity
Theorem 3 The space complexity of the parsing algorithm is
O(h�§}), where ℎ is the number of nodes in the host graph to
be parsed, r is the maximal number of nodes in all the right
graphs of productions.

Proof: The main space-consuming components are the redex
stack and the host graph stack used in the parsing algorithm.
We can, therefore, express the maximal space complexity as:

s s} + s�,
where s} is the space used by the redex stack and s� is the one
by host graph stack. Without loss of generality, we can assume
that the space taken by a redex is r and that by a host graph is
h. Different from time complexity, the use of the stack space is
not always increasing because pop operations would release
space for reuse. Hence, the worst case is the maximal occupied
space along with the longest R-application path, and the
following holds for the redex stack and the host graph stack
respectively.

s} ≤ (rhnC�� (d!)� + rnC�� (d!)� + rnC� }
� (d!)� + ⋯

+ rnC� (� �)
� (d!)�)

 rn(d!)�(hC�� + C�� + C� }
� +⋯+ C��)

 rn(d!)�((�§})(� �) �
+ (� })

(� } �) �
+⋯+ �

¨ �
)

 �
(� })

(d!)�((�§})(� �)
+ ∑ (ª§�)

ª
� � }
ª«¨)

 �
(� })

(d!)�((h + 1)h(h 1)…(h r + 1) +
																								∑ (u + r)(u + r 1)…(u + 1)� � }

ª«¨)
 O(h�§} + ∑ u�� � }

ª«¨)
 O(h�§});
 s� hh + (h 1) +⋯+ r
 O(h�). (2)
Since r ≥ 1, the following can be obtained:

s O(h�§}).
From the above analysis, we notice that the time complexity

is extremely high while the space complexity is bounded by a
polynomial factor. We also note that the structure of
productions plays an important role in determining the
algorithm’s complexity. For example, if a stronger constraint
such as |p. GF. N| < |p. G].N| is enforced on productions, then
the first ℎ R-applications that do not reduce the host graph size
can be removed from (1). In addition, we find that the
algorithm itself may be further improved to increase its
efficiency, especially its average time cost. Moreover, like
RGG, if the condition of Selection-Free [28] is satisfied, the
Selection-Free Parsing Algorithm with polynomial time
complexity can be used for EGG.

V. IMPLEMENTATION OF AN EGG SUPPORT SYSTEM
 A graph grammar support system is a software platform that
can be helpful for end users to easily use graph grammars.
This section briefly describes the architecture and functions of
an EGG support system, abbreviated as EGGSS.
 From a user point of view, EGGSS supplies, besides
normal GUI of Windows, extra graphical and grammatical
tools to assist the user to draw graphs, design graph
productions, define graph languages, perform graph
transformations and parse graphs. They are visualized in a
friendly fashion explained below.

• Graph Editor: performs all kinds of graph related
operations, such as graph drawing, saving, deleting.

• Production Designer: for designing productions based
on the Graph Editor, such as production generation
and modification.

• Transformer: automatically performs L-application for
transforming graph from one to another based on a
given production.

• Language Definer: specifies labels, marks, etc. for
defining the graph language via Productions and L-
application.

• Parser: automatically performs a series of R-
applications for checking the validity of a given graph.

 Fig. 9 illustrates the end user view of EGGSS. Fig. 10 is an
example window of EGGSS’s user interface, where the upper
row is the main menu with all operational items including not
only graphical and grammatical operations but also other

17

	
	

Window GUI operations. On the left, a tree view allows users
to manage XML files with saving, accessing and deleting
operations. They can read graphs in XML format from the
memory and save graph data to an XML file. On the right, the
upper part shows an edited host graph and the lower part
shows a designed production.

Figure 9. End user view of EGGSS

 From a system point of view, EGGSS consists of basic
modules, organized logically in layers to realize the
system’s grammatical functions explained below.
• Graph Transformation: automatically completes the

transformation from one graph to another using
productions. This module is essentially an L-
application.

• Graph Parsing: performs grammatical analysis for a
given host graph by automatically searching for all
possible graph reduction operations to finally reduce
to the initial symbol, namely the host graph is
grammatically valid if and only if it could be reduced
to the initial symbol. This module is essentially a
series of R-applications.

• Graph Matching: finds redexes in a graph according to
a given production.

• Graph Substitution: replaces a sub-graph in a given
graph using the left or right graph of a production.

• XML Description: transfers graph expressions to
XML descriptions and vice versa.

Fig. 11 shows the system architecture with relevant
modules. In the architecture, three upper layers are
implemented using C++ in the environment of Visual Studio
2005, while two lower layers are implemented using the
existing XML open sources and software tools.

Figure 10. A window of EGGSS’s user interface

Figure 11. The architecture of EGGSS

I. CONCLUSIONS

This paper has proposed a new graph grammar formalism,
namely EGG, which aims at making the design and
implementation of a graph grammar simple without weakening
the expressive power of the grammar. The proposed EGG lays
a solid foundation for a wide range of applications using graph
grammars. Specifically, EGG focuses on tackling general graph
languages and graph transformations with productions as
simple as possible. First, EGG simplifies the expression of
productions, in which the context nodes are eliminated and
only edges linked to context nodes are kept. In this way, the
structural information of graphs is still kept. Second, using
dangling edges and their corresponding marks, the replacement
of a redex by either a left or right graph in a production can be
easily done without ambiguity. Third, the introduction of size-
increase constraint to productions solves the membership
problem, making EGG parsing algorithm terminable.

As a future research, we will attempt to find the way to
reduce the parsing complexity, to further improve EGGSS to
be friendlier for end users.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China under grant 61170089.

REFERENCES
[1] P. Bottoni, S. K. Chang, M. F. Costabile, S. Levialdi, P. Mussio. On the

specification of dynamic visual languages, Proc. IEEE Symposium on
Visual Languages, 14-21, 1998.

Graph Editor

Production Designer

Transformer

GUI of Windows...

Language Definer

Parser

End Users

Graph
Transformation

Graph
Parsing

L-application R-application

Graph
Substitution

Graph
 Matching

XML description of graphs and productions

Existing tools and Sofrware of the XML for file access

18

	
	

[2] P. Bottoni, S. K. Chang, M. F. Costabile, S. Levialdi, P. Mussio.
Modeling visual interactive systems through dynamic visual languages,
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 32(6): 654-669, 2002.

[3] S. K. Chang. Extending visual languages for multimedia, IEEE
Multimedia, 3(3): 18-26, 1996.

[4] S. K. Chang. A visual language compiler for information retrieval by
visual reasoning, IEEE Transactions on Software Engineering, 16(10):
1136-1149, 1990.

[5] G. Rozenberg, H. Ehrig, Handbook of graph grammars and computing
by graph transformation, Handb. Graph Grammars. 1 (1997) 1–8.

[6] H. Fahmy, D. Blostein, A Survey of Graph Grammars: Theory and
Applications, in: IAPR Int. Conf. Pattern Recognit., 1992: pp. 294–298.

[7] C. Ermel, M. Rudolf, G. Taentzer, The AGG Approach: Language and
Environment, in: Handb. Graph Grammars 2, 1999: pp. 551-603.

[8] D.-Q. Zhang, K. Zhang, J. Cao, A context-sensitive graph grammar
formalism for the specification of visual languages, Comput. J. 44
(2001)

[9] X.-Q Zeng, K. Zhang, J. Kong, G.-L. Song, RGG+: An enhancement to
the reserved graph grammar formalism, in: Proc. 2005 IEEE Symp. Vis.
Lang. Human-Centric Comput., 2005: pp.272–274.

[10] D. Goik, K. Jopek, M. Paszyński, A. Lenharth, D. Nguyen, K. Pingali,
Graph grammar based multi-thread multi-frontal direct solver with
Galois scheduler, in: Procedia Comput. Sci., 2014: pp.960–969.

[11] L. Fürst, M. Mernik, V. Mahnič, Converting metamodels to graph
grammars: doing without advanced graph grammar features, Softw.
Syst. Model 14 (2013) 1297–1317.

[12] J. Heinen, C. Jansen, J.-P. Katoen, T. Noll, Verifying pointer programs
using graph grammars, Sci. Comput. Program. 1 (2013) 7–12.

[13] Z. Shi, X.-Q. Zeng, S. Huang, H. Li, Transformation between BPMN
and BPEL based on graph grammar, in: Proc. 5th Int. Conf. Comput.
Commun. Netw. Technol., 2014: pp.1-6.

[14] F. Hermann, S. Gottmann, N. Nachtigall, H. Ehrig, B. Braatz, G.
Morelli, A. Pierre, T. Engel, C. Ermel, Triple Graph Grammars in the
Large for Translating Satellite Procedures, Theor. Prac. Model
Transforms. 8568 (2014) 122-307.

[15] Y. Ong, K. Streit, M. Henke, W. Kurth, An approach to multiscale
modelling with graph grammars, Ann. Bot. 114 (2014) 813–827.

[16] K. Wittenburg, L. Weitzman, Relational grammars: theory and practice
in a visual language interface for process modeling. Vis. Lang. Theor.
(1998) 193-217.

[17] G. Rozenberg, E. Welzl, Boundary NLC graph grammars-Basic
definitions, normal forms, and complexity, Inf. Control. 69 (1986) 136–
167.

[18] D. Janssens, G. Rozenberg, Graph grammars with neighbourhood-
controlled embedding, Theor. Comput. Sci. 21 (1982) 55–74.

[19] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge Replacement Graph
Grammars, in: Handb. Graph Grammars 1, 1997: pp.95–162.

[20] K. Wittenburg, Earley-style parsing for relational grammars, Proc. 8th
IEEE Workshop. Vis. Lang., 1992: pp. 192-199.

[21] E. Golin, A Method for the specification and parsing of visual
languages, PhD Thesis, 1991, Department of Computer Science, Brown
University.

[22] K. Marriott, Constraint Multiset Grammars, Proc. IEEE Symp. Vis.
Lang., 1994: pp. 118–125.

[23] J. Rekers, a Schürr, Defining and parsing visual languages with layered
graph grammars, J. Vis. Lang. Comput. 8 (1997) 27–55.

[24] J. Kong, K. Zhang, X.-Q. Zeng, Spatial graph grammars for graphical
user interfaces, ACM Trans. Comput. Interact. 13 (2006) 268–307.

[25] J. Kong, K. Zhang, Parsing Spatial Graph Grammars, Proc. 2004 IEEE
Symp. Vis. Lang. Hum. Centric Comput. (2004) 99–101.

[26] M. Decker, H. Che, A. Oberweis, P. Stürzel, M. Vogel, Modeling
mobile workflows with BPMN, in: ICMB GMR 2010 - 2010 9th Int.
Conf. Mob. Business/2010 9th Glob. Mobil. Roundtable, 2010: pp.272–
279.

[27] C. Kim, M. Ando, Node replacement graph grammars with dynamic
node relabeling, Theor. Comput. Sci. 583 (2015) 40–50.

[28] K. Zhang, D.-Q. Zhang, J. Cao, Design, construction, and application of
a generic visual language generation environment, IEEE Trans. Softw.
Eng. 27 (2001) 289–307.

[29] G. Song, K. Zhang, Visual XML schemas based on reserved graph
grammars, in: Proc. Int. Conf. Inf. Technol. Coding and Computing,
2004: pp. 687-691.

[30] K. Zhang, D.-Q. Zhang, Y. Deng, A Visual Approach to XML
Document Design and Transformation, Proc. IEEE Symp. Human-
Centric Comput. Lang. Environ., 2001: pp.312–319.

[31] K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual
approach for cluster exploration and cluster validation by HOV3. Lec.
Notes Comput. Sci. 4702 (2007) 336-349.

[32] C. Zhao, J. Kong, K. Zhang, Design pattern evolution and verification
using graph transformation, Proc. 40th Annual Hawaii International
Conference on System Sciences (HICSS’2007), 2007: pp.290a-290a.

[33] C. Zhao, J. Kong, J. Dong, K. Zhang, Pattern-based Design Evolution
Using Graph Transformation, J. Vis. Lang. Comput. 18 (2007) 378–398.

[34] C. Zhao, J. Kong, K. Zhang, Program behavior discovery and
verification: A graph grammar approach, IEEE Trans. Softw. Eng. 36
(2010) 431–448.

[35] K. Zhang, J. Kong, Exploring semantic roles of Web interface
components, Proc. Int. Conf. Mach. Web Intell., 2010: pp.8-14.

[36] K. Zhang, J. Kong, M. Qiu, G. Song, Multimedia layout adaptation
through grammatical specifications, Multimedia Syst. 10 (2005) 245-
260.

[37] J. Kong, K.-L. Ates, K. Zhang, Y. Gu, Adaptive mobile interfaces
through grammar induction, Proc. Int. Conf. Tools with Artif. Intell.
ICTAI, 2008: pp.133–140.

19

Spider Diagrams with Absence: Inference Rules for Clutter Reduction

Gem Stapleton1 and Lopamudra Choudhury2 and Mihir Chakraborty2

1 Centre for Secure, Intelligent and Usable Systems,
University of Brighton, UK
2 Jadavpur University, India

g.e.stapleton@brighton.ac.uk, choudhuryl@yahoo.com, mihirc4@gmail.com

Abstract

Spider diagrams represent sets, their cardinalities and,
sometimes, the specific individuals within those sets. They
are expressively equivalent to monadic first-order logic with
equality. Typically, diagrammatic logics with this level of
expressiveness are not equipped to directly express the ab-
sence of an individual from a set. Instead, individuals must
be asserted to be present and, thus, absent from the set’s
complement. The first time that absence could be directly
asserted was in Venn-i. Since then, it been shown that
in a related system called Venn-ie (a monadic first-order
logic without equality) the inclusion of absence informa-
tion can significantly reduce diagram clutter. In this paper,
we explore an extension of spider diagrams to include di-
rect representation of the absence of individuals from sets.
We identify necessary and sufficient conditions for satisfia-
bility, allowing us to define an inconsistency rule allowing
significant reductions in diagram clutter. Building on that,
we introduce sound inference rules specifically related to
spiders (which represent elements, individuals or their ab-
sence) that alter the levels of clutter in consistent diagrams.
In the context of these rules, we explore the implications
of including absence information for reducing clutter. In
particular, we show that the significant benefits, in terms of
clutter reduction, seen through the use of absence in Venn-ie

do not manifest to such an extent in spider diagrams.

1. Introduction

The ability to negate statements plays a crucial role in all
logics. The notion of absence is closely related to that of
negation: a 6∈ P (i.e. the individual a is not in the set P)
indicates, informally speaking, that the individual a is ab-
sent from P . Indeed, the importance of negation should not
be underestimated, “The capacity to negate is the capacity

DOI reference number: 10.18293/VLSS2018-032.

Figure 1. Asserting presence and absence.

to refuse, to contradict, to lie, to speak ironically, to dis-
tinguish truth from falsity – in short, the capacity to be hu-
man” [7]. In diagrams research, though, it has long been be-
lieved that diagrams are not well equipped to make negated
statements directly. Indeed, even simple statements like
a 6∈ P cannot be made explicitly in most Euler diagram-
based logics, such as [10, 14, 18, 19]. Instead, these types
of diagrams tend to assert a ∈ P (the complement of P).

There is an exception to this: Choudhury and
Chakraborty developed a diagrammatic logic named Venn-
i that allows a 6∈ P to be directly expressed [4]. The
Venn-i logic builds on Shin’s Venn-I system [15], which ex-
ploits Peirce’s ⊗-sequences to indicate the non-emptiness
of sets [13]. Venn-i also uses i-sequences and i-sequences
to represent individuals and, respectively, their absence.
Choudhury and Chakraborty adopt a classical interpreta-
tion, meaning that the absence of an individual from one set
implies its presence in the complement1. An inspiration for
Choudhury’s and Chakraborty’s work came from the notion
of abhāva (absence). Abhāva, an important feature of an-
cient Indian knowledge systems, allocates a first class status
to the absence of individuals.

Examples can be seen in figure 1. The diagram d1 di-
rectly expresses that a is in P , since the location of the
symbol a is outside the curve P . From this, we can deduce
that a is not in P , that is, a is absent from P . By contrast,

1A related system, developed by Bhattacharjee et al. focuses on a non-
classical interpretation of absence [2]. In that system, the absence of an
individual from one set does not imply its presence in the complement.
They devised a sound and complete set of inference rules which allow
diagrammatic proofs to be written when absence information is given.

20

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

Lemma 1. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. In all models, I = (U,ψ,Ψ), for
d,

Ψ(z1) ∩Ψ(z2)

for all zones z1 and z2 in Z ∪MZ . That is, distinct zones in
d or which are missing from d represent disjoint sets.

We now present two results relating to, respectively,
empty zones and negative zones. Firstly, we establish that
empty zones represent empty sets in models:

Lemma 2. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. In all models, I = (U,ψ,Ψ), for
d, Ψ(EZ (d)) = ∅.

Proof. Suppose I = (U,ψ,Ψ) is a model for d. Let z ∈
EZ (d). We show Ψ(z) = ∅. Since I is a model for d, there
exists a valid ψ′:ES ∪ PS ∪ NS → U for d. Choose such
a ψ′. Since z is in EZ (d) we know that z is shaded. So, by
the shaded zones condition,

Ψ(z) ⊆ {ψ′(σ) : σ ∈ ES ∪ PS}.

Let σ be an existential or positive spider in d, so σ ∈ ES ∪
PS . Then, by the existential and positive spiders conditions
for d we know

ψ′(σ) ∈ Ψ(η(σ)).

Now, since z is in EZ (d), we know that z 6∈ η(σ). Since
distinct zones in d represent disjoint sets (lemma 1), we de-
duce that

Ψ(z) ∩Ψ(η(σ)) = ∅.

Therefore,
ψ′(σ) 6∈ Ψ(z).

Since σ was an arbitrary existential or positive spider and
the shaded zones condition holds (i.e. Ψ(z) only contains
elements represented by existential or positive spiders), we
deduce that

Ψ(z) = ∅.

Hence Ψ(EZ (d)) = ∅ as required.

Secondly, we show that, for any given spider label, c,
its associated negative zones do not contain the individual
represented by c. For instance, in d6 we already saw that
NZ (b, d6) includes ({Q}, {P,R}). This zone is the loca-
tion for a negative spider, σb,1, labelled b, that is η(σb,1) =
{({Q}, {P,R})}. In any model for d6, the negative spiders
condition tells us that ψ′(b) = ψ(b) 6∈ Ψ({Q}, {P,R}).
Importantly, the negative zones arise precisely from the neg-
ative spiders whose locations are single zones, from which
the proof of the following lemma readily follows:

Lemma 3. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. In all models, I = (U,ψ,Ψ), for
d, for all c ∈ C, it is the case that ψ(c) 6∈ Ψ(NZ (c, d)).

Proof. Suppose I = (U,ψ,Ψ) is a model for d and let c ∈
C. If NZ (c, d) = ∅ then Ψ(NZ (c, d)) = ∅ and we have
ψ(c) 6∈ Ψ(NZ (c, d)). Alternatively, let z ∈ NZ (c, d). We
show ψ(c) 6∈ Ψ(z). Since I is a model for d, there exists
a valid ψ′:ES ∪ PS ∪ NS → U for d. Choose such a
ψ′. Now, since z ∈ NZ (c, d), we know that there exists
a negative spider, σ, in d with label c (i.e. ρ(σ) = c) and
whose location is z (i.e. η(σ) = {z}). By the negative
spiders condition for d, we know that

ψ′(σ) 6∈ Ψ(z),

as required. Hence ψ(c) 6∈ Ψ(NZ (c, d)).

Thus, the definitions of empty zones and negative zones
have the expected properties in models. One further result
will be useful to us, which establishes that in a model for
diagram, d, each element in the universal set, U , must lie in
some zone in d.

Lemma 4. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. In all models, I = (U,ψ,Ψ), for
d, ⋃

z∈Z
Ψ(z) = Ψ(Z) = U.

4 Inconsistency and Satisfiability

A key motivation for this work is to explore the role of
absence in clutter reduction. We begin by observing that
every unsatisfiable diagram is semantically equivalent to a
diagram containing no spiders. For example, in figure 4, d7
is inconsistent: every interpretation has a non-empty uni-
versal set yet, since d7 is entirely shaded and contains no
spiders, the shading and missing zones conditions can never
both be satisfied (a non-empty universal set implies at least
one zone represents a non-empty set). The diagram d8 is
also unsatisfiable, for any one of the following reasons:

1. There are two positive spiders both with the same la-
bel, a, meaning that the spider distinctness condition
can never hold.

2. The negative b spiders together imply that b must lie
in P ∩ Q ∩ R, yet this region is entirely shaded and
contains no part of an existential or positive spider.
Therefore, d8 implies two contradictory statements:
b ∈ P ∩Q ∩R and P ∩Q ∩R = ∅.

3. The negative c spiders tell us that c cannot lie inP∩Q∩
R or in Q ∩ P ∩R, yet the positive spider c expresses
c ∈ (P ∩ Q ∩ R) ∪ (Q ∩ P ∩ R). Clearly both these
assertions cannot be true at the same time.

Since d8 is inconsistent, it is semantically equivalent to d7,
which is visually less cluttered. Since every inconsistent
diagram is semantically equivalent to a diagram that is en-
tirely shaded and contains no spiders, identifying necessary

24

and sufficient conditions for unsatisfiability provides some
insight into how negative spiders can lead to clutter reduc-
tion.

One important feature of the last example was that it was
not possible to find zones that represent sets containing cer-
tain individuals. For instance, there was no zone for the in-
dividual c since it was taken to be present in ({P}, {Q,R})
or ({Q}, {P,R}) yet absent from both ({P}, {Q,R}) and
({Q}, {P,R}). For a diagram to be satisfiable, for each
constant, ci, we must be able to select a zone that, in
some model, represents a set containing the individual rep-
resented by ci.

Definition 7. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. A zone selection function for d
is a mapping, f :ES ∪ PS ∪ NS → Z which ensures the
following hold:

1. the zone selected for each existential and positive spi-
der is one of the zones in its location: for all σ ∈
ES ∪ PS , f(σ) ∈ η(σ),

2. the zone selected for a negative spider cannot be a
negative zone for its label: for all σ ∈ NS , f(σ) 6∈
NZ (ρ(σ), d) and

3. if a shaded zone is selected for a negative spider then
it must also be selected for an existential or positive
spider: for all σ ∈ NS , if f(σ) ∈ ShZ then there
exists σ′ ∈ ES ∪ PS such that f(σ′) = f(σ), and

4. spiders with the same label have the same zone se-
lected: for all σ1, σ2 in PS ∪ NS if ρ(σ1) = ρ(σ2)
then f(σ1) = f(σ2).

The zone selection function identifies, for each spider,
a specific zone in the diagram, d. Any given zone selec-
tion function can be used to define a model for d, where the
individuals represented by the spiders are in the sets repre-
sented by the selected zones. For the purposes of intuition,
we consider each of the conditions of definition 7. Condi-
tion 1 arises from the need for each existential and positive
spider to represent an element in (the set represented by)
one of the zones of its location. Condition 2 captures the
fact that negative zones cannot contain, in a model for d,
the individual represented by ρ(σ). Condition 3 considers
the interaction between negative spiders and shading. The
zone selected for a negative spider, if shaded, cannot repre-
sent the empty set in a model. This is enforced by the re-
quirement that some existential or positive spider has been
assigned to that shaded zone. The last condition requires the
same zone to be selected for spiders with a common label
because such spiders represent the same individual.

Using d6 in figure 3 as an example, adopting the previ-
ously given abstract syntax, we can define

f(σ1) = {({P,Q}, {R})},
f(σa) = {({P}, {Q,R})},

f(σb,1) = {({P,Q}, {R})}
f(σb,2) = {({P,Q}, {R})}
f(σb,3) = {({P,Q}, {R})},
f(σc) = {({P,Q}, {R})}.

Under this zone selection function, a model can be gen-
erated for d6 where b and c represent the same individual
and that individual is in the set represented by the zone
{({P,Q}, {R})}. Under any valid ψ′ that respects f , this
individual is also represented by σ1, due to the presence of
shading.

We are now in a position to define the notion of
(in)consistency:

Definition 8. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. Whenever the following condi-
tions all hold d is consistent:

1. If all of the zones in Z are shaded then there is at least
one existential or positive spider.

2. No two positive spiders have the same label, that is,
the function ρ is injective when its domain is restricted
to PS .

3. There exists a zone selection function, f , for d.

If d is not consistent then d is inconsistent.

So, d6 in figure 3 is consistent whereas d7 and d8 in fig-
ure 4 are inconsistent.

In order to prove that a consistent diagram, d is satisfi-
able, our approach is to construct an interpretation that is
a model for d. To do so, we make use of a foot selection
function, which we know exists since d is consistent. The
first part of this task is to construct a suitable universal set.
Now, for each existential spider and positive spider in d, we
require the existence of a distinct element in U . So, our
strategy is to include all of the existential spiders and the
positive spiders in U . However, this alone does not ensure
enough elements will be inU for all of the spiders. In partic-
ular, negative spiders may require the existence of elements
in non-shaded zones where there is no element arising from
an existential or positive spider. Thus, our universal set will
also include, as elements, all of the non-shaded zones. In
fact, we will establish that this provides sufficient elements
in U .

Once U is constructed, we must build a suitable mapping
from constant symbols to elements in U . For the constants
that are used to label positive spiders this is straightforward:
we map the label to the (unique) positive spider in d (and,
thus, in U) with that label. Things are less straightforward
for a constant, c, that does not label a positive spider but
does appear on one or more negative spiders. As indicated
above, if the selected zone for such spiders is non-shaded
then we simply map the associated constant symbol to that

25

zone. What, then, if the selected zone is shaded? Here, we
focus on the third requirement of a foot selection function:
if a shaded zone is selected for a negative spider then it must
also be selected for a positive or existential spider. This
requirement arises since, in shaded zones, all elements must
be represented by existential or positive spiders. So, to map
a constant symbol, c, appearing in d on negative spiders
only, whose selected zone is shaded, we must choose one
of these elements of U (i.e an existential or positive spider
with the same selected zone) to be the interpretation of c.
Our next definition allows us to pair such negative spiders
with existential or positive spiders:

Definition 9. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be
a consistent enhanced spider diagram with foot selection
function f . A selected negative spider mapping for d given
f is a function, s:NS ′ → ES ∪ PS which ensures

s(σ) = σ′ ⇒ f(σ) = f(σ′)

where

NS ′ = {σ ∈ NS : ¬∃σ′ ∈ PSρ(σ) = ρ(σ′)∧f(σ) ∈ ShZ}.

Lemma 5. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be
a consistent enhanced spider diagram with foot selection
function f . Then d, given f , has a selected negative spider
mapping.

Proof Sketch. The proof follows trivially from condition 3
of definition 7.

Definition 10. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be
a consistent enhanced spider diagram with a zone selec-
tion function, f , and selected negative spider mapping, s. A
standard interpretation, I = (U,ψ,Ψ), for d given f and s
is defined as follows.

1. the universal set comprises the non-shaded zones, the
existential spiders and the positive spiders:

U = (Z\ShZ) ∪ ES ∪ PS

2. ψ: C → U is defined as follows, where u is an arbitrary
element in U :

ψ(c) =


σ when σ is in PS with ρ(σ) = c
f(σ) σ is in NS , no positive spider has

label c, ρ(σ) = c and f(σ) ∈ Z\ShZ
s(σ) σ is in NS ′ with ρ(σ) = c
u otherwise.

3. Ψ:L → PU is defined as follows:

Ψ(l) = {σ ∈ U\Z : f(σ) = (in, out) ∧ l ∈ in} ∪
{(in, out) ∈ U ∩ Z : l ∈ in}.

Lemma 6. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be a
consistent enhanced spider diagram with a zone selection
function, f , and selected negative spider mapping, s. Let
I = (U,ψ,Ψ) be a standard interpretation for d given f
and s. Let z ∈ Z ∪MZ . Then

Ψ(z) = {σ ∈ U\Z : f(σ) = z} ∪ (U ∩ {z}).

Theorem 1. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be a
consistent enhanced spider diagram with a zone selection
function, f , and selected negative spider mapping, s. Let
I = (U,ψ,Ψ) be a standard interpretation for d given f
and s. Then I is a model for d.

Proof. We start by showing that U is not empty, since this
is a requirement for I to be an interpretation. Trivially, if
there is a non-shaded zone then U is non-empty. Else, all
zones are shaded. Since d is consistent, this implies that
there is at least one existential or positive spider in d. By
construction, such a spider is in U . In both cases, U is non-
empty as required.

We now show that the conditions for U to be a model for
d are met. We start by defining a function

ψ′:ES ∪ PS ∪NS → U

by

ψ′(σ) =



σ if σ ∈ ES ∪ PS
σ′ if σ ∈ NS and

there is a σ′ in PS where ρ(σ) = ρ(σ′)
f(σ) σ is in NS , no positive spider has

label ρ(σ), and f(σ) ∈ Z\ShZ
s(σ) σ is in NS ′.

Next, we show that ψ′ is valid. Firstly, consider the missing
zones condition. Let z be a missing zone. By lemma 6, we
know that

Ψ(z) = {σ ∈ U\Z : f(σ) = z} ∪ (U ∩ {z}).

Since z is missing, z is not in U , so

Ψ(z) = {σ ∈ U\Z : f(σ) = z}.

But the zone selection function, f , has codomain Z, so no
spider maps to z under f . Therefore Ψ(z) = ∅ as required.
Hence the missing zones condition holds.

Next we consider the shaded zones condition. Let z be a
shaded zone. By lemma 6, we know that

Ψ(z) = {σ ∈ U\Z : f(σ) = z} ∪ (U ∩ {z}).

Since z is shaded, z is not in U , so

Ψ(z) = {σ ∈ U\Z : f(σ) = z}.

26

From this it follows that

Ψ(z) ⊆ ES ∪ PS

and, noting that ψ′ maps existential and positive spiders to
themselves (i.e. over the restricted domain ES ∪ PS , ψ′ is
the identity function) we have

Ψ(z) ⊆ {ψ′(σ) : σ ∈ ES ∪ PS}

as required. Hence the shaded zones condition holds.
For the spider distinctness condition, we note that ψ′ is

injective when its domain is restricted to ES ∪ PS . Hence
the spider distinctness condition holds. There are three re-
maining conditions to verify, all related to spiders. Let σ be
an existential spider. Consider Ψ(f(σ)). We know

Ψ(f(σ)) = {σ′ ∈ U\Z : f(σ′) = f(σ)} ∪ (U ∩ {f(σ)})

by lemma 6. Clearly, σ is in Ψ(f(σ)) and, since σ = ψ′(σ),
it follows that

ψ′(σ) ∈ Ψ(f(σ)).

Moreover, since f is a zone selection function, f(σ) is in
η(σ). We deduce that

ψ′(σ) ∈ Ψ(f(σ)) ⊆ Ψ(η(σ)).

Therefore the existential spiders condition holds. The posi-
tive spiders condition similarly holds.

All that remains is to show that the negative spiders con-
dition holds. Let σ be a negative spider. If η(σ) contains
at least two zones then the negative spiders condition triv-
ially holds: ψ′(σ) can be in at most one of the sets repre-
sented by the two or more zones. We can assume, then, in
what follows that |η(σ)| = 1. There are three cases to con-
sider. In all cases, we aim to show that ψ′(σ) 6∈ Ψ(z) where
η(σ) = {z}.

Case (1): σ ∈ NS and there is a σ′ in PS where
ρ(σ) = ρ(σ′). Here, ψ′(σ) = ψ′(σ′) by definition
and, by the reasoning above we know that

ψ′(σ) = ψ′(σ′) ∈ Ψ(f(σ′)).

Moreover, since f is a foot selection function and
ρ(σ) = ρ(σ′) we also know that f(σ) = f(σ′). Thus,

ψ′(σ) = ψ′(σ′) ∈ Ψ(f(σ′)) = Ψ(f(σ)).

Since η(σ) contains a single zone, z, by assumption,
it follows that z ∈ NZ (ρ(σ), d). Again, since f is a
zone selection function, we see that

f(σ) 6∈ NZ (ρ(σ), d)

and we can deduce that f(σ) 6= z. Hence f(σ) 6∈
η(σ), so ψ′(σ) 6∈ Ψ(η(σ)) as required.

Case (2): σ is in NS , no positive spider has label ρ(σ),
and f(σ) ∈ Z\ShZ . In this case, ψ′(σ) = f(σ), by
definition. We know, by lemma 6, that

Ψ(f(σ)) = {σ′ ∈ U\Z : f(σ′) = f(σ)}∪(U∩{f(σ)}).

Since U includes all non-shaded zones, and f(σ) is
such a zone, we see that

ψ′(σ) = f(σ) ∈ Ψ(f(σ))

As f is a foot selection function, f(σ) is not in
NZ (ρ(σ), d)). Moreover, because η(σ) contains only
one zone, z, (by assumption), we know that z is in
NZ (ρ(σ), d)). Now, since distinct zones in d repre-
sent disjoint sets, we have

ψ′(σ) 6∈ Ψ(z) = Ψ(η(σ))

as required.

Case (3): σ is in NS ′. Here, we use the fact that s(σ) =
σ′, for some σ′ in ES ∪PS , where f(σ) = f(σ′). We
already saw that

ψ′(σ′) ∈ Ψ(f(σ′)) = Ψ(f(σ)).

Now, ψ′(σ′) = σ′, by construction, and ψ′(σ) = σ′,
so

ψ′(σ) ∈ Ψ(f(σ)).

Again, as the location, η(σ), contains a single zone and
f(σ) is not a negative zone for ρ(σ) in d, it follows that

ψ′(σ) 6∈ Ψ(η(σ)).

Hence, in all cases the negative spiders condition holds and
we have shown that I is a model for d.

We can now state and prove the main result of this sec-
tion:

Theorem 2. Let d = (L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an
enhanced spider diagram. Then d is consistent if and only
if d is satisfiable.

Proof. For the first part of the proof, assume d is consistent.
Then, by theorem 1, a standard model satisfies d. Hence, d
is satisfiable.

For the converse, assume that d is satisfiable. We must
show that d is consistent. Let I = (U,ψ,Ψ) be a model for
d and assume ψ′:ES ∪ PS ∪ NS → U is a valid mapping
of spiders to universal set elements. We now consider three
cases, relating to the conditions for d to be consistent.

Firstly, then, assume that d is entirely shaded. Our task
is to show that d contains an existential or positive spider.
Since I is an interpretation, U is not empty. Let e be an

27

element of U . Then there is some zone, z, in d where e ∈
Ψ(z), by lemma 4. By assumption, z is shaded so

Ψ(z) ⊆ {ψ(σ) : σ ∈ ES ∪ PS}

by the shaded zones condition. Therefore

e ∈ {ψ(σ) : σ ∈ ES ∪ PS}

from which it trivially follows that there is a spider in ES
or PS as required.

Secondly, we must show that no two positive spiders
have the same label. Suppose there are two positive spiders,
σ1 and σ2, with the same label. By the spider distinctness
condition, we know that

ψ′(σ1) 6= ψ′(σ2).

But since ψ′ is valid, we also know that

ψ′(σ1) = ψ(ρ(σ1)) = ψ(ρ(σ2)) = ψ′(σ2)

which is a contradiction. Hence no two positive spiders
have the same label.

Lastly, we must show that there is a zone selection func-
tion for d. We construct f :ES ∪ PS ∪ NS → Z and show
that f is such a function. Consider, for each spider, σ, in
ES ∪ PS ∪ NS , ψ′(σ). Since ψ′(σ) is in U , we know,
by lemma 4 and since distinct zones in d represent disjoint
sets, there is a unique zone, z, such that ψ′(σ) ∈ Ψ(z). We
define, for each σ in ES ∪ PS ∪NS ,

f(σ) = z

where ψ′(σ) ∈ Ψ(z) and z ∈ Z. We must now verify that
f satisfies the four conditions required of a zone selection
function.

1. We must show that the zone selected for each existen-
tial and positive spider, σ, is a zone in its location, that
is f(σ) ∈ η(σ). By definition, f(σ) is the zone whose
interpretation under Ψ contains ψ′(σ). By the exis-
tential and positive spiders conditions, we know that
ψ′(σ) ∈ Ψ(η(σ)). So, we have both

ψ′(σ) ∈ Ψ(f(σ)) and
ψ′(σ) ∈ Ψ(η(σ))

Since distinct zones in d represent disjoint sets, it fol-
lows that f(σ) ∈ η(σ) as required.

2. Now we must show that the zone, f(σ), selected for a
negative spider, σ is not in NZ (ρ(σ), d). Let σ1,..., σn
be all of the negative spiders in d with the same label
as σ. Then we know that ψ′(σ1) = ... = ψ′(σn), so all
of these spiders have the same zone, z, selected under

f . For each spider, either z is not in it’s location or, by
the negative spiders condition, there is another zone in
η(z). For z to be a negative zone for σ, it would have to
be the case that z is the only zone in the location of one
σ1, ..., or σn. As we have just seen, this is not the case,
so z is not negative for σ. That is f(σ) 6∈ NZ (ρ(σ), d),
as required.

3. Suppose that a shaded zone is selected by f for some
negative spider, σ. We must show that f(σ) is also
selected for some existential or positive spider. By the
shaded zones condition,

Ψ(f(σ)) ⊆ {ψ′(σ′) : σ′ ∈ ES ∪ PS}.

Moreover, by the definition of f , ψ′(σ) ∈ Ψ(f(σ)), so

ψ′(σ) ∈ {ψ′(σ′) : σ′ ∈ ES ∪ PS}.

Choose σ′ in ES∪PS such that ψ′(σ) = ψ′(σ′). Then
ψ′(σ′) ∈ Ψ(f(σ)) and, since distinct zones in d rep-
resent disjoint sets, we deduce that f(σ′) = f(σ), as
required.

4. Lastly, we show that if two positive or negative spiders,
σ1 and σ2, have the same label then they have the same
zone selected. Trivially,

ψ′(σ1) = ψ′(σ2)

in other words σ1 and σ2 represent the same element.
Therefore, both σ1 and σ2 represent an element in the
set denoted by some zone z. Thus f(σ1) = f(σ2) = z
as required.

Hence all four conditions are met by f and we deduce that
f is a zone selection function. Therefore d is consistent.
Thus, d is consistent if and only if d is satisfiable.

To conclude this section, we add an inference rule for
inconsistency:

Inference Rule 1 (Inconsistency). Let d =
(L,Z,ShZ ,ES ,PS ,NS , η, ρ) be an inconsistent en-
hanced spider diagram. Let d′ be any enhanced spider
diagram. Then d may be replaced by d′.

5 Inference Rules for Spiders

The goal of this section is to introduce inference rules
that can later be used to reduce clutter in enhanced spider
diagrams. These inference rules focus on spiders only. It is
therefore helpful to introduce transformations on diagrams
that remove and add spiders. In what follows we use | to
indicate a domain restriction.

28

so, since z′ 6= z,

ψ′(σ) ∈ Ψ(η(σ))\Ψ(z).

Therefore
ψ′(σ) ∈ Ψ(η(σ)\{z})

as required. Therefore when z′ 6= z, I is a model for d −
σ +e (σ, η(σ)\{z}).

We must now consider the case where z′ = z. Here
we must define an alternative mapping of spiders to ele-
ments, since ψ′ will not ensure ψ′(σ) represents an element
in Ψ(η(σ)\{z}). Noting, by the definition of the shrink ex-
istential spider rule, that c is a constant where

(Z\EZ)\NZ (c, d) ⊆ η(σ)\{z}

we define ψ′′:ES ∪ PS ∪NS → U by

ψ′′(σ′) =

{
ψ′(σ′) if σ′ 6= σ
ψ(c) otherwise.

We now show that I is a model for d− σ +e (σ, η(σ)\{z})
using ψ′′.

For the shading condition, we need to verify, for each
shaded zone, z′′, in ShZ that

Ψ(z′′) ⊆ {ψ′′(σ′) : σ′ ∈ ES ∪ PS}.

It can readily be shown that

Ψ(z′′) ⊆ {ψ′(σ′) : σ′ ∈ ES ∪ PS}\{ψ′(σ)}

because ψ′(σ) ∈ Ψ(z), z 6= z′′ and so ψ′(σ) 6∈ Ψ(z′′).
Therefore

Ψ(z′′) ⊆ {ψ′′(σ′) : σ′ ∈ ES ∪ PS}\{ψ′(σ)}

so
Ψ(z′′) ⊆ {ψ′′(σ′) : σ′ ∈ (ES\{σ}) ∪ PS}.

Therefore

Ψ(z′′) ⊆ {ψ′′(σ′) : σ′ ∈ (ES\{σ}) ∪ PS} ∪ {ψ′′(σ)}
= {ψ′′(σ′) : σ′ ∈ ES ∪ PS}

as required. Therefore the shaded zones condition holds.
For the spider distinctness condition, let σ1 and σ2 be

spiders in ES ∪ PS . If neither σ1 nor σ2 are the spider σ
then it follows, by the spider distinctness condition for d,
that

ψ′′(σ1) = ψ′′(σ2)⇒ σ1 = σ2.

Suppose, without loss of generality, that σ1 = σ. We must
show that if ψ′′(σ) = ψ′′(σ2) then σ = σ2. Assuming
ψ′′(σ) = ψ′′(σ2), we have ψ′′(σ) = ψ(c) = ψ′′(σ2) =
ψ′(σ2). Consider ψ(c). Since the missing zones condition

holds, by lemma 4, ψ(c) ∈ Ψ(Z). By lemma 2, it follows
that

ψ(c) ∈ Ψ(Z\EZ).

By lemma 3, we further deduce that

ψ(c) ∈ Ψ(Z\EZ)\Ψ(NZ (c, d)) = Ψ((Z\EZ)\NZ (c, d)).

By the definition of the shrink existential spider rule,

NZ (c, d) = (Z\EZ)\NZ (c, d) ⊆ η(σ)\{z},

so
ψ(c) ∈ Ψ(η(σ)\{z}) ⊆ Ψ(η(σ)).

We also have, by the existential and positive spiders condi-
tion for d

ψ(c) = ψ′′(σ2) = ψ′(σ2) ∈ Ψ(η(σ2)).

Therefore, since distinct zones represent disjoint sets,

η(σ) ∩ η(σ2) 6= ∅.

By the definition of the shrink existential spider rule, no
positive or existential spider has a location that overlaps
with η(σ), other than σ itself. Therefore, σ = σ2 as re-
quired. Hence the spiders distinctness condition holds for
d− σ +e (σ, η(σ)\{z}).

Focusing now on the existential spiders condition for d−
σ+e (σ, η(σ)\{z}), the only way this can fail is if ψ′′(σ) =
ψ(c) is not in Ψ(η(σ)). We have just seen that

ψ(c) ∈ Ψ(η(σ)\{z}) ⊆ Ψ(η(σ))

so it follows that the existential spiders condition holds for
d − σ +e (σ, η(σ)\{z}). It is trivial that the positive and
negative spiders conditions hold, since they are identical for
d and d− σ +e (σ, η(σ)\{z}). Hence I is a model for d. It
follows that the shrink existential spiders rule is sound and
produces a semantically equivalent diagram.

In the above rule, we know that the set represented by
η(σ)\{z} must contain ψ(c) so it is not empty. It is there-
fore possible to shrink σ, removing z, without weakening
information, in part since z is not shaded and in part since
no other existential or positive spider has a location that
overlaps with σ. We can also shrink positive spiders, when
their locations include a negative zone.

Inference Rule 6 (Shrink Positive Spider). Let d =
(L,Z,ShZ ,ES ,PS ,NS , η, ρ) be a consistent enhanced
spider diagram. Let σ be a positive spider in d occupy-
ing at least two zones where η(σ) ∩ NZ (ρ(σ), d) 6= ∅.
Let z ∈ η(σ) ∩ NZ (ρ(σ), d). Then d may be replaced by
(d− σ) +p (σ, η(σ)\{z}, ρ(σ)) and vice versa.

33

[5] J. Gil, J. Howse, and S. Kent. Formalising spider diagrams.
In IEEE Symposium on Visual Languages (VL99), Tokyo,
pages 130–137. 1999.

[6] C. Gurr. Effective diagrammatic communication: Syntac-
tic, semantic and pragmatic issues. J. Visual Languages and
Computing, 10(4):317–342, 1999.

[7] L. Horn. A Natural History of Negation. CSLI Lecture
Notes. Center for the Study of Language and Information,
2001.

[8] T. Hou, P. Chapman, and A. Blake. Antipattern comprehen-
sion: An empirical evaluation. In 9th Int. Conf. on Formal
Ontology in Information Systems, pages 211–224, 2016.

[9] T. Hou, P. Chapman, and I. Oliver. Measuring perceived
clutter in concept diagrams. In IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 31–39.
2016.

[10] J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS
J. Computation and Mathematics, 8:145–194, 2005.

[11] J. Howse, G. Stapleton, K. Taylor, and P. Chapman. Visu-
alizing ontologies: A case study. In International Semantic
Web Conference, pages 257–272. Springer, 2011.

[12] C. John, A. Fish, J. Howse, and J. Taylor. Exploring the
notion of clutter in Euler diagrams. In 4th Int. Conf. on Di-
agrams, pages 267–282, 2006. Springer.

[13] C. Peirce. Collected Papers, volume 4. Harvard University
Press, 1933.

[14] Y. Sato, K. Mineshima, and R. Takemura. The Efficacy of
Euler and Venn Diagrams in Deductive Reasoning: Empir-
ical Findings. In 6th Int. Conf. on Diagrams, pages 6–22.
Springer, 2010.

[15] S.-J. Shin. The Logical Status of Diagrams. Cambridge
University Press, 1994.

[16] G. Stapleton, A. Blake, J. Burton, and A. Touloumis. Pres-
ence and absence of individuals in diagrammatic logics:
An empirical comparison. Studia Logica, 105(4):787–815,
2017.

[17] G. Stapleton, L. Choudhury, and M. Chakraborty. Spider
diagrams with absence. In DMS VIVA 2018. KSI, 2018.

[18] G. Stapleton, J. Taylor, J. Howse, and S. Thompson. The ex-
pressiveness of spider diagrams augmented with constants.
J. Visual Languages and Computing, 20:30–49, 2009.

[19] N. Swoboda and G. Allwein. Using DAG transformations to
verify Euler/Venn homogeneous and Euler/Venn FOL het-
erogeneous rules of inference. J. Software and System Mod-
eling, 3(2):136–149, 2004.

37

Dominant Colors as Image Content Descriptors: A
Study with Users

Soraia M. Alarcão Ruben Pavão Manuel J. Fonseca
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

salarcao@lasige.di.fc.ul.pt, rubenpavao@gmail.com, mjfonseca@ciencias.ulisboa.pt

Abstract—Image content are typically described using low level
features such as color, texture, shape, or a combination of the
previous. A particular use of color is the identification of the
dominant colors in images to describe its content, for image
retrieval, for instance. In this paper, we present a study with
users to verify if the dominant colors can be used as image
content descriptors. From the study we identified the dominant
and the search colors users associated to a set of images. We
supplemented this information with gaze coordinates, collected
with an affordable eye tracker, to register the regions at which
people looked while identifying colors in the images. The analysis
of the data revealed that users used a small set of color names,
and that the colors used for searching were similar to those
considered dominant, validating the use of dominant colors as
image descriptors. As a result of the study, we make available a
dataset of 100 images annotated with their dominant colors, the
colors that users would use to search for them, and the areas
where they looked while identifying both types of colors.

I. INTRODUCTION

Color is one of the most distinctive visual features. Various
systems for exploring, searching and presenting images to
users take advantage of it through the use of image’s dominant
colors. Although there are mechanisms to search for or ex-
plore images through their dominant colors, these are usually
identified from the perspective of the system and making
several assumptions (e.g. more importance to the center, salient
objects, etc.) and not based on the human perception of colors.
That is, typically the dominant color is the one that occupies
the largest area of the image. However, from the point of
view of people, the dominant colors are not always those
that cover more pixels. Additionally, most works consider too
many colors as possible dominant colors, making their naming
almost impossible, when users may want/need to explore or
retrieve images by specifying the colors names.

The aim of this paper is to investigate whether dominant
colors can be used as image content descriptors, and whether
there is a relation between the regions at which people look
and the colors they identify. To that end, we conducted a study
with 40 participants in our research lab.

In particular, we designed two setups, one where we asked
participants to identify up to three dominant colors in an
image, and another where we asked them to mention up to
three colors they will use to search for the presented image.
Additionally, we collected eye tracking data of the regions of
the image at which users looked while identifying colors.

DOI Reference Number: 10.18293/VLSS2018-034

From the data collected, we found that the colors used for
searching are similar to those considered dominant, which
means that we can develop a retrieval system where images
are described by their dominant colors. In terms of the
gaze information, we can conclude that there is no strong
correlation between the regions at which people looked and
the colors they identified. In most cases users looked at one
region (e.g. faces) and mentioned a color that is presented in
another region (e.g. t-shirt).

Our contributions are: 1) the confirmation of the JNS 11
colors as a valid reduced set of colors; 2) a dataset of
100 images annotated with their dominant colors and search
colors identified by people; 3) gaze coordinates of users while
identifying dominant and search colors in images.

II. BACKGROUND AND RELATED WORK

In this section, we provide some background about color
perception, color naming, dominant colors, and the use of eye-
tracking to identify where people look at in images.

A. Color Perception

Color is the perceptual phenomenon related to the spectral
characteristics of the electromagnetic radiation in the visible
wavelengths (approximately from 380-750 nm). As suggested
by human visual perception research [1] color is considered
a pre-attentive property known to attract our visual attention
above and beyond other object properties such as shape.

Our vision starts on the eye retina with two types of pho-
toreceptors that receive the light stimulus and emit electrical
impulses. Rods are responsible to operate at low light levels
(scotopic vision), while cones operate at higher light levels
(photopic vision). Cones are the ones responsible for the color
vision, having a high spatial acuity. These electrical signals are
then processed in the cortex, with our previously accumulated
visual experience (memory), to form representations (Visual
Perception) of color, shape, movement etc.

As so, we can say that color is the result of interpretation
in the brain of the perception of light in the human eye and
our visual memory.

B. Color Naming

In everyday life, we mainly identify colors by their names,
which requires a general color vocabulary that is far from
being precise. Given the importance of color naming, a variety
of models and studies describing how people associate names

38

and colors were introduced. Berlin and Kay studied the color
naming behavior with subjects from multiple languages [2].
They concluded that the basic color terms in a culture can be
predicted by the number of color terms the culture has. For
English, they identified the following 11 basic terms: black,
white, red, green, yellow, blue, brown, pink, orange, purple,
and gray. Mojsilovic et al. presented a computational model
for color categorization and naming of the 11 basic colors plus
beige and olive [3].

Weijer et al. used real-world images to learn the 11 basic
colors [4]. Moroney et al. conducted an unconstrained web-
based study where they identified the 20 most commonly
used color terms: green, blue, purple, red, pink, light, lime,
dark blue, brown, yellow, black, orange, sky, bright, violet,
olive, navy, sea, teal, and royal [5]. Menegaz et al. proposed
a discrete model for color naming, where each of the 11 basic
color terms was modeled as a fuzzy set [6]. Benavente et
al. presented a parametric model for automatic color naming,
where each of the 11 basic color terms was modeled as a fuzzy
set with a parametric membership function [7].

As we can see, various authors adopted the set of 11 colors
proposed by Berlin and Kay, probably because it is considered
to contain colors that can be named by all cultures. Indeed, in
2000, Chang et al. coined it as the “Just Not the Same” colors
(JNS), because any two colors from this set are not perceived
as the same [8].

C. Dominant Colors

In general, color is a very distinctive feature, and as such
several image search systems take advantage of it. In particu-
lar, they use the dominant colors of the images as a mechanism
to describe and index their content. Usually, these systems rely
mostly on color histograms to provide both the description of
the colors present in an image and their quantities. Histograms
are obtained by counting the number of pixels for each color,
after quantizing the image colors into a reduced set of colors.

The VisualSEEk was one of the first systems for searching
images using the dominant colors. It used the HSV color
space to compute a histogram of 166 colors, from which
it identified the dominant ones [9]. Deng et al. presented a
feature descriptor that uses segmentation and color clustering
to identify representative colors in each image’s region [10].
Mojsilovic et al. proposed a method to compute dominant
colors by considering both information captured through the
image histogram and extracted from spatial relationships be-
tween frequently occurring colors [11].

Atsalakis et al. proposed the use of a neural network to
automatically identify the significant colors with the minimum
number of color classes [12]. Younnes et al. [13] and Amante
et al. [14] proposed methods based on a fuzzy representation
of colors to identify the dominant colors. Talib et al. proposed
a method to reduce the background effect on the computation
of dominant colors. Authors assigned weights to each domi-
nant color in accordance with its belonging to the object or
the background. The background colors, which are in contact

with the image borders and out of salient object area, received
a lower weight [15].

Although there are mechanisms for content-based image
retrieval using dominant colors, most of them identify the
dominant colors from the perspective of the system and not
taking into consideration the human perception of colors.

D. Eye-tracking

Eye-tracking consists on cameras continuously tracking the
position or orientation of the eyes [16]. Fixation consists on
maintaining the visual gaze on a single location, and is useful
to determine the focus of attention, i.e., to identify what trig-
gered the attention change. Datasets of images annotated with
eye-tracking information are important for the development
of saliency models, i.e., to identify which information on an
image attracts visual attention from the person looking at it.

In Table I, adapted from [17], we present some of the
existing datasets available in the public domain (for detailed
information, see [18], [17]). As far as we know, all of them
contain eye tracking information but none is related to the
tasks of looking at images while identifying the dominant
colors or the colors to be used for searching.

Table I
DATASETS OF IMAGES ANNOTATED WITH EYE-TRACKING INFORMATION.

Fixations Inter-Fixation Raw
Locations Durations Durations Data

DUT-OMRON yes
GazeCom Image yes
MIT CSAIL yes
MIT LowRes yes
VAIQ yes
IRCCyN Image 1 yes yes
Memorability yes yes
McGill ImgSal yes yes
KTH yes yes yes
FiFA yes yes yes
LIVE DOVES yes yes yes
MIT CVCL yes yes yes

III. USER STUDY

In this section, we describe the study carried out to collect
information about the way users identify colors in images
(both for searching and as dominant), the names of colors
they mention, and for what regions of the image they look
while enumerating the colors.

A. Participants

Forty participants, divided into two groups of 20, completed
the study. The first group (G1) was composed of 14 males
and 6 females, with an average of 22 years old (SD=2.86).
Six users wore glasses and one wore contact lenses. In the
second group (G2) there were 12 males and 8 females, with
an average of 21 years old (SD=2.96). Seven wore glasses
and two contact lenses. All participants were voluntaries and
had never used an eye tracker. Participants from group G1
answered question Q1 ”What are the (up to) three colors that
you identify as dominant in this image?”, while participants

39

from group G2 responded to question Q2 ”What (up to three)
colors would you use to search for this image?”.

B. Apparatus and Material

We used a desktop computer with an application to present
the images to the users and register the gaze coordinates col-
lected by the eye tracker. We used TheEyeTribe (an affordable
eye tracker), placed under a 20” LCD monitor with a resolution
of 1600 x 900 pixels. To collect the coordinates, we used the
eye tracker API with the maximum sampling rate supported
(60 Hz). Participants were placed at a distance between 50 cm
to 70 cm of the monitor (and the eye tracker). All users used
the same computer and eye tracker, in the same place, with
the same setup.

For the study, we used a set of 100 images (all with Creative
Commons licensing) collected from Flickr, and organized into
30 categories: animal, architecture, baby, beach, bird, building,
car, clouds, dog, flowers, food, girl, graffiti, lake, landscape,
nature, night, people, portrait, river, sea, sign, sky, snow, street,
sun, sunset, trees, urban, and water. These categories were
based on the ones used in the MIRFLICKR dataset. We did
not use this dataset because its images have a reduced size
(500 x 500 pixels), which would produce poor results for the
gaze coordinates.

To gather the images for our dataset, we performed an
advanced search on Flickr, using the category name as tag and
“Large” as the minimum size. For each category we selected
four images (the first, third, fifth and seventh). After this initial
step, we ended up with 120 images. From these, we discarded
20 images that were very similar to others in the dataset,
thus getting 100 images. All images were resized, keeping the
aspect ratio, to have their width or height equal to the width
(1600) or height (900) of the screen (e.g. 1350 x 900; 669 x
900). By doing this, we had a direct correspondence between
the images and the screen (and eye tracker) coordinates.

C. Research Questions

Taking into consideration the goals of our study, we iden-
tified six research questions that we wanted to answer:

RQ1 Can we reduce the name of all mentioned colors to a
small subset (palette) of colors?

RQ2 Do users use the colors they consider dominant in an
image to search for it?

RQ3 Where do people look at more often in an image while
mentioning its colors?

RQ4 Do users look at the regions where the mentioned colors
are?

RQ5 Does the category of the image affect the gaze pattern
of the users?

RQ6 Does the type of color (e.g. warm, pure, etc.) influence
the set of mentioned colors?

https://theeyetribe.com/
http://press.liacs.nl/mirflickr/

D. Procedures

The sessions took place in a room properly prepared for
the study, with adequate lighting and isolation from external
interferences. We started the study by showing to the users
three plates (4, 7 and 17) from the Ishihara 24 plates test [19],
to check for color blindness. Participants who did not pass the
test were discarded.

For those who passed the test, we started by collecting
demographic information about them, namely age, gender and
whether they were wearing glasses or contact lenses, and
calibrated the eye tracker. Then, we presented 100 images to
each user, one at a time, during seven seconds. For each image
users verbally enumerated the names of the colors, while our
application registered the coordinates of the image at which
they looked using the eye tracker.

Half of the users (G1) enumerated up to three colors that
they consider to be the dominant ones, while the other half
(G2) enumerated up to three colors that they would use if they
wanted to search for the image. The names of the colors were
not defined a priori, so users could say any name they wanted.
We registered those names as users enumerated them.

IV. RESULTS

This section presents the main results from our study
and answers our research questions. Finally, we describe the
resulting dataset containing the images, their dominant and
search colors, and the gaze coordinates collected.

A. Color Names

After collecting the color names and the gaze coordinates
for each user and image, our first step was to group the names
of the colors mentioned by users, to see if we could reduce
them to a small palette. We performed this separately for each
group (G1 - dominant colors, G2 - search colors).

From the analysis of the names, we found that they could
be grouped into a reduced number of colors. In fact, the
names mentioned more often by the users were the 11 JNS
colors, defined by Berlin and Kay. Table II presents the colors
enumerated by the participants and how we grouped them into
the 11 colors palette. As we can see, for each color of the
palette, the color most mentioned was equal to that of the
palette. In fact, 90.7% (dominant colors) and 94.0% (search
colors) of the names mentioned by the users belonged to the
11 colors palette. These results are in line with our previous
study [14], where we found an agreement of 94.6%.

From this, we can conclude that the 11 JNS color palette is
appropriated for the identification of dominant colors and the
specification of colors for searching. Furthermore, it contains
colors whose names people can easily enumerate, enabling
them to specify colors using various modalities, such as
speech, writing or sketches, making the creation of queries
for content-based retrieval or color exploration systems more
natural, easier, and simpler to perform.

We could have used the palette introduced by Ware in the
scope of an application for nominal information coding [20, p.
126], which is composed of the 11 JNS colors plus the cyan,

40

Table II
COLORS ENUMERATED BY THE PARTICIPANTS AND HOW WE GROUPED THEM INTO THE 11 COLORS PALETTE.

Color
Palette

Dominant Colors (G1) Search Colors (G2)
Total # Names Total # Names

White 942

935
3
3
1

White
Off-White
White Light
Transparent White

993

992
1

White
White Light

Black 520 519
1

Black
Ebon 555 554

1
Black
Black Gray

Gray 336

320
7
5
1
1
1
1

Gray
Light Gray
Dark Gray
Cement
Gray-medium
Gray Tree
Silver

290

284
3
1
1
1

Gray
Light Gray
Grayish Brown
Gray Cream
Silver

Red 487

451
14
12

4
2
1
1
1
1

Red
Brick
Bordeaux
Wine
Red Pink
Red Brown
Red-sly
Red wine
Vermilion

507

481
14

6
3
1
1
1

Red
Brick
Bordeaux
Red Pink
Dark Red
Wine
Garnet

Brown 724

497
59
59
46
25
21

2
2
1
1
1
1
1
1
1
1
1
1
1
1
1

Brown
Beige
Skin color
Cream
Light Brown
Dark Brown
Cream Brown
Sepia
Light Beige
Dark Beige
Camel
Yellowish Brown
Brown Beige
Camel Brown
Gray-brown
Greenish Brown
Dirty Brown
Brown Earth
Brownish Brown
Brown Tree
Creamy

687

524
51
49
23
20
11

2
1
1
1
1
1
1
1

Brown
Beige
Skin Color
Cream
Light Brown
Dark Brown
Beige Yellow
Yellowish Brown
Reddish Brown
Brown Earth
Skin Brown
Cream Brownish
Maroon
Honey

Orange 170

160
1
1
1
7

Orange
Reddish orange
Orange Brick
Peach
Redhead

172

166
5
1

Orange
Redhead
Reddish orange

Color
Palette

Dominant Colors (G1) Search Colors (G2)
Total # Names Total # Names

Yellow 561

525
13

5
5
4
3
3
2
1

Yellow
Golden
Light Yellow
Yellow Roasted
Ocher
Dark Yellow
Blond
Yellowish
Yellow Vomit

582

566
6
5
2
1
1
1

Yellow
Golden
Sand Yellow
Diarrhea Yellow
Yellow Yellow
Sand Yellow
Earth Yellow

Green 898

836
29

8
6
5
4
2
2
2
1
1
1
1

Green
Dark Green
Light Green
Lettuce Green
Forest Green
Acid Green
Greenish Yellow
Green Petroleum
Greenish
Olive Green
Greenish Blue
Lime Green
Pale Green

959

937
10

4
3
1
1
1
1
1

Green
Dark Green
Light Green
Greenish Yellow
Vegetation Green
Greenish Brown
Greenish Blue
Grass Green
Aqua Green

Blue 803

707
31
27

6
5
5
5
5
2
2
2
2
2
1
1

Blue
Dark Blue
Turquoise
Aquamarine
Light Blue
Indigo Blue
Sea Blue
Navy Blue
Cobalt Blue
Blue Baby
Blue Cyan
Blue Green
Sky Blue
Greyish Blue
Blue Gray

853

794
20
16

8
4
3
1
1
1
1
1

Blue
Dark Blue
Light Blue
Turquoise
Sea Blue
Cyan
Greyish Blue
Dark Blue Gray
Navy Blue
Night Blue
Sky Blue

Purple 94

69
14
11

Purple
Lilac
Violet 105

64
24
15

2

Purple
Lilac
Violet
Light Purple

Pink 116

106
4
1
1
1
1
1
1

Pink
Magenta
Pink Skin Color
Pink Bordeaux
Light pink
Pink Fluorescent
Salmon
Fuchsia

136

128
5
2
1

Pink
Magenta
Hot Pink
Pink Skin Color

but from our analysis people mentioned cyan a very reduced
number of times (only twice for dominants and three times for
search). Thus, and despite this 12 colors palette being used by
Google and Bing in their image search engines, we found that
the 11 JNS colors palette is more natural to users.

B. Dominant Colors vs Search Colors

One of our research questions (RQ2) seeks to know whether
the colors that people use to search for an image are related
to the dominant colors of that image. To that end, we started
by identifying the most voted colors for each image and for
each situation (dominant and search).

We consider a color to be a dominant or search color for
an image if it has more than 10% of the votes for that image.
We defined this threshold based on our previous tests, where

we found that a color with less than 10% has a very low
importance on an image [14].

With this approach, we could assign more than the three
colors that we asked users to mention, i.e., we decided not to
limit the number of colors to three because: 1) some colors can
have the same percentage of votes, and we should not ignore
one of them just because there are more than three colors; and
2) people perceive colors differently, e.g., some shades of red
can be perceived as orange or as brown. Thus, if a significant
amount of people identify that in a specific image the existing
reds are “brown” or “orange”, this should be reflected on the
colors that describe the image. As an example, consider an
image that has the following distribution of votes: 35% black,
24% red, 14% white, 14% yellow, 6% blue, 4% orange, and
3% gray. The resulting set of colors will be black, red, white,
and yellow, since they have more than 10% of the votes.

41

Figure 1. Distribution of the votes for all the images across the eleven colors:
white (1), black (2), gray (3), red (4), brown (5), orange (6), yellow (7),
green(8), blue (9), purple (10), and pink (11). Zero represents a color that
was used as dominant/search but was not used for search/dominant.

After assigning the most voted colors (dominant and search)
to all images, we aligned the similar dominant and search
colors for each image. We ended up with a set of 400 pairs,
some composed of two colors that are similar on both sides
(e.g. green-green) and others where we have only one color on
one of the sides (e.g. green-none, or none-green). The latter
means that there was no similar color on the other side.

Figure 1 presents the distribution of these pairs across the
eleven colors. In the diagonal, we can see the colors that were
used simultaneously as dominant and for search, while the
size of the bubble represents the amount of times that this
pair occurred. We have a correspondence of 80.5% between
the dominant colors and the search colors, 0.75% where the
two colors are different, 10.25% where we have a color for
search but not for dominant, and 8.50% on the opposite case.

To assess the agreement between the dominant and search
colors, we used similarity metrics to quantify how similar two
sets of colors are (dominant colors are denoted by D, while
search colors are denoted by S). The measures used were the
Jaccard index [21] (see Eq. 1), the Sørensen-Dice index [22],
[23] (see Eq. 2), and the Overlap coefficient [24] (see Eq. 3).
For all these metrics, the closer its value is to one (or 100%),
the more similar the two sets are.

jaccard(D,S) =

∣∣D ∩ S
∣∣∣∣D∣∣+ ∣∣S∣∣− ∣∣D ∩ S

∣∣ (1)

sorensenDice(D,S) =
2
∣∣D ∩ S

∣∣∣∣D∣∣+ ∣∣S∣∣ (2)

overlap(D,S) =

∣∣D ∩ S
∣∣

min
(∣∣D∣∣, ∣∣S∣∣) (3)

Let us consider the following example: we have an image
with dominant colors white, red, and green, while the search
ones are white, red, green, and blue. White, red, and green
colors are common to dominant and search, but blue is not.

If we we are concerned with exact matches, we should use
the jaccard or sorensenDice to assess the agreement. In
such case, we would have an agreement of 75% for jaccard
and 86% for sorensenDice, i.e., in both cases we would be
penalizing the result due to the existence of an extra color
(blue). Otherwise, we should used overlap that will only
consider the exact matches, even if there are more colors
assigned to dominant than search, or vice-versa. In this case,
we would have an agreement of 100%.

Table III presents a summary of our dataset. We present
the number of images per category, the average number of
dominant colors and search colors assigned to each category,
and the average agreement percentage for each similarity
metric. As we can see, around half of the categories (53.44%)
have the same average for dominant and search colors, while
33.33% have an average of search colors bigger than the
dominant.

For the dominant colors, the following categories have at

Table III
OVERVIEW OF OUR DATASET, SHOWING THE NUMBER OF IMAGES PER

CATEGORY, THE AVERAGE NUMBER OF COLORS PER CATEGORY AND THE
AVERAGE VALUES FOR EACH METRICS.

Category # AvgDC AvgSC jaccard sorensenDice overlap
Animal 4 3.75 4.00 72.5 82.8 85.5
Architecture 3 3.67 3.67 85.0 92.7 100
Baby 3 4.00 4.00 70.0 81.7 89.0
Beach 4 3.20 3.60 71.3 86.0 100
Bird 4 3.50 3.75 85.5 91.5 100
Building 3 3.00 3.33 75.0 84.3 89.0
Car 4 3.25 3.75 87.5 93.0 100
Clouds 2 3.00 3.00 75.0 83.5 83.5
Dog 3 4.00 4.00 86.7 92.7 100
Flowers 4 3.50 3.50 75.0 84.8 100
Food 3 3.67 3.67 85.0 91.7 100
Girl 4 3.25 3.75 88.8 93.8 100
Graffiti 4 4.00 3.50 76.3 87.5 100
Lake 3 4.00 4.00 89.0 93.3 93.3
Landscape 4 2.75 3.00 79.3 86.8 91.8
Nature 3 3.67 3.67 75.0 84.3 100
Night 3 4.00 3.67 78.3 87.0 91.7
People 4 3.50 3.50 75.0 84.8 91.8
Portrait 3 4.67 4.00 74.0 85.0 100
River 3 4.00 4.00 100 100 100
Sea 3 3.67 3.67 83.3 89.0 89.0
Sign 3 4.00 3.67 91.7 95.3 93.8
Sky 4 3.50 3.50 90.0 93.8 93.8
Snow 3 3.00 3.00 90.0 93.8 93.8
Street 3 4.33 4.33 63.3 77.0 83.3
Sun 3 3.33 3.33 83.3 90.7 100
Sunset 3 3.33 3.67 91.7 95.3 100
Trees 3 3.33 3.33 83.3 90.7 100
Urban 4 3.25 4.00 83.8 90.3 100
Water 3 4.00 3.67 93.3 96.3 100

Total 100 3.59 3.66 82.1 89.3 96.2

42

(a) All (b) Animal (c) Food (d) Nature (e) People (f) Urban

Figure 2. First row depicts the heatmaps for the dominant colors, and the second row for the search colors. At a given position, a darker shadow of red
represents a stronger number of eye gazes, yellow and green represent a medium number, and blue a lower number. (a) all the categories; (b) animal, bird,
and dog categories; (c) food category; (d) beach, clouds, flowers, landscape, lake, nature, river, sea, sky, snow, sun, sunset, trees, and water; categories; (e)
baby, girl, people, and portrait categories; (f) architecture, buildings, car, graffiti, night, sign, street, and urban categories. (best seen in color)

least an average of four dominant colors: portrait, street, baby,
dog, graffiti, lake, night, river, sign, and water; while building,
clouds, snow, and landscape categories have three or less
dominant colors. Regarding the search colors, the following
categories have at least an average of four colors: street,
animal, baby, dog, lake, portrait, river, and urban, while clouds,
snow, and landscape categories have three or less colors.

If we analyze our results considering the most restric-
tive measures, we have a jaccard agreement varying from
72% to 100%, and a sorensenDice agreement varying from
82.23% to 100%. The most permissive of the three mea-
sures, the overlap varies from 89% to 100%. If we now
consider the overall dataset, we have an average agreement
of 82.12%±17.04% using jaccard, 89.28%±10.80% using
sorensenDice, and 96.22%±9.99% using overlap.

From these values, we can conclude that there is virtually no
difference for users when asked about dominant colors in an
image and colors to be used for searching for that images. In
conclusion, a possible algorithm that identifies dominant colors
in images according to human perception, will also serve to
highlight the colors that would be used by a user to search for
the same image.

C. Focus Regions
Before we analyzed the gaze information, we validated for

each participant if there were any corrupted data to be removed
(e.g., coordinates outside the image). Across all the images and
participants, we had a total of 287 538 gaze coordinates for
the dominant colors and 268 716 for the search colors. We
discarded around 7% of corrupted data from the former and
around 11% from the latter.

To analyze and identify the gaze patterns, we created
heatmaps for each image, groups of categories, and the overall
dataset, considering the dominant and search colors separated.
Since we have images with different orientations and sizes,
we normalized the gaze coordinates for each image according

to their max width and height. This way, we ensure that our
conclusions are correct regardless of the orientation and size
of the images. Figure 2 presents the normalized heatmaps of
our dataset for both dominant and search colors. To simplify
the analysis, we created groups of categories by joining related
ones (e.g. animal, bird, and dog). We can see that people look
at the central area of images, regardless of being questioned
about dominant or search colors (Figure 2a). This is also true
for the different groups of categories (Figures 2b - 2f).

Figure 3 present examples of images from our dataset with
the corresponding heatmaps overlapped, and the dominant and
search colors associated to each one.

Figures 3a and 3f depict a building illuminated at night.
People looked more at the center of the image, where we
can find the main part of the building, the lamp light and
the red lights of traffic. The white, black and yellow colors
reflect this gaze behavior, but black (for dominant and search)
and blue (for search) are not predominant in the areas where
people looked. Figures 3b and 3g depict a street with parked
cars. Although, people identified white (surroundings and
buildings), gray (car on front and street), red (car), and green
(trees) as the dominant and search colors, in both cases, they
mainly looked at the red car.

Figures 3c and 3h show a dog resting on grass. In this
case, people mainly looked at the dog face and dog-collar.
The predominant colors were green (grass), blue (dog-collar),
and finally brown (dog body and face). It is interesting to
notice that regardless of the small size of the dog-collar (when
compared with the size of the dog), the blue color had more
votes than the brown. Figures 3d and 3i depict a purple
flower. Here, people mainly looked at the stigma of the flower
(white/yellow area in the middle of the flower), the top part
of the flower, and some leaves. The identified search colors
were purple and green (flower), while for dominant colors, the
black and blue colors were also identified.

43

(a) White, black, yellow (b) White, gray, red, green (c) Green, blue, brown (d) Black, green, purple, blue (e) White, green, brown

(f) White, black, yellow, blue (g) White, gray, red, green (h) Green, blue, brown (i) Green, purple (j) White, green, brown

(k) Gray, yellow, pink, brown (l) Orange, yellow, pink, brown (m) White, green, blue, brown (n) White, blue (o) Black, orange, yellow

(p) White, gray, yellow, brown (q) White, black, yellow, blue (r) White, green, blue, brown (s) White, blue (t) Black, orange, yellow

Figure 3. Examples of heatmaps and images for the dominant colors (first and third row) and search colors (second and forth row). (best seen in color)

Figures 3e and 3j show a young girl laying on the grass.
We can see that people mainly looked at the girl face, but
indicated white (dress), green (grass), and brown (hair and
maybe skin) as the predominant colors for both search and
dominant. Figures 3k and 3p depict a nightscape with buildings
across the river. Similarly to Figures 3a and 3f, people mainly
looked at the center of the image where the buildings and lights
are concentrated. For this image, the dominant colors were
gray (from the sky and maybe buildings), yellow (from the
buildings lights), pink (maybe the central building resembles
light pink, and the top structure at its left, dark pink), and
brown (surroundings and shadows). It is interesting that in
search colors, people also looked at the top of the building with
a white light (right top part of image) and the building front
illuminated with a white light (right middle part of image). As
a result, white was one of the predominant colors identified.

In Figures 3l and 3q, we have the face of a man surrounded
by packages of chocolates. In both cases, people mainly looked
at his face. However, in both cases, people identified the colors
of the chocolate packages (e.g., orange, yellow, white, black).
Figures 3m and 3r depict a river with some vegetation. People
looked more at the top of the image, where the vegetation and
the narrowest river area are. In both cases, people identified

white (from the water foam), green (vegetation), blue (from
the narrowest part of the river), and brown (from the banks
and wider area of the river) as the predominant colors.

In Figures 3n and 3s, we have the sky with clouds. People
mainly looked at the center of the image, where the biggest
portion of the clouds are. Not surprisingly, the predominant
colors identified were white and blue. Finally, in Figures 3o
and 3t, we have a sunset on the river. People looked to the sun
and the area around it. However, the most predominant color
was black, where people barely looked at.

D. Discussion

Based on the results from our study, we will answer now
the research questions that we raised in Section III.

According to Table II, we can say that the answer to
our RQ1 is yes, that is, we can reduce all the color names
mentioned by users to a small subset of colors, such as the
11 colors palette suggested by Berlin and Kay. From the
comparison and the assessment that we made on Section
IV-B, we verified that there is a strong similarity between the
dominant colors and search colors mentioned for each image.
Thus, we can say that the colors that users would use to search
for an image are the dominant colors of the image (RQ2).

44

Although, the gaze pattern differs a bit among the groups of
categories (RQ5), as illustrated in Figure 2, the most looked
region is the center of images (RQ3). Moreover, we noticed
that people do not look at some regions of the image, but
enumerate their colors, and look at other parts of the image
(e.g. faces, bright spots, lights) and do not mention their colors
(RQ4). We noticed that people identify as predominant colors,
colors from small areas of the image probably because they
have striking colors (e.g., red car, blue dog-collar) (RQ6).

In summary, we can say that users mentioned colors from
the whole image and not only from the area where they looked
at. In particular, we noticed that users focus on faces, but
identify as predominant colors those of the surrounding objects
(e.g. hair, clothes). This focus on faces was also observed by
Cerf et al. in their study [25]. Finally, and although people
use the same “scanning” method for the identification of the
dominant and search colors, they slightly tend to disperse more
their gaze while identifying colors for searching purposes.

E. Resulting Dataset

Our dataset, named UL-GDSC (Gaze on Dominant and
Search Colors), is composed of 100 images collected from
Flickr and resized to match the largest size of the screen (width
of 1600 or height of 900 pixels). Images are organized in 30
categories, as shown in Table III, and are annotated with their
dominant colors, the colors that people would use to search
for them, and the coordinates where people gaze at while
identifying the colors. We made UL-GDSC dataset publicly
available to the community.

Each image has two sets of colors (dominant and search
colors) based on the colors that received more than 10% of the
votes. On average, images have three to four colors associated.
The gaze coordinates in the dataset are the average of three
consecutive raw coordinates provided by the eye tracker. Thus,
we were able to have more stabilized gaze coordinates, with
the cost of having less values per second, since we indirectly
reduced the sampling rate (from 60 Hz to 20 Hz).

A salient aspect of the UL-GDSC is that it contains not only
the colors that people identified as dominant and for searching,
but also the eye movements people performed while doing it.

V. CONCLUSION

In this paper, we presented the results of a study with users
to identify the predominant colors in images and at which
regions they look while mentioning those colors. From the
data collected, we were able to confirm that the JNS palette
contains a set of colors that is representative of the color names
that users mentioned.

Additionally, we measured the similarity between the dom-
inant colors associated to an image and the colors used to
search for it, and found that they are very similar. So, we can
use the dominant colors of the images as a content descriptor,
since users would use them for searching.

The analysis of the gaze data revealed that overall there is
no strong relation between the colors of the regions where

http://www.di.fc.ul.pt/∼mjf/research/ul-gdsc/

people look at and the predominant colors identified in the
image. Furthermore, people look mainly at the center of the
image, regardless of its category.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e Tecnologia, under LASIGE Strate-
gic Project - UID/CEC/00408/2013.

REFERENCES

[1] A. M. Treisman and G. Gelade, “A feature-integration theory of atten-
tion,” Cognitive Psychology, vol. 12, no. 1, p. 97136, Jan. 1980.

[2] B. Berlin and P. Kay, Basic color terms : their universality and evolution.
University of California Press, 1969.

[3] A. Mojsilovic, “A computational model for color naming and describing
color composition of images,” Transactions on Image Processing, pp.
690–699, 2005.

[4] J. van de Weijer, C. Schmid, and J. Verbeek, “Learning color names
from real-world images,” in Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[5] N. Moroney, “Unconstrained web-based color naming experiment,” in
Color imaging VIII: Processing, hardcopy, and applications. Interna-
tional Society for Optics and Photonics, 2003, pp. 36–47.

[6] G. Menegaz, A. Le Troter, J. Sequeira, and J.-M. Boi, “A discrete model
for color naming,” Journal on Advances in Signal Processing, 2007.

[7] R. Benavente, M. Vanrell, and R. Baldrich, “Parametric fuzzy sets for
automatic color naming,” Journal of the Optical Society of America A,
pp. 2582–2593, 2008.

[8] E. Y. Chang, B. Li, and C. Li, “Toward perception-based image
retrieval,” in Workshop on Content-based Access of Image and Video
Libraries, 2000, pp. 101–105.

[9] J. R. Smith and S.-F. Chang, “Visualseek: a fully automated content-
based image query system,” in ACM international conference on Mul-
timedia, 1997, pp. 87–98.

[10] Y. Deng, B. Manjunath, C. Kenney, M. S. Moore, and H. Shin, “An
efficient color representation for image retrieval,” Transactions on Image
Processing, pp. 140–147, 2001.

[11] A. Mojsilovic, H. Hu, and E. Soljanin, “Extraction of perceptually im-
portant colors and similarity measurement for image matching, retrieval
and analysis,” Transactions on Image Processing, pp. 1238–1248, 2002.

[12] A. Atsalakis and N. Papamarkos, “Color reduction and estimation of the
number of dominant colors by using a self-growing and self-organized
neural gas,” Engineering Applications of Artificial Intelligence, 2006.

[13] A. A. Younes, I. Truck, and H. Akdag, “Image retrieval using fuzzy
representation of colors,” Soft Computing, pp. 287–298, 2007.

[14] J. C. Amante and M. J. Fonseca, “Fuzzy color space segmentation to
identify the same dominant colors as users,” in International Conference
on Distributed Multimedia Systems, 2012, pp. 48–53.

[15] A. Talib, M. Mahmuddin, H. Husni, and G. Loay E, “A weighted
dominant color descriptor for content-based image retrieva,” Journal of
Visual Communication and Image Representation, pp. 345–360, 2013.

[16] J. Lazar, J. H. Feng, and H. Hochheiser, Research Methods in Human-
Computer Interaction. John Wiley & Sons, 2010.

[17] S. Winkler, F. M. Savoy, and R. Subramanian, “X-eye: A reference
format for eye tracking data to facilitate analyses across databases,” in
Human Vision and Electronic Imaging, 2014.

[18] S. Winkler and R. Subramanian, “Overview of eye tracking datasets,”
in International Workshop on Quality of Multimedia Experience, 2013.

[19] S. Ishihara, Tests for color-blindness. Handaya, Tokyo, Hongo Haru-
kicho, 1917.

[20] C. Ware, Information Visualization: Perception for Design. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[21] M. J. Zaki and W. M. Jr, Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, 2014.

[22] L. R. Dice, “Measures of the Amount of Ecologic Association Between
Species,” Ecology, pp. 297–302, 1945.

45

[23] T. A. Sørensen, “A method of establishing groups of equal amplitude
in plant sociology based on similarity of species content, and its appli-
cation to analyses of the vegetation on {Danish} commons,” Biologiske
Skrifter, pp. 1–34, 1948.

[24] Y. A. Pesenko, “Principles and Methods of Quantitative Analysis in
Faunistical Researches,” Moscow (Nauka) [in Russian], 1982.

[25] M. Cerf, J. Harel, W. Einhaeuser, and C. Koch, “Predicting human gaze
using low-level saliency combined with face detection,” in Advances in
Neural Information Processing Systems, 2008, pp. 241–248.

46

1

Enriching Image Datasets with Unrestrained
Emotional Data: A Study with Users

Soraia M. Alarcão and Manuel J. Fonseca
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

salarcao@lasige.di.fc.ul.pt, mjfonseca@ciencias.ulisboa.pt

Abstract—Elicitation of emotions is typically done through the
presentation of emotionally salient material, like images or videos,
thus requiring reliably annotated datasets. Although there are
datasets with emotional information, these only describe either
emotional polarities or discrete emotions. The only available
dataset with both types of information restrained the participants
during the study by separating a priori the images according to
their polarity (positive or negative). In this paper, we describe an
unrestrained study with 60 participants, where we asked them
to rate the polarities and discrete emotions elicited by a set
of images. The analysis of the emotional ratings made by the
users revealed the most frequent correlations between the basic
emotions. Furthermore, the analysis of the ratings’ agreement
among participants and existing datasets shows that our results
are aligned with the existing ones. As a result of our study, we
make available to researchers a more informative picture dataset
annotated with emotional polarities and multiple emotions, as a
complement to existing datasets.

I. INTRODUCTION

The role of emotions in human cognition is essential given
their importance in the daily life of human beings. Emotions
play a critical role in rational decision-making, perception,
human interaction, and intelligence [1], [2].

In the last decade, there has been an increasing body of work
involving emotions: to improve content-based classification for
both music and video, using photos and emotions conveyed by
multimedia [3]; to gather emotional information from images
through their visual content [4]; to observe the emotional
state of a person using Electroencephalography [5]; to improve
interactive experiences using user emotional expressions [6];
and finally, to enhance the quality of recommendation systems
[7].

Besides these examples, many studies in psychology and
computer science involve manipulating emotions via emotional
stimuli [8]. If a stimulus is relevant enough, an appraisal is
automatically executed and will trigger reactions in measurable
components of emotion, such as physiological responses,
expressivity, action tendencies, and subjective feelings. Several
methods have been introduced for priming participants, such
as the presentation of emotionally salient material like images
[9], audio [10], video [11], or text [12]. The use of the
visual channel remains the most common to convey emotional
stimulation [13].

DOI reference number: 10.18293/VLSS2018-033

In the different areas of research based on visual stimulation,
reliable datasets are important for the success of emotion
induction. To that end, in 1997, the International Affective
Picture System (IAPS) dataset was presented [14]. Later, in
2011 and 2014, two new datasets were created: Geneva Af-
fective PicturE Database (GAPED) [13], and Nencki Affective
Picture System (NAPS) [15]. These increased the availability
of visual emotion stimuli, while trying to solve the problem
of a limited number of pictures for specific themes. IAPS
only provides valence and arousal, while GAPED has some
information about the emotional polarity (negative, neutral or
positive) of their images, but it is not enough for the cases
where there is the need to use discrete emotions.

To minor the lack of emotional information, in 2005
and 2016, Mikels [16]–[18] and NAPS Basic Emotions
(NAPS-BE) [19] were presented. Mikels collected descriptive
emotional data on a subset of the IAPS to identify the elicited
discrete emotions. Although this work enriched the emotional
information associated to the IAPS dataset, we believe that the
authors have restrained the choices of the participants by ask-
ing them to select discrete emotions only in a specific polarity
(positive or negative), according to the subset where the image
was placed a priori by the authors. This restriction prevented
mixtures of positive and negative emotions. However, it is
possible that an image arouses positive emotions in a person
and negative in another. Finally, authors did not consider that
images could be neutral.

In this paper, we present a study about the experience of
viewing a set of images from the IAPS and GAPED datasets.
We focused on the process of rating the images according
to the emotions and polarities they elicited in the viewer,
as well as the participants’ insights during the experience.
Although it would be interesting to use images from the
NAPS-BE, it was not yet available when we conducted the
study. Our contributions are: 1) a more complete and realistic
picture dataset composed of 169 images, each annotated with
information about the predominant emotional polarity, the
intensity of each discrete emotion elicited by the image, and
the valence and arousal values from the original datasets; 2)
the relationship between multiple emotions that arise when
visualizing images, that are in line with the literature, thus
confirming the quality of our dataset emotional annotation; 3)
our experimental procedure designed to provide more comfort
to the users, avoiding stress and fatigue.

47

2

II. BACKGROUND AND RELATED WORK

In this section, we briefly explain what are emotions and
how we can represent them. We also describe the most
commonly used datasets of images to elicit emotions.

A. Emotions

Polarity provides a coarse indication of the emotional image
content (positive, neutral, and negative). Emotions, on the
contrary, give a more detailed description of the emotional
information conveyed. These have been described as discrete
and consistent responses to external or internal events with
particular significance for the human organism [20]. This
finer distinction of emotions provides a richer emotional
classification, making it suitable for specific research purposes,
such as studying the neuroanatomical correlations among basic
emotions when a person is exposed to multimedia stimuli [21].

When talking about emotions, it is important to mention
the subjectivity inherent, since multiple emotions can appear
in the same subject while looking, for example, at a picture,
as well as different subjects can feel different emotions when
viewing the same picture, mainly due to each subject’s current
emotional state and “life experiences” [22], [23]. However,
the expected affective response can be considered objective,
as it reflects the more-or-less unanimous response of a general
audience to a given stimulus [24].

Regarding the existence of multiple emotions while viewing
an image, these correlations of basic emotions are a well-
known phenomena in the field of psychology. One of the
most important results was that when happiness rises, all other
emotions decline; another one is that fear correlates positively
with sadness and anger [25], [26].

B. Emotions Representation

There are two different perspectives towards emotion rep-
resentation: categorical and dimensional. The first indicates
that basic emotions have evolved through natural selection.
Plutchik proposed eight basic emotions (acceptance, anger,
curiosity, disgust, fear, joy, sadness, and surprise), from which
we can define all the others [27]. Ekman based his work
in the relationship between facial expressions and emotions
derived from the universal basic emotions (anger, disgust, fear,
happiness, sadness, and surprise) [28]. These emotions are
considered universal since their external manifestation seems
to be independent of culture and personal experiences [29].

In the dimensional perspective, which is based on cognition,
the emotions are mapped into the Valence, Arousal and
Dominance (VAD) dimensions. Valence goes from unpleasant
to pleasant, arousal goes from states like sleepy to excited, and
finally, dominance corresponds to the strength of the emotion
[14], [30]. The most common model used is the Circumplex
Model of Affect (CMA), where all affective states arise from
cognitive interpretations of core neural sensations that are the
product of valence and arousal [31].

In this work, we used Ekman’s set of universal emotions
(anger, disgust, fear, happiness, sadness, and surprise) com-
plemented with the neutral emotion.

TABLE I
COMPARISION AMONG THE MOST COMMONLY USED DATASETS OF

IMAGES.

Dataset #Images V-A Polarities Emotions

IAPS 1182 Yes No No

EmoPics 378 Yes No No

GAPED 730 Yes Yes No

NAPS 1356 Yes No No

POFA 110 No No Yes

KDEF 4900 No No Yes

NimStim 646 No No Yes

ArtPhoto 807 No No Yes

Abstract 228 No No Yes

Mikels 330 Yes Yes2 Yes

NAPS-BE 510 Yes No Yes

C. Image Datasets

In all the different areas of research based on visual stim-
ulation, reliable databases are important for the success of
emotion induction. In Tables I and II, we briefly present the
most commonly used datasets of images to elicit emotions.

As we can see in Table I, only GAPED and Mikels provide
information about the polarity of an emotion, i.e., negative,
neutral or positive (Mikels does not consider the neutral
polarity). In Mikels, the authors defined the emotional polarity
of an image before the participants performed their rating
about the discrete emotions. Given the subjectivity inherent
to emotions, this could have restrained the results since it did
not allow people to express positive emotions for “negative”
images, and vice-versa. For example, Yoon et al. concluded
that some of images did not have agreement between the tags
assigned by the image creators and the ones given by image
viewers [32].

Machajdik datasets (Art Photo and Abstract Paintings) [33],
Mikels, and NAPS-BE discriminate the emotions elicited by
images. However, Abstract Paintings is focused in a very
specific type of images that are not usually found in personal
collections, while the ratings for images of the Art Photo
were only done by the artists. IAPS, Emotional Picture Set
(EmoPicS) [34], and NAPS do not provide any information
about the emotional content of their images, offering only
valence and arousal information or physical characteristics
of the images. Karolinska Directed Emotional Faces (KDEF)
[35], NimStim Face Stimulus Set (NimStim) [36], and Pic-
tures of Facial Affect (POFA)1 were only labeled with facial
expressions and corresponding emotions.

Some datasets have Valence and Arousal (VA) information,
but no emotional data; others have emotional information, but
no VA; and finally, only GAPED, NAPS-BE, and Mikels have
both, but they are restrained and limited.

1http://www.paulekman.com/product/pictures-of-facial-affect-pofa/
2The emotional polarity (negative or positive) for each image was defined

by the authors, not collected from the participants.

48

3

TABLE II
DESCRIPTION OF THE MOST COMMONLY USED DATASETS OF IMAGES TO ELICIT EMOTIONS.

Dataset Description

IAPS It contains 1182 images, and provides a set of normative emotional stimuli for experimental investigations of emotion and attention. The
authors rely on a dimensional view, in which emotions are defined by a coincidence of values on a number of VAD dimensions. Each
picture is characterized in terms of their valence and arousal ratings. They were made by males, females and children using Self-Assessment
Manikin (SAM) questionnaires during 10 years [37].

EmoPicS It contains 378 standardized color images with different semantic contents, such as social situations, animals, and plants, selected from
public online photo libraries and archives. Each image of the database was rated with their corresponding dimensional information: valence
and arousal, and also with some physical characteristics of the given image: color composition, contrast, and luminance.

GAPED It contains 730 pictures: 121 representing positive emotions using human and animal babies as well as natural sceneries, 89 for the neutral,
mainly using inanimate objects, and 520 for the negative, using spiders, snakes, human rights violation, and animal mistreatment. The
pictures were rated according to valence, arousal, and the congruence of the represented scene with moral and legal norms regarding Swiss
legislation, since the study was conducted in Switzerland. These ratings were made by 60 subjects, where each subject rated 182 images.

NAPS It contains 1356 realistic, high-quality images divided into five categories: animals, faces, landscapes, objects, and people. Besides valence,
arousal and motivational direction (avoidance-approach) ratings, each image was annotated with some physical characteristics, namely color
composition, contrast, and luminance. 204 subjects made the ratings, where each one rated 362 images, pseudo-randomly chosen from all
the categories with the constraint that no more than three stimuli of the same category were presented in succession.

POFA This dataset consists of 110 photographs of facial expressions that have been widely used in cross-cultural studies, and more recently, in
neuropsychological research. All images are in black and white, and each image has a set of norms associated. It is important to note that
the images are not identical in intensity or facial configuration.

KDEF It is a set of 4900 pictures of human facial expressions of emotion suitable for perception, attention, emotion, and memory. Thus, special
attention was given to photograph expressions at different angles, with soft light, and using t-shirts with uniform colors. A grid was used
to center the face of the users during shooting, as well as position the eyes and mouth in certain coordinates of the image during scanning.
The set contains 70 individuals, each displaying seven different emotional expressions, which were photographed from five different angles.

NimStim It consists of 646 facial expression stimuli. Images include fearful, happy, sad, angry, surprised, calm, neutral, and disgusted expressions
displayed by a variety of models of various genders and races. Examples of facial expressions were shown to the actors, for them to get an
idea of what was the aim, and then they posed for each facial expression. Muscles were adjusted until the desired expression was achieved.

Art Photo It contains 807 artistic photographs that were obtained by using the emotion label as search terms in the deviantArt site. The emotion label
was determined by the artist who uploaded the photo, that was trying to evoke a certain emotion in the viewer of the photograph through
the conscious manipulation of the image composition, colors, etc.

Abstract It contains 228 images with combinations of color and texture, without any recognizable objects. To obtain ground truth, images were peer
rated in a web-survey where the users could select the emotional category from amusement, anger, awe, contentment, disgust, excitement,
fear and sad, for 20 images per session. 230 people rated approximately 280 images, where each image was rated about 14 times.

Mikels This dataset is composed of 330 images from the IAPS, annotated with positive (amusement, awe, contentment, and excitement) and negative
(anger, disgust, fear, and sadness) emotions. Thirty males and 30 females made the emotional category ratings in two studies, using a subset
of negative images and a subset of positive images, with a constrained set of categorical labels.

NAPS-BE This dataset contains 510 images from the NAPS, annotated with the emotions anger, disgust, fear, happiness, sadness, and surprise. It has
98 images depicting animals, 161 faces, 49 landscapes, 102 objects, and 100 people. Sixty seven females and 57 males made the emotional
ratings, where each subject rated around 170 images.

III. EMOTIONAL USER STUDY

In this section, we describe the study carried out, in which
participants identified both the emotional polarity and emo-
tions they felt while visualizing each image.

A. Participants

Sixty participants completed the study: 26 females and 34
males, with 70% of them belonging to the 18-29 age group,
and almost 60% having a BSc Degree. None of the participants
had participated in any study using the IAPS or GAPED,
and the overwhelming majority had no knowledge about these
datasets.

Regarding their emotional state at the beginning of the
study, 31 participants classified themselves as neutral, 25 as
positive, and only 4 as negative. Considering the discrete
emotions (anger, disgust, fear, happiness, neutral, sadness,
and surprise), the majority of the participants were feeling
moderately happy or moderately neutral, both with a median
of 3 in a scale of 1-5, with 1 corresponding to a weak feeling,
and 5 to a strong feeling.

B. Apparatus and Material

A MacBook Pro (13-inch) computer was used with an
application for participants to see the images and rate the
emotions and polarities elicited by each image.

The dataset used in the study was composed of 86 images
from the IAPS, 76 images from the GAPED, and 7 images
from Mikels’ dataset. It contained images with animals (cats,
dogs, horses, sharks, snakes, spiders, tigers, among others), car
accidents, children, death situations, diseases, fire, mutilation,
natural catastrophes, poverty, and war scenarios. We chose a
set of images that we believed to represent in a balanced way
the discrete emotions throughout the valence-arousal space
(see Figure 1).

Since it was impractical and even unpleasant for participants
to annotate all the images in our dataset, and also due to the
time it would take, we randomly divided our dataset into four
subsets: DS0 to DS3. DS0 contained 57 images (30 IAPS, 20
GAPED, 7 Mikels), DS1 contained 40 images (20 IAPS, 20
GAPED), while DS2 and DS3 contained 36 images each (18
IAPS, 18 GAPED).

49

4

Fig. 1. Adaptation of the Circumplex Model of Affect, mapping the discrete
emotions into the Valence-Arousal plane [38].

All the participants rated each image of DS0, while images
from DS1, DS2 and DS3 were rated by 20 participants. With
this process, we managed to get a larger number of annotated
images in the shortest time possible.

C. Design and Procedure

The experimental sessions took place in a room properly
prepared for the task, aiming at providing comfort to par-
ticipants, with adequate lighting and isolation from external
noises. The option for the solo exhibition seeks to contribute
to better control of external interference (e.g., comments from
other participants, noise) that could interfere with emotional
participant’s experience [39].

We started by explaining the purposes of the study and
how it would be held. To ensure the willingness of the
subjects regarding negative images, we showed three images
as examples of what could be expected. After that, the subjects
could decide whether to continue or not the study. One
participant (not included in the 60) decided not to continue the
study due to medical issues. If they accepted, they should fill
the participants’ questionnaire with their personal information
(age, gender, etc.), and the classification of their current
emotional state (polarity and emotions).

The first screen of the application presented a summary of
the most important aspects of the study. Then, seven blocks
of images were presented sequentially, with about 14 images
on each block. Each image (with a resolution of 640x480
pixels) was displayed randomly during 5 seconds, and after the
visualization, participants evaluated their emotional state (re-
garding the polarity felt), and rated it for each of the emotions
(see Figure 2). To obtain the participants’ emotional reactions
without practical limitations (e.g. specialized equipment for
collecting physiological signals), we adopted a 5-point Likert
scale for each emotion.

Fig. 2. Rating screen of the application with the 5-point Likert scale.

This process was repeated for each image of the seven
blocks of images of our study. Although in similar studies
participants usually had a limited time to answer, we decided
not to do it. This way, we allowed participants to spend the
time they needed, without feeling pressured to respond or even
stressed out. We also provided a 30 seconds interval between
each block of images, during which only a black screen was
displayed, to relax the user and avoid fatigue.

To verify and validate if our procedure had any error and if
it was completely clear to the subjects, we performed a pilot
test with a 27 years old male and a 18 years old female. With
the exception of an image that was duplicated, none of the
subjects had any doubt or detected any error in our study. An
interesting aspect identified in this pilot test was the different
sensitivities of the participants to the negative images. One
subject considered the majority of the images very violent,
while the other considered them almost neutral, and in some
cases he enjoyed the consider negative content.

IV. EMOTIONAL CLASSIFICATION PROCEDURE

In this section, we describe the procedure used to classify
each image based on the participants’ ratings both in terms of
the dominant polarity and discrete emotions.

To assign an emotional polarity to an image, we chose
the polarity with the highest number of votes. In Table III,
we present examples of the distribution of votes across each
polarity, while Figure 3 depicts the corresponding images.

TABLE III
EXAMPLES OF THE DISTRIBUTION OF VOTES ACROSS EACH POLARITY.

Image Negative Neutral Positive Assigned Polarity

1460.jpg 0.0% 13.3% 86.7% Positive

Sn087.jpg 20.0% 68.3% 11.7% Neutral

9925.jpg 40.0% 50.0% 10.0% Neutral

Sp044.jpg 40.0% 50.0% 10.0% Neutral

3017.jpg 75.0% 20.0% 5.0% Negative

50

5

(a) 1460.jpg (b) Sn087.jpg (c) 9925.jpg (d) Sp044.jpg (e) 3017.jpg

Fig. 3. Examples of images from our dataset depicting: (a) kitten, (b) snake, (c) fire, (d) spider, and (e) mutilation.

(a) single (b) blended: 2 emotions (c) blended: 3 emotions (d) blended: 4 emotions (e) undifferentiated

Fig. 4. Examples of Confidence Intervals of images from our dataset, and how they are classified according to our procedure: (a) happiness emotion, (b)
neutral and fear emotions, (c) fear, sadness and neutral emotions, (d) fear, disgust, neutral, and sadness emotions, and (e) undifferentiated.

We considered that an image could transmit up to four
emotions, with no constraints about their polarity. We made
this decision because Posner et al. stated that “individuals do
not experience, or recognize, emotions as isolated, discrete
entities, but that they rather recognize emotions as ambiguous
and overlapping experiences” [31].

To identify the dominant emotions for each image, we
followed the procedure from Mikels et al. [16]. However, since
we are considering more emotions per image than Mikels (four
vs three), our procedure is slightly different. For each image,
we computed the mean of the ratings assigned by participants
to each emotion, and a 90% t-based Confidence Interval (CI)
around each mean. Then, the emotions’ label was determined
according to the overlap of the CIs for each emotion.

If the mean for one emotion is higher than the means of
all the other emotions, and if the CI for that emotion does
not overlap with the CIs for the other emotional labels, it is
classified as a single emotion (see Figure 4a). If two, three
or four means are higher than the rest, and the intersection
between their CIs is not empty, the image is categorized as
blended (see Figures 4b - 4d). If more than four CIs overlap,
the image is classified as undifferentiated (see Figure 4e).

In our study, and contrary to what Mikels did, we could
have images with a mix of negative and positive emotions.

V. RESULTS

In this section, we present the polarities agreement and emo-
tional labels assigned to each image. We also present the most
elicited emotions together. Finally, we present observations
made by our participants during the study.

A. Agreement of Polarity Among Users

In Figures 5 and 6 we can observe, in detail, the votes
of the users for each image in our dataset. From the 82
images classified as negative, 77 images had more than 50% of
negative votes. The remaining votes were mainly neutral (45
images were rated with at most 30% of neutral votes, while
47 images had at most 5% of positive votes).

Regarding the 66 images classified as neutral, 62 of images
had more than 50% of neutral votes. The remaining votes were
usually rated more often as negative than positive (37 images
with at most 30% of negative votes, while 41 had at most
15% of positive votes). Finally, all the 21 images classified as
positive had more than 50% of positive votes. Eighteen images
had at most 5% of negative votes, while 10 were rated with
at most 30% of neutral votes.

In summary, all polarities were very well identified. When
there was some mixing with either the positive or negative
polarity, they were mixed with the neutral polarity. For the
neutral polarity, it was mainly mixed with the negative polarity.

B. Agreement of Polarity Among Datasets

We compared our results only with GAPED because IAPS
does not provide polarity information, and although Mikels
provides information about the polarity, it was classified by
the authors not by the participants.

We analyzed 76 images (33 negative, 9 positive, and 34
neutral) from the GAPED. For the neutral and positive po-
larities, we achieved an agreement of 100% for each. For the
negative, the achieved agreement was 69%. The biggest mixed
was with the neutral polarity (28%), while the mix with the
positive polarity was very small (3%).

51

6

Fig. 5. Images classified as negative in our dataset. We show the percentage of votes that users assigned to each polarity. (best seen in color)

Fig. 6. Images classified as neutral (left) and positive (right) in our dataset. We show the percentage of votes that users assigned to each polarity. (best seen
in color).

Dan-Glauser et al. also reported that their results in GAPED
had a high percentage of negative valence ratings overlapping
with the neutral for animal mistreatment, spider, human con-
cern, and snake pictures [13].

C. Valence and Arousal Space

In Figure 7, we present the distribution of the ratings in the
valence and arousal space.

For each polarity, a polygon delimits the space in which
all pictures of the same polarity are found. If we compare
the distribution of the polarities with the emotions displayed
in Figure 1, we can see that there is a clear correspondence
between the negative emotions with the negative polarity, as
well as between the neutral emotion and the neutral polarity.

For the positive polarity, this correspondence with the
happiness emotion is not so obvious, but it is easy to see that
there is no overlap between the negative and positive polarities.
Finally, we can see that there is some confusion between the
neutral and negative polarities, as well as between the neutral
and positive ones, however less significant.

D. Emotional Labels

From the 169 images of our dataset (see Table IV), we
obtained 60 images annotated with a single emotion (35.5%),
87 classified as blended (51.5%), with 29 referring to the
combination of two emotions (17.2%), 31 to three emotions
(18.4%), and 27 for four emotions (16.0%). Finally, we only
had 22 images classified as undifferentiated (13.0%).

If we compare our results with those presented in Mikels
dataset (see Table V), we obtained more 6% of images
classified with a single emotion, and less 8% undifferentiated
images (29.0% (15.98+13.02) vs 36.9% in Mikels considering
only three emotions [16]).

If we consider up to four emotions in an image, we have
less 24% undifferentiated images (13.0% vs 36.9% in Mikels),
while in the case of blended images we have around 21% more
images (51.6% vs. 30.5% in Mikels).

Fig. 7. Representation of the ratings in the valence/arousal space for each
polarity. The red area (on the left) corresponds to the negative polarity. The
grey area (at the center) corresponds to the neutral polarity, while the green
(on the right) corresponds to the positive polarity. (best seen in color).

TABLE IV
DISTRIBUTION OF UL-EPS DATASET CONCERNING THE EMOTIONAL

LABELS: SINGLE, BLENDED, AND UNDIFFERENTIATED.

Single Blended 2 Blended 3 Blended 4 Undifferentiated

60 29 31 27 22

35.50% 17.16% 18.43% 15.98% 13.02%

52

7

Fig. 8. Emotional labels that result from the classification process.

On the whole, we have a larger number of images annotated
with emotional data. Thus, our dataset is more informative
about the emotional labels assigned to images.

In Figure 8, we can see the different emotional labels
resulting from the classification process. For the blended,
we have for example DFSu, i.e., an image that contains the
emotions disgust, fear, and surprise. The resulting label does
not take into account the weight of each of the emotions
present in an image, i.e., label DFSu includes the following
combinations: DFSu, DSuF, FDSu, FSuD, SuDF, and SuFD.

E. Relationship Between Emotions

In Figure 9, it is possible to analyze the most elicited single
emotions, and the relationship between two emotions. For that,
we considered the frequency of occurrence of each emotion.

TABLE V
COMPARISON BETWEEN UL-EPS AND MIKELS DISTRIBUTION OF

EMOTIONAL LABELS.

Dataset Single Blended (2 and 3) Undifferentiated

ULEPS 35.50% 35.59% 29.00%

Mikels 30.00% 30.51% 36.92%

Fig. 9. Relationship between single emotions, and between the blending of
two emotions.

The thicker the line, the bigger is the number of images that
elicited that emotion (single) or the greater is the relationship
between two emotions (blended). A dashed line indicates that
there were no images that elicited that emotion.

The most elicited single emotions were neutral, happiness,
sadness, and disgust. The most obvious relations are between
the emotions neutral and sadness, neutral and fear, neutral and
happiness, and sadness and disgust. Anger, fear, and surprise
are the emotions less elicited alone. However, surprise tends
to appear in conjunction with fear and neutral emotions. In
the case of anger, there is some relation with the elicitation of
sadness, while fear was elicited together with disgust, as well
as with surprise and neutral.

Regarding the correlations between basic emotions, and
considering Figures 8 and 9, we confirm the results reported
in the literature. Happiness negatively correlates with all the
other basic emotions. Anger shows correlation with fear and
disgust. There is also correlation between sadness and fear, and
between sadness and disgust. Finally, fear was also correlated
with disgust. Overall, our results are in line with those reported
in previous studies [26], [40]–[42].

F. Observations from Participants

During each session, participants were encouraged to share
with us their opinions/comments about the experience. More
than 40% of the participants mentioned some type of difficulty
in understanding the content of some of the images, leading
to confusion about their feelings.

The majority identified the lack of context as the main
reason for this, e.g., some participants did not understand if
an animal in front of a car will be hit by it or not. In this
case there is confusion between feeling negative if the animal
is hit, and neutral or positive otherwise.

53

8

Five participants claimed that surprise is subjective, difficult
to understand, and also difficult to elicit from an image. There
seemed to be some exceptions to this, such as a shark moving
as it is attacking a person or images with unexpected content
like a lamp or stairs. A couple of participants indicated us that
none of the images was able to trigger anger.

Regarding the personal taste of the participants, some
appreciated specific content such as snakes (4), spiders (3),
or aquatic animals (1), while others did not appreciate it at
all. However, some of them considered images with those
animals “beautiful”, mainly due to the colors in them. Three
participants declared that they were not sensitive to some
images, such as a children smiling, leading them to feel neu-
tral, although they considered that they should feel “happy”.
Finally, some participants also mentioned that the emotional
content of the previous visualized image may interfere in the
way they were feeling at that moment.

VI. CONCLUSION

We described an unrestrained study performed with 60
participants to annotate a dataset of images with the polarity
and discrete emotions elicited by each image. During our study
there were no restrictions in the selection of the emotions,
being possible for a user to associate a positive and a negative
emotion to the same image.

We presented the relationship between multiple emotions
that arouse when visualizing an image, and we verified that
they were in line with existing literature. Moreover, we also
presented our experimental procedure designed to avoid stress
and fatigue, providing more comfort to the users.

We made a more complete and realistic picture dataset
composed of 169 images publicly available to the community3,
as a new contribution to complement the already existing
datasets. Each image was annotated with the emotional polari-
ties (positive, neutral, and negative), discrete emotions (anger,
disgust, fear, happiness, neutral, sadness, and surprise), and
the original valence and arousal information.

Having in mind all the inherent subjectivity of emotions,
the different constraints that could affect the participants
judgement (current emotional state of the user, user’s ability
to evaluate what they felt, among others), the overall good
agreement among participants, and between our dataset and the
GAPED dataset, we can consider that the results achieved by
our study are reliable and useful for the elicitation of emotions.

As future work, we intend to use our procedure to annotate
more images with polarities, discrete emotions, and the phys-
iological signals collected from the users while viewing the
images.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e Tecnologia, under LASIGE Strate-
gic Project - UID/CEC/00408/2013.

3http://www.di.fc.ul.pt/∼mjf/research/ul-eps/UL-EPS 2018.xlsx

REFERENCES

[1] A. R. Damasio, Descartes’ Error: Emotion, Reason, and the Human
Brain. Harper Perennial, 1995.

[2] R. Picard, “Affective computing,” MIT Media Laboratory, Perceptual
Computing Section, Tech. Rep. 321, 1995.

[3] P. Dunker, S. Nowak, and C. Lanz, “Content-based Mood Classification
for Photos and Music,” in Multimedia Information Retrieval, 2008.

[4] D. Joshi, R. Datta, E. Fedorovskaya, Q.-t. Luong, J. Z. Wang, L. Jia,
and J. Luo, “Aesthetics and Emotions in Images [A computational
perspective],” Signal Processing Magazine, 2011.

[5] D. O. Bos, “EEG-based Emotion Recognition: The Influence of Visual
and Auditory Stimuli,” Capita Selecta Paper, 2006.

[6] L. Axelrod and K. S. Hone, “Affectemes and allaffects: A novel approach
to coding user emotional expression during interactive experiences,”
Behaviour & Information Technology, 2006.

[7] M. Tkalčič, A. Kosir, and J. Tasic, “Affective recommender systems:
the role of emotions in recommender systems,” in Workshop on Human
Decision Making in Recommender Systems, 2011.

[8] K. C. Klauer, “Affective priming,” European Review of Social Psychol-
ogy, 1997.

[9] S. Wang and X. Wang, “Emotion semantics image retrieval: An brief
overview,” in Affective Computing and Intelligent Interaction, 2005.

[10] T. Li and M. Ogihara, “Detecting emotion in music,” in Music Informa-
tion Retrieval, 2003.

[11] K. Sun, J. Yu, Y. Huang, and X. Hu, “An improved valence-arousal emo-
tion space for video affective content representation and recognition.”
Multimedia and Expo, 2009.

[12] V. L. Rubin, J. M. Stanton, and E. D. Liddy, “Discerning Emotions
in Texts,” in Exploring Attitude and Affect in Text: Theories and
Applications, 2004.

[13] E. S. Dan-Glauser and K. R. Scherer, “The Geneva affective picture
database (GAPED): A new 730-picture database focusing on valence
and normative significance.” Behavior Research Methods, 2011.

[14] P. Lang, M. Bradley, and B. Cuthbert, “International affective picture
system (IAPS): Affective ratings of pictures and instruction manual.”
NIMH Center for the Study of Emotion and Attention, Tech. Rep., 1997.

[15] A. Marchewka, Ł. Zurawski, K. Jednoróg, and A. Grabowska, “The
Nencki Affective Picture System (NAPS): introduction to a novel, stan-
dardized, wide-range, high-quality, realistic picture database.” Behavior
Research Methods, 2014.

[16] J. A. Mikels, B. L. Fredrickson, G. R. Larkin, C. M. Lindberg, S. J.
Maglio, and P. A. Reuter-Lorenz, “Emotional category data on images
from the International Affective Picture System.” Behavior Research
Methods, 2005.

[17] A. Smith, “A new set of norms.” Behavior Research Methods, 2004.
[18] ——, “Smith2004norms.txt,” Retrieved October 2, 2004 from Psycho-

nomic Society Web Archieve, 2004.
[19] M. Riegel, Ł. Zurawski, M. Wierzba, A. Moslehi, Ł. Klocek, M. Horvat,

A. Grabowska, J. Michałowski, K. Jednoróg, and A. Marchewka,
“Characterization of the Nencki Affective Picture System by discrete
emotional categories (NAPS BE).” Behavior Research Methods, 2016.

[20] E. Fox, Emotion Science: Cognitive and Neuroscientific Approaches to
Understanding Human Emotions. Palgrave Macmillan, 2008.

[21] R. D. Lane, E. M. Reiman, G. L. Ahern, G. E. Schwartz, and R. J.
Davidson, “Neuroanatomical correlates of happiness, sadness, and dis-
gust.” The American journal of psychiatry, 1997.

[22] Y. Choi and E. M. Rasmussen, “Searching for images: The analysis of
users’ queries for image retrieval in American history,” Journal of the
American Society for Information Science and Technology, 2003.

[23] K. A. Olkiewicz and U. Markowska-kaczmar, “Emotion-based image
retrieval - An artificial neural network approach,” in Computer Science
and Information Technology, 2010.

[24] A. Hanjalic, “Extracting Moods from Pictures and Sounds: Towards
Truly Personalized TV,” Signal Processing Magazine, 2006.

[25] C. E. Izard, The Psychology of Emotions. Plenum Press, 1991.
[26] S. Schmidt and W. Stock, “Collective indexing of emotions in images.

A study in emotional information retrieval,” Journal of the American
Society for Information Science and Technology, 2009.

[27] R. Plutchik, “The Nature of Emotions,” American Scientist, 2001.
[28] P. Ekman and R. J. Davidson, The nature of emotion : fundamental

questions. New York : Oxford University Press, 1994.
[29] O. da Pos and P. Green-Armytage, “Facial expressions, colours and basic

emotions,” Journal of the International Colour Association, 2007.
[30] Y. Liu, O. Sourina, and M. K. Nguyen, “Real-Time EEG-Based Emo-

tion Recognition and Its Applications,” Transactions on Computational
Science, 2011.

54

9

[31] J. Posner, J. a. Russell, and B. S. Peterson, “The circumplex model
of affect: an integrative approach to affective neuroscience, cognitive
development, and psychopathology.” Development and psychopathology,
2005.

[32] J. Yoon, “Utilizing quantitative users’ reactions to represent affective
meanings of an image,” Journal of the American Society for Information
Science and Technology, 2010.

[33] J. Machajdik and A. Hanbury, “Affective image classification using fea-
tures inspired by psychology and art theory,” International Conference
on Multimedia, 2010.

[34] M. Wessa, P. Kanshe, P. Neumeister, K. Bode, J. Heissler, and S. Schoen-
felder, “EmoPics: Subjektive und psychophysiologische Evaluationen
neuen Bildmaterials für die klinisch-bio-psychologische Forschung,”
Zeitschrift für Klinischer Psychologie und Psychotherapie, Supplement,
1/11, 77, 2010.

[35] D. Lundqvist, A. Flykt, and A. Öhman, The Karolinska Directed
Emotional Faces - KDEF. CD ROM from Department of Clinical
Neuroscience, Psychology section, Karolinska Institutet, 1998.

[36] N. Tottenham, A. Borscheid, K. Elertsen, D. Marcus, and C. Nelson,
“Categorization of facial expressions in children and adults: Establishing
a larger stimulus set.” Cognitive Neuroscience Society, 2002.

[37] M. M. Bradley and P. J. Lang, “Measuring emotion: The self-assessment
manikin and the semantic differential,” Journal of Behavior Therapy and
Experimental Psychiatry, 1994.

[38] M. Tkalčič, U. Burnik, and A. Košir, “Using affective parameters in
a content-based recommender system for images,” User Modeling and
User-Adapted Interaction, 2010.

[39] P. Arriaga and G. Almeida, “Fábrica de emoções : A eficácia da
exposição a excertos de filmes na indução de emoções,” Instituto
Superior de Psicologia Aplicada, Tech. Rep., 2010.

[40] I. Bretherton and M. Beeghly, “Talking about internal states: The
acquisition of an explicit theory of mind,” Developmental Psychology,
1982.

[41] B. Fehr and J. Russell, “Concept of emotion viewed from a prototype
perspective,” Journal of Experimental Psychology: General, 1984.

[42] P. Shaver, J. Schwartz, D. Kirson, and C. O’Connor, “Emotion knowl-
edge: Further exploration of a prototype approach.” Journal of Person-
ality and Social Psychology, 1987.

55

Event-Based Data Input, Modeling and Analysis for

Meditation Tracking using TDR System

Shi-Kuo Chang
1
, CuiLing Chen

2
, Wei Guo

1
 and NanNan Wen

1

1
School of Computing and Information

University of Pittsburgh, Pittsburgh, PA 15238, USA

{schang, weg21, naw66}@pitt.edu

2
College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, PR China

mathchen@163.com

Abstract

In this paper we describe an experimental TDR

system with continuous data input from devices such

as smart phones and sensors such as brain wave

headsets. We developed event-based data input,

modeling and analysis techniques in order to analyze

input data and track progress of meditation. Initial

experimental results indicate that this approach is

quite promising.

Keywords

Meditation tracking, event-based data input,

modeling and analysis, slow intelligence system,

TDR system.

1 Introduction

In our previous work we developed the TDR system,

which is a multi-level slow intelligence system with

interacting super-components each of which has its

own computation cycle [1], as a platform to explore

applications in personal health care, emergency

management, social networks and so on. In this

paper we apply the TDR system to event-based data

analysis and visualization for meditation tracking.

Meditation, defined as “the attention inwards

towards the subtler levels of a thought until the mind

transcends the experience of the subtlest state of the

thought and arrives at the source of the thought”, has

been proven to have positive effects on social skills,

feeling of compassion, self-management, somatic

awareness and mental flexibility. It has also been

used in treatment of anxiety disorders, stress

reduction, chronic pain, persistent pain, depression,

autism spectrum disorders, traumatic experiences,

acquired brain injury, and even eating disorder,

psoriasis and substance abuse.

Nowadays many people are learning meditation.

However there are still no adequate meditation

monitoring systems to take continuous

measurements from various sensors when a person is

in meditation and to track its progress. In this

paper we describe an experimental TDR system with

continuous data input from devices such as smart

phones and sensors such as brain wave headsets.

We developed event-based data input, modeling and

analysis techniques in order to analyze input data

and track progress of meditation. Initial

experimental results demonstrate that this approach

is quite promising.

The paper is organized as follows. In Section 2 we

describe the system architecture. The interface to

support event-based data input is presented in

Section 3. Event-based data modeling is

described in Section 4, followed by a detailed

example of data analysis presented in Section 5.

Section 6 presents user scenarios for the

experimental system. Discussion and conclusion are

presented in Section 7.

2 System Architecture

Figure 1 illustrates the experimental TDR system

consisting of interacting super-components and the

chronobot database. Each super-component has its

own computational cycles. The super-components

interact with one another through the SIS server.

Based on requests from the administrator, the super-

components process input data and upload them to

56

KSI
Typewritten Text
DOI reference number 10.18293/VLSS2018-005

the Chronobot database. In the TDR system there

are at least three super-components: Tien (Heaven),

Di (Earth) and Ren (Human). The Tien super-

component handles sensors for the atmosphere, the

Di super-component deals with sensors for the

lithosphere and the Ren super-component manages

sensors for the human body.

Figure 1. TDR System with super-components and Chronobot database.

In order to track meditation we proposed to use brain

wave headset as well as eye gaze tracking by smart

phone during meditation [2]. Data from brain

wave sensor and eye gaze tracker are collected by

their respective input processors in Ren super-

component and uploaded to the Heap relation in the

Chronobot database. The Heap is a collection of

records each with a variable number of attributes for

different types of sensor data, which are filtered and

moved into different relations such as Gazing

Behavior Relation, Brain Wave Relation and so on,

by the request of the administrator through the Web

GUI.

A more detailed view is shown in Figure 2.

Records in the Heap are first filtered and then moved

to the corresponding relations. In the filtering of

data, the resultant data must conform to the model

for the corresponding relation. We will first

explain the conceptual framework. The detailed

formal model will be presented in Section 4.

Figure 2. Records are filtered and moved to the

corresponding relations.

3. Event-Based Data Input

SIS	
Server	

Plant		
Sensor	1	

Plant		
Sensor	2	 Ambient		

Temp	Sensor	

Finger	
Movement	

Sensor	

Blood	Pressure	
Sensor	

Eye	Gaze	
Sensor	

UserID	

Timestamp	

Source	

Type	

Value	

Originator	

Source=	ParrotFlower,	Type	=	1/2	

Type=	Null/Reading/Alert	

Source=	Temp	

Record	

Chronobot	

Heap	

Body	
Health	

Rela on	

Reading	
Behavior	

Rela on	

Plant	
Rela on	

Temp	
Rela on	

	Filtering	&	Data	
Movement	

Empty	Heap	

Gaze	
Rela on	

Screen	
Rela on	

Plant	1	
Rela on	

Plant	2	
Rela on	

Blood	
Pressure	

Rela on	

SPO2	
Rela on	

EKG	
Rela on	

Gesture	
Rela on	

Web	GUI	

Models	

Brainwave	EEG	
Sensor	

Source=	Brainwave/BloodPressure/Gaze/FingerMovement	

Brain	
wave	

Rela on	

Ren	
Component	

Tien	
Component	

Di	
Component	

Sensing	
Response	

Sensing	
Request	

Sensing	
Response	

Sensing	
Response	

Sensing	
Request	

Sensing	
Request	

Records

Blood

Pressure

Relation

Gesture

Relation

SPO2

Relation

EKG

Relation

Gaze

Relation
BrainWave

Relation

Plant

Relation

Filter the data by
source.

57

The database for the TDR system is a time varying
database. To make sense of the time varying
database, we need to monitor the data streams and
detect significant changes. For the best of our
knowledge, there’s few researches on designing user
interface for time varying database. User interface
design requires a good understanding of user needs
[3], in our approach we need to be able to specify
what is normal and what is not normal. In fact, a
database is governed by a data model specifying
what is the normal pattern. The computation cycles
specify the collection, filtering and storage of data
that conform to the normal pattern, so the end result
is a normal event. The cycle then repeats itself.
When the data deviates from the normal pattern, it is
an abnormal event to take notice of. Our
approach to user interface design is therefore based
upon this concept of normal and abnormal events.

In recent years, visualization has become an
important tool to support exploration and analysis of
large volumes of data. Therefore, to shift the needs
of users into the focus, we should pursue an event-
based approach to visualization. This approach
allows users to specify their interests as event types.
The normal event is the data model. The
abnormal event is what deviates from the data
model.

During a computation cycle, the normal event is
usually the end result, i.e. the processing and storage
of data that conforms to the specified data model.
When instances of the specified abnormal event
types are detected, the user interface automatically
adjusts visual representations according to the
detected event instances. This approach results in
visualizations that are adapted to the needs and
interests of the users. Hence, users are supported in
achieving their task at hand.

In terms of event-based visualization, the basic idea
is to let users specify their interest by means of event
types, to detect instances of these events in the data,
and to create representations that can be
automatically adjusted with respect to the detected
event instances. Accordingly, three main aspects are
investigated:.

1. Event specification,
2. Event detection,

3. Event representation.
To bridge the gap between informal user interests
and the digital language of computers, a formalism
for the event specification must be developed. Here,
the difficulty is to build a formal basis that provides
a suitable expressiveness while still allowing users
to specify their interests as easily as possible.
Especially when facing users who are not familiar
with event-based visualization, it is essential to
provide methods and tools that allow an intuitive
specification of event types.

The task of the event specification is to compile
event types that are or might be of interest to
visualization users. The event specification
necessitates a formal foundation to allow a later
detection of event instances.

In our approach, we have two types of events:
normal events that represent the data model, and
abnormal events that represent deviation from the
data model. Events are always specified for a
certain relation. Before moving data from heap to
relation, we first check if the tuple satisfies a certain
event type.

(1) Normal Event: As an example, if every tuple
has an error rate less than the threshold  (for
example  = 0.1), then it is a normal event. This
event can be described as:

((), (), ())I IT X v Y v    , (1)

Once a normal event is specified, we can create a
computation cycle to get the TDR system started.
For formal definition, see Section 4.

(2) Abnormal Event 1: As an example, for three
consecutive tuples, if each tuple’s error rate exceeds
the threshold , then it is an abnormal event. This
event can be described as:

((), (), ())I IT X v Y v    ,

1 1((), (), ())I IT X v Y v     , (2)

2 2((), (), ())I IT X v Y v     ,

For formal definition, see section 4. If condition (2)
is met, user then can use the following steps to
specify this event.:

58

rate (DVR) of X,Y during the time of T (T-DVR

-X,Y) as follows:

1(, ,)
T

r
T X Y

r
  ,

where
T

r ,
1 T
r r denote the combinatorial

number of any pair of attributes in X or Y

during the time of T , the number of the T-DVEs

-X,Y , respectively.

We know if there are T-DVEs -X,Y , and the T-

DVR -X,Y is very small, even very close to zero,

then
1 2

T

(d ,τ) (d ,τ)
X Y  almost holds, from which

the following generalized T-MFD definition is

yielded.

Definition 5 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , we say the relaxed type-M

function dependency during the time of T (T-

RMFD):
1 2

Ψ(T,X,Y) ε

(d ,τ) (d ,τ)
X Y holds, if and only if

for a pair of tuples
i

v and
j

v corresponding to any

two moments
i

t and
j

t o f T , whenever

1(, , ,)
[] []

i ji d t t j
v X v X

 
 , t h e n a l m o s t []

i
v Y

2(, , ,)
[]

i jd t t j
v Y

 
 holds, and (, ,)T X Y   , where

(, ,)T X Y is the T-DVR -X,Y ,
1

[]d D X ,

2
[]d D Y , and , , [0,1]     are thresholds.

Remark 1: It is depended on the value of 

to a great degree whether
1 2

Ψ(T,X,Y) ε

(d ,τ) (d ,τ)
X Y



 

holds.

For a relation
1

(, , ,)
n

R T A A and ,X Y U ,

when T is too long and there are too many data

during the whole time T , we can consider to

investigate fewer data during a part time. If we use

the symbol η to denote the duration of the part

time, and get the following definition.

Definition 6 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , we say the relaxed type-M

function dependency during ΔT(η) (ΔT(η) -

RMFD) :

1 2
 Ψ(ΔT(η),X,Y) ε

(d ,τ) (d ,τ)
X Y



holds, if and only if for a pair of tuples
i

v and
j

v

corresponding to any two moments
i

t and
j

t

during ()T  (i.e.,
1 2, ,

max | |
i j

M i j M i j

T t t 
  

    ,

1 2
, {1,2, , }M M m), whenever []

i
v X

1(, , ,)

[]
i jd t t j

v X
 

 holds, there is almost

2(, , ,)
[] []

i ji d t t j
v Y v Y

 
 holds, and

2

()

((), ,)
T

r
T X Y

r


 


    ,

where
()T

r


 is the combinatorial number of any

pair of attributes in X or Y during ()T  ,

2 ()T
r r


 is the number of the DVEs X,Y during

()T  (ΔT(η) - DVEs -X,Y), m is the number of

the tuples during the whole time T ,
1

[]d D X ,

2
[]d D Y , and , , [0,1]     are thresholds.

Remark 2: Similar to definition 4, we can say

((), ,)T X Y  in definition 6 is the dependency

violation rate of X,Y during ()T  (ΔT(η) -

DVR -X,Y) .

For a relation
1

(, , ,)
n

R T A A and ,X Y U ,

if we investigate the data during some part time of

T and can get the relation between X and Y

during the whole time T , then we only need to

consider the relation
1

(, , ,)
n

R T A A during this

part time. The following definition describes this

case.

Definition 7 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , if

1
() ()

L
T T T    , () ()

i j
T T    

(, 1,2, , ,)i j L i j  ,

where ()
i

T  denotes max | |
j k

j k

t t 


 

(, {1,2, , }j k L), and ((), ,)
i

T X Y   

(1,2, ,)i L holds, we use
I

Ψ(T (η), X,Y) to

denote
1

min{ ((), ,)}
i

i L

T X Y
 

  . Thus the RMFD of

X , Y during
I

T (η) can be expressed as

1 2
 I

Ψ(T (η),X,Y) ε

(d ,τ) (d ,τ)
X Y

 

.

Remark 3: Under the conditions of definition 7,

we can get
1 2

Ψ(T,X,Y) ε

(d ,τ) (d ,τ)
X Y



  by

1 2

IΨ(T (η),X,Y) ε

(d ,τ) (d ,τ)
X Y



 


.

Based on definition 3 and definition 6, it is easy

to know there are two classes of dependency

violation events during ()T  , so we summarize as

follows.

61

Definition 8 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , for a pair of tuples
I

v and
J

v

corresponding to some two moments
I

t and
J

t

during ()T  , if there is one of the following cases

happening, we say
I

v ,
J

v at the moments
I

t and

J
t with respect to ,X Y constitute a dependency

violation event during ΔT(η) (ΔT(η) -DVE):

⑴ | |
I J

t t   ;

⑵
1(, , ,)

[] []
i jI d t t J

v X v X
 

 holds, whereas

2(, , ,)
[] []

i jI d t t J
v Y v Y

 
 doesn’t hold.

For simplicity, Case (1) is denoted as ΔT(η) -

DVE ,
I J

-t t , Case (2) is denoted as ΔT(η) - DVE

, [X,Y]
I J

-v v .

For a tuple
I

v corresponding to some moment

I
t during ()T  , sometimes we need to know the

DVR of
I

v . To this end we need to introduce the

definition of DVE of
I

v . According to definition

3, we present the following definition.

Definition 9 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , for some tuple
I

v corresponding to

some moment
I

t and a series of tuples
j

v

corresponding to some moments
j

t during ()T  ,

if
1(, , ,)

[] []
I jI d t t j

v X v X
 

 holds, whereas

2(, , ,)
[] []

I jI d t t j
v Y v Y

 
 doesn’t hold

1
(1 ,)I j m I j  ， , where

1
m is the number of

the tuples during ()T  , we say
I

v ,
j

v at the

moments
I

t and
j

t with respect to X,Y

constitute a dependency violation event during

ΔT(η) , denote by ΔT(η) - DVE [X,Y]
I j

-v ,v . All

of the DVEs of
I

v with respect to X,Y during

()T  are denoted as ΔT(η) - DVEs [X,Y]
I

-v .

Based on definition 9, we can get definition 10.

Definition 10 Given a relation

1
(, , ,)

n
R T A A and ,X Y U , for the tuple

I
v

corresponding to some moment
I

t during ()T  ,

we define the dependency violation rate of
I

v

during ΔT(η) (ΔT(η) - [X, Y]
I

DVR - v) as follows:

((), (), ())
I I

T X v Y v  
1

1

Iv
r

m 
,

where
()Iv T

r r


 is the number of ()T  -DVEs

[X, Y]
I

-v ,
1

m is the number of the tuples during

()T  .

 For a tuple
I

v during ()T  and a given  ,

if ((), (), ())
I I

T X v Y v    , then we say
Iv

constitutes a normal event (NE) (see section 3).

Otherwise we say it is an abnormal event (ANE).

In particular, we study the following cases.

Definition 11 Given a relation

1
(, , ,)

n
R T A A and ,X Y U , for the three

consecutive tuples
1 2

, ,
I I I

v v v corresponding to

some moments
1 2

, ,
I I I

t t t during ()T  , if

((), (), ())
I I

T X v Y v    ,

1 1
((), (), ())

I I
T X v Y v 

 
   ,

2 2
((), (), ())

I I
T X v Y v 

 
   ,

we say the tuples
1 2

, ,
I I I

v v v
 

 constitute an

abnormal event 1 during ΔT(η) (ΔT(η) - ANE -1)

(see section 3) .

Definition 12 Given a relation

1
(, , ,)

n
R T A A and ,X Y U , for the three

consecutive tuples
1 2

, ,
I I I

v v v
 

 corresponding to

some moments
1 2

, ,
I I I

t t t
 

 during ()T  , if

((), (), ())
I I

T X v Y v    ,

1 1

((), (), ()) 2 ((), (), ())
I I I I

T X v Y v T X v Y v 
 

     ,

2 2 1 1
((), (), ()) 2 ((), (), ())

I I I I
T X v Y v T X v Y v      ,

we say the tuples
1 2

, ,
I I I

v v v
 

 constitute an

abnormal event 2 during ΔT(η) (ΔT(η) - ANE-2)

(see section 3) .

 More generally, we have the following case.

Definition 13 Given a relation
1

(, , ,)
n

R T A A

and ,X Y U , for the three consecutive tuples

1 2
, ,

I I I
v v v

 
 corresponding to some moments

1 2
, ,

I I I
t t t

 
 during ()T  , if

((), (), ())
I I

T X v Y v    ,

1 1
((), (), ()) ((), (), ())

I I I I
T X v Y v n T X v Y v 

 
     ,

2 2 1 1
((), (), ()) ((), (), ())

I I I I
T X v Y v n T X v Y v      ,

62

where 2n  , we say the tuples
1 2

, ,
I I I

v v v
 

constitute an abnormal event N during ΔT(η)

(ΔT(η) - ANE-N).

Sometimes X and Y don’t satisfy definition

6 during ()T  because there are abnormal events.

However, the subsets
I

X ,
I

Y of X and Y

getting by deleting the abnormal events, maybe

satisfy definition 6. The following definition

describes this case.

Definition 14 Given a relation
1

(, ,R T A

,)
n

A and

 1
[], , []

n
X v X v X U  ,

 1
[], , []

n
Y v Y v Y U  ,

if there is
k

v corresponding to some moment
k

t

during ()T  such that

((), (), ())>
k k

T X v Y v  

1
(, , , {1,2, , })

1 2 M
k K K K m  ,

whereas for

{ [] | { , , , }}
I k 1 2 M

X X v X k K K K   ,

{ [] | { , , , }}
I k 1 2 M

Y Y v Y k K K K   ,

and any [] []
i j I

v X v X X， , [] []
i j I

v Y v Y Y， ,

whenever
1(, , ,)

[] []
i ji d t t j

v X v X
 

 holds, there is

almost
2(, , ,)

[] []
i ji d t t j

v Y v Y
 

 holds, and

()

3((), ,)

T

I I

I

r
T X Y

r


 



    ,

then the relaxed type-M function dependency

during ΔT(η) :

1 2
 I I

Ψ(ΔT(η) , X , Y) ε

I (d , τ) I (d , τ)
X Y



holds, where ((), (), ())
I k I k

T X v Y v  is ΔT(η) -

- [,Y]
k I I

DVR v X ,
()TI

r


 is the combinatorial

number of any pair of attributes in
I

X or
I

Y

during ()T  ,
()3 TI

r r


 is the number of the

DVEs
I I

X ,Y during ()T  ,
1

m is the number of

the tuples during ()T  ,
1

[]d D X ,
2

[]d D Y ,

and , , [0,1]     are thresholds.

Remark 4: If
1 2

Ψ(ΔT(η),X,Y ε

(d ,τ) (d ,τ)
X Y )

doesn’t hold, and there are ANEs in X and Y , we

can delete some []
I

v X s and []
I

v Y s corresponding

to them from X and Y , then we get
I

X and
I

Y ,

and we have
1 2

((), ,)

(,) (,)

I IT X Y

I d I d
X Y

 

 

  

  holds.

This means the case of definition 14 is happening.

5. Event-Based Data Analysis Example

The following records represent a person’s

meditation input data including EEG from

brainwave headset and GazeX and GazeY from the

smart phone:
Time EEG GazeX GazeY

2018-2-20 16:57:00 53 0.02884405 0.36825011

2018-2-20 16:57:01 57 -0.0057313 0.39013446

2018-2-20 16:57:02 74 0.00372011 0.33091585

2018-2-20 16:57:03 84 0.07300814 0.36468598

2018-2-20 16:57:04 90 0.06822054 0.39343803

2018-2-20 16:57:05 84 0.01829791 0.35769521

2018-2-20 16:57:06 74 0.07686714 0.4012554

2018-2-20 16:57:07 43 0.05864623 0.40079645

2018-2-20 16: 57:08 27 0.08833459 0.41172976

2018-2-20 16: 57:09 43 0.02981886 0.40139946

2018-2-20 16: 57:10 43 0.08068578 0.3896068

2018-2-20 16: 57:11 67 0.07305756 0.37007838

2018-2-20 16: 57:12 77 0.05570461 0.44665981

2018-2-20 16: 57:13 70 0.05092989 0.44977627

2018-2-20 16: 57:14 67 0.03441077 0.41223145

2018-2-20 16: 57:15 69 0.03749303 0.49343493

2018-2-20 16: 57:16 67 0.03365155 0.42283732

2018-2-20 16: 57:17 61 0.0471089 0.47274698

2018-2-20 16: 57:18 54 0.04033958 0.48874432

2018-2-20 16: 57:19 56 0.04615196 0.45340732

2018-2-20 16: 57:20 60 0.08277113 0.43117775

2018-2-20 16: 57:21 75 0.12389434 0.4264601

2018-2-20 16: 57:22 90 0.02021705 0.47553028

2018-2-20 16: 57:23 90 0.04613996 0.37573326

Firstly we define: for any attribute X ,

max_
1 ,

max | [] [] |
ijX i j

i j m

d v X v X
 

 

denotes the maximum of the distance between the

values of any two tuples ,
i j

v v in the attribute X ,

where m is the number of the tuples during the

whole time T , and

 
max_

| [] [] |
[], []

ij

i j

i j

X

v X v X
d v X v X

d




is the distance function.

Then according to the above distance function,

for the attribute EEG, for simplicity we denote it as

E , we have

63

 
max_

| [] [] |
[], []

ij

i j

i j

E

v E v E
d v E v E

d


 ,

max_
1 ,

max | [] [] |
ijE i j

i j m

d v E v E
 

  .

It is easy to see from the table that

max_
90 43 47

ijE
d    .

Assuming we can choose the time from

16:57:00 to 16:57:07 on February 20
th
, 2018. For

any pair of tuples during this time, we calculate their

distance functions as follows:

 1 2
[], []d v E v E

| 53 57 | 4
0.0851

47 47


   .

Similarly, we can get

 2 5
[], []d v E v E 0.7021 ,  3 6

[], []d v E v E 0.2128 ,

 4 7
[], []d v E v E 0.2128 ,  5 8

[], []d v E v E 1 ,

Obviously, if 0.7   , then except that

 1 5
[], []d v E v E 0.7872>  ,

  2 5
[], []d v E v E 0.7021>  ,

  4 8
[], []d v E v E 0.8723>  ,

 5 8
[], []d v E v E 1>  ,

  6 8
[], []d v E v E 0.8723>  ,

for the other pair of tuples,  [], []
i j

d v E v E  

(, 1,2, ,8,)i j i j  always holds.

And for the attribute GazeY, for simplicity we

denote it as GY , then

 
max_

| [] [] |
[], []

ij

i j

i j

GY

v GY v GY
d v GY v GY

d


 ,

max_
1 ,

max | [] [] |
ijGY i j

i j m

d v GY v GY
 

  ,

and

max_
0.4012554 0.33091585 0.07033955

ijGY
d    .

Thus we can similarly get their distance

functions:

 1 2
[], []d v GY v GY

| 0.36825011 0.39013446 |

0.07033955




0.3111 ,

and

 2 3
[], []d v GY v GY 0.8419 ,

 3 5
[], []d v GY v GY 0.9017 ,

 4 6
[], []d v GY v GY 0.0994 ,

 5 8
[], []d v GY v GY 0.0918 ,

If 0.6   , then except that

 2 3
[], []d v GY v GY 0.8419 >  ,

 3 5
[], []d v GY v GY 0.9017 >  ,

 3 7
[], []d v GY v GY 1 >  ,

 3 8
[], []d v GY v GY 0.9935 >  ,

 6 7
[], []d v GY v GY 0.6193 >  ,

 6 8
[], []d v GY v GY 0.6128 >  ,

for the other pair of tuples,  [], []
i j

d v GY v GY  

(, 1, 2, ,8,i j i j ) always holds.

It is clear that
12 (, , ,) 3

[] []
i jd t t

v E v E
 

 holds,

whereas
22 (, , ,) 3

[] []
i jd t t

v GY v GY
 

 doesn’t holds. By

the definition 3, this is a dependency violation event

(DVE). In fact, () -T  DVEs -[E,GY] are as

follows:

() -T  DVEs
2 3

- , [E,GY]v v ,

() -T  DVEs
3 5

- , [E,GY]v v ,

() -T  DVEs
3 7

- , [E,GY]v v ,

() -T  DVEs
3 8

- , [E,GY]v v ,

() -T  DVEs
6 7

- , [E,GY]v v .

Therefore

((), ,)T E GY 
5

0.1786
28

  .

If 0.18  , then

((), ,)T E GY   .

And according to the definition 6, as long as

1(, , ,)
[] []

i ji d t t j
v E v E

 
 holds, there is almost

2(, , ,)
[] []

i ji d t t j
v GY v GY

 
 holds. So

1 2

((), ,)

(,) (,)

T E GY

d d
E GY

 

 

  

 

holds.

We note that for the tuple
3

v , according to

definition 10, we have

3 3
((), (), ())T E v GY v  

4
0.5714

7
  ,

i.e.,
3

v constitutes an abnormal event (ANE).

At the same time, we can get

1 1
((), (), ())T E v GY v  

0
0

7
  ,

2 2
((), (), ())T E v GY v  

1
0.1429

7
  ,

64

4 4
((), (), ())T E v GY v  

0
0

7
  ,

5 5
((), (), ())T E v GY v  

1
0.1429

7
  ,

6 6
((), (), ())T E v GY v  

1
0.1429

7
  ,

7 7
((), (), ())T E v GY v  

2
0.2857

7
  ,

8 8
((), (), ())T E v GY v  

1
0.1429

7
  .

Therefore there is no ANE-1 happening during the

time from 16:57:00 to 16:57:07 on February 20
th
,

2018. Obviously, there is also ANE-2 appearing.

It is clear during the time from 16:57:00 to

16:57:07 on February 20
th
 that

 1 8
[], , []E v E v E ,  1 8

[], , []GY v GY v GY .

According to the above calculation process, we

know if 0.05  , then

1 2

((), ,)

(,) (,)

T E GY

d d
E GY

 

 

  

 

doesn’t hold. However, for

 
I 1 2 4 5 6 7 8

[], [], [], [], [], [], []E v E v E v E v E v E v E v E E  ,

 
I 1 2 4 5 6 7 8

[], [], [], [], [], [], []GY v GY v GY v GY v GY v GY v GY v GY

 GY ,

there is only one dependency violation event (DVE):

() -T  DVEs
2 3

- , [E,GY]v v .

Then we can get

I I

1
((), ,) 0.0476

21
T E GY     .

So I I

1 2

((), ,)

I(,) I(,)

T E GY

d d
E GY

 

 

  

  . This is the

case of Definition 14.

6. User Scenarios

In TDR system, sensor data from different devices,

devices like temperature, humid, gaze, and etc,

will be stored in a heap. In order for the

administrator to better organize those data into

separate relations, we have developed some tools to

facilitate the process. The following are the steps

how an admin can manage the system.

6.1. Scenario One: Organize Records

Upon login as an admin, you can see the following:

Figure 9. The Dashboard.

To write data into different relations, click

organize records, then you can choose which

relation you wish to write the data to.

Figure 10. Choose relations.

Upon selecting which relation the admin prefer

to write data to, the system will show how many

records are available in heap. The admin may

type in the number of records he/she wants to write

into the specific relation, but the number has to be

no greater than maximum records in heap, after click

on submit, the system will remind the admin

whether his/her action was preformed successfully.

6.2. Scenario Two: Event-based Input

From the main page, if admin wish to move data to

relations subject to certain restrict,ion he/she may

choose to use event-based input tool.

Figure 11. Normal event.

65

After admin has chosen normal event, admin can
then pick which relation he/she wish to choose. If a
tuple is a normal event for the relation, then the tool
can add the tuple into the relation. Similarly, after
chose abnormal event, the tool will prompt admin to
pick which event (aka: dependent event or
independent event) he/she want to add records to.

We will give an example upon picking dependent
event, but the flow will be the same if admin chose
independent event.

Figure 12. Independent event.

After chose which relation data admin wish to apply
algorithm on, the tool will select data records and
apply (2) on it, if data records satisfy (2), then move
it to the correspond relation.

7. Discussion

In this paper we describe an experimental TDR
system with the following features: 1) the
experimental system can run on a smart phone and
therefore portable; 2) a meditation validation
channel to check the consistency between the
predictions via gaze features vs. features to
increase the accuracy of meditation prediction; 3)
through event-based data input, modeling and
analysis, a user can access the brainwave from a
one-channel NeuroSky Mindwave headset and gaze
data from a Samsung phone and the consistency
check graph via a web GUI; 4) QA and rating, where
a user can provide feedback right after his/her
meditation process, master/teacher will rating the
meditation quality based on such feedback and
previous measurement data. We can also track user’s
typing movements when providing feedback to

measure the users’ muscle change during and after
meditation.

An initial experiment was designed and conducted to
test the ability of monitoring meditation state via
brainwave and gaze tracking techniques, as well as
observe the relationship between the two sources of
signals. Preliminary results indicated a trend of
positive relationship (correlation coefficient = 0.982)
between gaze y-axis signals and brainwave signals
(Figure 13), which indicates the validity of our
approach in meditation detection as well as inspired
us to further investigate their degrees of correlations.

Figure 13. Preliminary results on meditation states
tracking via brainwave signals and gaze signals.

The current system has certain limitations: 1)
headset requires a precise wearing process to extract
sensor data, otherwise a portion of the data may be
missing. Users who are not professional enough or
without external support, will only have partial
data, which is less accurate; 2) Gaze tracking via
front facing camera of smart phone is portable and
maneuverable, but lack of accuracy due to the noisy
luminance effect in real environment as well as the
user’s meditating habit.

For future work, we need to develop techniques to
overcome the above mentioned limitations, as well
as to design approaches to help people better
understand their meditation state without too much
manual intervention. More experiments need to be
designed and carried out to validate the proposed
approach.

Acknowledgement

This research was supported in part by Knowledge
Systems Institute, USA. The research of CuiLing
Chen was supported by the Visiting Scholarship
Fund of Education, Department of Guangxi Zhuang
Autonomous Region, P R China.

66

References

[1] Shi-Kuo Chang, JunHui Chen, Wei Gao and Qui
Zhang, TDR System - A Multi-Level Slow
Intelligence System for Personal Health Care,
SEKE2016, Hotel Sofitel, Redwood City, CA,
USA, 183-190.

[2] Shi-Kuo Chang, Wei Guo, Duncan Yung, ZiNan
Zhang, HaoRan Zhang and WenBin You, A Mobile
TDR System for Smart Phones, DMSVLSS 2017,
Wyndyam Pittsburgh University Center, Pittsburgh,
PA, USA, 75-85.

[3] https://en.wikipedia.org/wiki/User interface design

[4] S.-K. Chang, V. Deufemia, G. Polese, and M.
Vacca, A normalization framework for multimedia
databases, IEEE Trans. Knowl. Data Eng., vol. 19,
no. 12, pp. 1666–1679, Dec. 2007.

[5] Loredana Caruccio, Vincenzo Deufemia, and
Giuseppe Polese, Relaxed Functional Dependencies
- A Survey of Approaches, IEEE Transactions on
knowledge and data engineering, VOL. 28, NO. 1,
JANUARY 2016.

67

A Logic User-Based Algorithm to Improve Node

Distribution in Wireless Sensor Network

Balzano Walter

Dip. Ing. Elettrica e Tecnologie dell’Informazione

Università di Napoli, Federico II

Napoli, Italy

Email: walter.balzano@gmail.com

Stranieri Silvia

Università di Napoli, Federico II

Napoli, Italy

Email: silviastranieri1047@gmail.com

Abstract—Localization in Wireless Sensor Networks (WSN) is a

largely discussed research topic. Different solutions have been

proposed to solve the localization problem over the time, exploiting

techniques such as angle-based, range-based, and range-free. In

our previous work, we proposed a logic range free algorithm able

to uniformly distribute hubs around a given environment: this

distribution is aimed to give the best coverage possible of the areas

of interest. In this procedure, the presence of obstacles is taken into

account, since it can impact the signal power: for this reason, an

attenuation factor has been introduced to understand in which

measure the obstacles modify the result. The algorithm is based on

Prolog backtracking technique, which reflects the procedure of

organizing the relative positions of nodes at each step, in order to

optimize their distribution over the environment. The main goal of

this work is to improve this approach, by considering not only the

need to ensure a certain signal in each zone, but also to focus on

the areas where a big usage from the clients is detected, in order to

prevent the network saturation, without losing the coverage

property. To this purpose, a displacement factor is introduced to

vary the previous result in favor of a user-based distribution. The

value of this factor has to reflect the optimum trade-off between

coverage and user’s usage need.

Keywords: WSN, localization, coverage, Prolog.

I. INTRODUCTION

A Wireless Sensor Network is made by nodes self-

organized, broadcasting information and data all over the net.

Due to the huge potential of such a network, many proposals

have been made to improve the communication between the

nodes, to select the best routing protocol possible, and to locate

nodes inside the net. To find the best coverage possible for the

area of interest, the localization technique used is an important

aspect in research field.

The absence of obstacles makes the hub positioning in

outdoor environment a not interesting problem, while in case of

presence of walls, doors, or other obstacles, the positioning of

nodes in a network can became a bottleneck in the localization

field. Any kind of impediment can alter the power of the

transmission signal, and this is something we want to deal with

in order to guarantee an optimal distribution of hub in indoor

environment too.

In our previous work [22]. We designed a range-free

algorithm able to provide a map of the optimal hubs distribution

over a given environment, in such a way that the best coverage

possible is ensured. The approach is the logic one, since the way

the algorithm works is based on backtracking: whenever a hub

is added into the environment, its total mapping is arranged, and

the position of each hub is computed again in order to optimize

some metric on the signal. This approach provides a non-greedy

algorithm whose solution is guaranteed to be the global

optimum, rather than the local one. The provided algorithm

presents two variants of execution, that differ in the choice of

having anchor nodes or not.

Aware of the need to cover as much as possible the interest

area, this approach does not consider the user’s need: often, a

given environment has not an equally distributed usage, but a

more powerful signal can be needed in a room rather than

another. For instance, if we consider an environment made by

rooms, and one of these rooms is a pretty big warehouse, the

first approach of our algorithm probably would place two hubs

to cover that room but, by analysing the user’s usage

information turns out that the warehouse signal is never used:

it’s clear that using two hubs to cover a non-used area is a waste

of resources, and in this work we want to avoid this situation.

The aim is to consider the user’s usage as an important

parameter for the hub distribution, but not the only one: indeed,

we do not want to lose the coverage property.

The rest of the work is organized as follows: Section II

contains important aspects of literature that inspired our work,

and other related research concerning localization issues in

wireless sensor networks; in Section III, we explain the

motivations that let us improve our previous work, by first recall

all the main features of it, and then summarize the aspects that

can be improved in our perspective; Section IV contains the

very strategy to introduce the user’s usage information in the

approach, and how it is integrated with the coverage request in

order to obtain the best possible solution that respects both the

properties; finally, in Section V, the conclusions of this work

and its advantages are shown.

II. RELATED WORK

Wireless Sensor Networks are, nowadays, one of the most

studied research topics. The development of such networks was

initially born for military purposes, while now, as explained in

[2], there is a bunch of applications of these nets: environment

68

KSI
Typewritten Text
DOI reference number 10.18293/VLSS2018-031

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

KSI
Typewritten Text

and structures monitoring, traffic management, surveillance,

and many other application fields. Actually, this is the reason

why many studies are made about this topic and all the related

issues, such as localization of nodes in such a network and

signal distribution. An important indicator which is largely used

in Wireless Sensor Networks for localization purposes is the

RSSI (Received Signal Strength Indicator). This indicator

provides useful information about the signal power for any

retrieved hub in the environment. For instance, in [6] RSSI is

exploited in traffic control field in order to estimate the

positioning of vehicles. They state that Global Positioning

System does not always guarantee the accuracy needed in

cooperative-vehicle-collision-warning systems, while the

radio-based-ranging approach founded on RSSI improves the

accuracy. Using the same approach, in [7] they propose a range-

free algorithm based on RSSI comparisons, called Ring

Overlapping. Each node uses overlapping rings in order to

guess the possible area in which it lies: given an anchor node A,

each ring is actually generated by comparing the RSSs received

by a node from A and the ones received by other anchor nodes

from A. Even in [20], they highlight the importance of

positioning accuracy in vehicle-to-vehicle field.

A crucial variation point in localization algorithms in WSN

is in the choice of using anchor nodes or not. In [3] is proposed

an anchor-based localization approach: the main idea is that

each anchor is aware of its position, because equipped with

GPS, and it periodically shares its current location with the

other nodes which are able, thanks to this information, to locate

themselves. This approach tolerates the presence of obstacles

and has the benefit of not requiring any hardware modification.

Oppositely, in [12] they prefer an anchor-free approach,

summarizing all the drawbacks of having fixed nodes in a

network.

In our previous work, we focus on logic strategies in order

to deal with many problems related to traffic control, such as in

[15], sometimes integrating it with clustering techniques ([14],

[16]), or Distance geometry problem, like in [17]: even in this

work we use the logic approach (i) to facilitate the

comprehension of the algorithm behaviour, through elegant and

compact code, and (ii) to exploit the expressiveness power of

Prolog and its cut operator to prune useless computational

paths. But, many other localization techniques are proposed in

literature. In particular, in [4] they highlight three categories of

localization approaches: (i) AOA (Angle of Arrival) represents

the angle between the propagation direction and some reference

direction (orientation) and it constitutes the information which

is exchanged between nodes, so that their localization can be

performed by using trilateration [8], (ii) Distance Related

Measurements, and (iii) RSS (Received Signal Strength)

profiling. Moreover, in [5] they propose an indoor localization

approach, called EZ localization algorithm which estimates the

positioning of 2D point in terms of absolute coordinates:

latitude and longitude.

The main inspiration for this work is given by our previous

work [22], with the aim to improve it by considering an

important metric not taken into account by now, which is the

usage of the network that the client typically does.

First, we introduce Wireless Sensor Networks, a system of
nodes which exchanges data wirelessly. All this information can
be possibly held and elaborated by a control unit. As known,
each net can have a particular topology, which characterizes the
behaviour of its component. In [1], they summarize essentially
six kinds of network topologies:

1. Star topology: each node is connected to a single
hub which filters any communication;

2. Ring topology: there isn’t a leader, the information
exchange follows one direction (the one of the
ring);

3. Bus topology: there is a communication channel
were all the information passes through;

4. Tree topology: hierarchical structure is the base of
any communication;

5. Fully connected topology: each node is connected
to any other node and this makes this topology
suffer from NP-complexity;

6. Mesh topology: nodes have a regular distribution
and each node communicates with its nearest
neighbour.

Another important ingredient concerning localization is the

Received Signal Strength Indicator (RSSI). This indicator

provides the power of the received signal in a certain point and

it has a strong relevance since not only it gives important

knowledge for the purpose of localization, but it is also

recognizable by any device on the market. For instance,

WirelessNetView is an application which freely provides the

percentage of the received signal by any retrieved hub.

We present the most famous approaches to estimate the

position of a point in a Wireless Sensor Network. The initial

classification we can introduce divides localization techniques

in anchor-based and anchor-free: in the first approach, the

network presents some special nodes, the anchors, which are

aware of their position since they are equipped with a Global

Positioning System, while all the other nodes, the targets, guess

their location with respect to the anchors one; while someone

actually prefers this kind of approach, such as in [13], some

other authors have found some limitations in anchor-based

algorithm, hence an anchor-free approach has been introduced.

For instance, in [12] they suggest this kind of approach, since

they indicate three reasons why the anchor-base algorithms are

not the best choice: (i) there is a waste of time due to the manual

insertion of anchor nodes; (ii) anchor-based algorithms are

unstable, since a small mistake in the anchors positioning may

cause a huge mistake in the wireless sensor network final

configuration; (iii) anchor-based algorithms are not scalable.

III. MOTIVATIONS

In our previous work [22], the localization problem is solved

by means of a simulation program that has the aim to distribute

69

In 4.c, the program decides to add a hub in one of the smaller

rooms to have an improvement of signal distribution. After

having covered the whole central area (Figure 4.d), the program

starts adding devices in all the other rooms (Figures 4.e, 4.f, 4.g

and 4.h), until it reaches the coverage of the entire environment

and stops, as shown in Figure 4.i.

Moreover, we can see how the presence of obstacles

determines a distortion in the signal shape, which is

proportional to the attenuation factor . This example is without

any anchor nodes, but it is still possible adding some fixed node

before the simulation start: in this case, clearly the addition of

other hubs wouldn’t have affected the position of anchors and

thus it is likely that the final configuration of the network would

have been different from the obtained one.

In some cases, a more meaningful criterion can be found to

distribute nodes around a given environment, by considering

the client needs: for instance, if we consider an environment

made of some rooms, and one of them is actually a warehouse

of big dimensions, but where very few signals of usage

retrieved, our algorithm probably would place a certain number

of hubs in that room in order to cover it, but this could be a

redundancy if we take into account the user’s usage. Indeed,

some of the hubs used for the warehouse could have been better

employed in areas where the signal is needed the more.

We analyzed the behavior of our algorithm, and the result

highlights that its precision can vary according to number of

nodes, grid dimension, and environment shape. In particular,

the more the nodes are the more the precision of the algorithm

grows. This does not mean that we can increase the number of

nodes in an unchecked way, since we couldn’t obtain an

absolute precision: this is a consequence of the fact that

measurements are made in map points which are in the

detections grid too. This research gives as result all the points

of the grid that are close to the point we are looking for.

Concerning the grid features, by increasing grid dimensions

the precision increases. This is obvious, since there is a higher

probability that points are close to the one we are looking for,

during the comparison phase.

Finally, as we could expect, the more the environment

grows the more the error increases, since each node influences

just a small part of the entire environment, hence localization

mistakes are more frequent.

Our final consideration is that the random distribution

should be avoided, since it leads to less precise results;

oppositely, both geometric and signal-based distributions

provide solutions with a good precision, hence should be

preferred to the random one.

Clearly, this approach can impact the coverage requirement:

in some cases, the distribution of hubs according to the user’s

usage can decrease the environment coverage, by having some

small areas not covered at all. But, the guess is that those not

covered areas are surely not of interest for the users, and it is

reasonable to reduce the coverage in not used areas in favour of

those with a high density of users. In a border case, we could

have whole rooms not covered at all, but this is not the goal of

our improvement, since this would be a too heavy restriction.

For this reason, we introduce a displacement factor  that

represents the percentage of how much the user’s distribution

influences the hub’s positioning based on environment

coverage. According to this factor, =100% represents the

border case explained above, where the distribution proposed

by our starting algorithm, based on coverage, is ignored in

favour of a distribution based exclusively on user’s usage. The

opposite case is given by =0% that is essentially the same

algorithm proposed in [22], where the only parameter, that is

taken into account, is the environment coverage.

In a generic case, with =50% for instance, the idea is that

the first resulting distribution given by our simulation algorithm

is slightly modified in order to improve the user’s usage, by not

losing the property of coverage guaranteed by the first

approximation.

This improvement of our first approach [22] can seriously

lead to a more efficient nodes distribution that provides not only

the signal coverage in the whole environment, but also a

stronger signal power where needed for the users, by finding the

best value for the displacement factor.

In the next section, we are going to describe the mechanism

that allows us to retrieve and exploit the user’s usage statistics.

IV. USER USAGE COMPENSATION

The information about how much a certain area is used by

network’s clients can be easily detected by using some utilities

able to retrieve statistics concerning the usage during the time,

such as WirelessNetView for the RSSI (Received Signal

Strength Indicator) data detection.

The idea is to exploit such information in order to build a

map according exclusively to the user’s usage of the network,

similarly to how we build the map based on environment

coverage. This is a border map, representing a displacement

factor of 100%, which is not our aim, but it is useful in order to

obtain the desired displacement value . After the generation

Figure 3: flow of control with the user's usage statistics
compensation with the aim to obtain a fixed minimum displacement
with respect to the original solution based on coverage

71

of the map based on coverage criterion, a second map has to be

created, considering only the user’s usage. These two maps

represent the two opposite limits (=0% and =100%), but what

we are going to compute is a third map that is the result of a

trade-off between coverage and user’s usage, with a

displacement  in the interval (0,100).

In order to do that, we indicate with M1 the map based on

coverage and with M2 the one based on user’s usage. We will

exploit a largely used similarity measure, which is the Jaccard

index. This indicator represents the similarity between the

corresponding hubs in M1 and M2, by taking the intersection

between the areas covered by the nodes and normalizing it with

the union.

𝐽(𝑀1(𝑛𝑜𝑑𝑒𝑖),𝑀2(𝑛𝑜𝑑𝑒𝑖)) =
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑀1(𝑛𝑜𝑑𝑒𝑖))

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑀2(𝑛𝑜𝑑𝑒𝑖))

Where M1(nodei) represents the i-th hub in the first map, and

coverage(M1(nodei)) is the set of space points reached by the

signal of the i-th node in the first map. Clearly, the Jaccard

index is in the interval [0,1] (where 0 is a non-similarity

indicator, and 1 is the maximum similarity possible). Clearly,

we are not interested in obtaining a unitary similarity between

the two maps, since this would possibly determine uncovered

areas of the environment and this is not the best approach. What

we want to obtain is a similarity based on the displacement

value previously fixed, in particular:

𝐽(𝑀1(𝑛𝑜𝑑𝑒𝑖),𝑀2(𝑛𝑜𝑑𝑒𝑖)) ≥
𝛿

100

Thus, the aim is to move a node from the first map M1 in

order to let it similar to the same node, but in the second map

M2, in such a way that their similarity is proportional to the

displacement factor. Going through successive approximation

of the map that keep moving the node toward the ideal position

(according to the user’s usage), the procedure stops when the

minimum desired similarity is reached.

In Figure 3 is show the procedure explained by now: both

the maps are generated: the first one only considers the

coverage aspect, while the second one is based on the usage

information of the network. The next steps are repeated until all

the nodes of the network are considered. Each node is compared

with the same node of the other map in order to compute the

Jaccard similarity between them, according to the ratio between

the points in the intersection of the nodes range and the ones in

the union. Finally, the node is moved in the first map until the

minimum desired displacement factor  is obtained as Jaccard

similarity between the two corresponding nodes that are being

analysed. At the end of this procedure, the map M1 will no

longer reflect the nodes distribution aimed to maximize the

environment coverage, but it will be the modified distribution

that takes into account the usage of the network too, in a

percentage induced by .

In Figure 4, an example of the possible result is shown: let’s

consider the square as unity of measure, and the box

surrounding the hub (9 units in total) the points in the range of

the corresponding hub. The map M1 shows the hub’s

distribution according to the environment coverage, while the

map M2 the optimal distribution based on information detected

concerning the usage of the network. In this example, we

consider =30%, meaning that for each pair of corresponding

hubs we need a Jaccard similarity of at least 0.3. Intuitively, the

hubs h1, h2 and h3 respects this similarity, thus we focus on the

remaining three hubs h4, h5 and h6.

Looking at the hub h4 in M1 and M2, we can see that their

intersection is 4 (the number of squares that they share), while

the union is 18 (twice the number of squares in the range, that

is 9 as we said): this means that the Jaccard similarity between

them is 4/18=0.2, which is not enough with respect to . Indeed,

in the new map M1 the hub h4 is moved in such a way that the

similarity reaches the desired one.

The hubs h5 in M1 and M2 have an intersection of 6 points,

and the union is always 18, as before. Thus, the Jaccard

similarity is 6/18=0.3, which is acceptable, and this is the reason

why it is not moved from the starting position in M1.

Finally, hubs h6 no intersection, indeed the movement is

more evident with respect to h4 since it was not similar at all

with its corresponding in M2.

The final configuration is the one shown in new M1, where

all the similarities between corresponding hubs is at least 0.3.

Procedure: usage compensation

 1: map1(node,position).
 2: map2(node,position).

 3: check_jaccard(node,):-

 4: J(map1(node,p1),map2(node,p2)>=,!.

 5: check_jaccard(node,):-

 6: J(map1(node,p1),map2(node,p2))<,

Figure 4: example of how the two border maps are arranged to obtain

a new map, which is a trade-off between coverage and usage,

considering a displacement of 30%

72

 7: move(node,map1),check_jaccard(node,).

The procedure shown in the code fragment above shows

exactly the way this approach works: let’s suppose of having a

Prolog fact for each node of the maps that says the position of

that node in the corresponding map.

The predicate chech_jaccard(node,) checks if the Jaccard

similarity is at least the minimum desired one (/100),

otherwise the corresponding node is moved in the map M1 and

the Jaccard similarity is computed again, until the constraint is

satisfied.

In this work we deal with localization problem by using a

logic programming language: we can see how the logic

approach and Prolog programming language help us avoiding

redundancy in computation. This is made thanks to the cut

operator (!) that as soon as an advantageous computation branch

is found, discards the other paths, in order to not analyse

branches that would have led to useless solutions.

It is clear that without any further check, this successive

approximation of nodes position inside the map M1 can

progressively let a room to be free of any kind of signal: this is

what we wanted to avoid in our starting considerations. To

avoid this kind of behaviour, we have to check that the next

node movement does not impact the coverage of a whole room,

before it is performed. If this happens, we have two

possibilities:

• Reduce the displacement factor  in order to relax the

minimum required similarity;

• Increase the resources: add a new hub in the room that

becomes free of signal.

If the resources cannot be increased, there is no other

possibility but decrease the displacement factor so that the next

movement (that would cause the loss of signal in some room)

doesn’t have to be performed at all.

The Prolog code needs to be modified as follows:

Procedure: usage compensation with additional check

 1: map1(node,position).
 2: map2(node,position).

 3: check_jaccard(node,):-

 4: J(map1(node,p1),map2(node,p2)>=,!.

 5: check_jaccard(node,):-

 6: J(map1(node,p1),map2(node,p2))<,

 7: try_movement(m,node,map1),empty_areas(m),

 8: decrease_increaseResources(map1),!.

 9: : check_jaccard(node,):-

 10: J(map1(node,p1),map2(node,p2))<,

 11: try_movement(m,node,map1),!empty_areas(m),

 12: move(node,map1),check_jaccard(node,).

As shown in the code, an additional check needs to be

performed: the movement of the node in the map is tried before

being performed. If projecting the current movement some

areas end up being uncovered, the movement is not performed

and the procedure to decrease the displacement factor or

increase the number of available hubs is executed. Otherwise,

the movement is effectively performed, and the procedure is

recursively called.

V. CONCLUSIONS

One of the most important issues when one deals with

wireless sensor networks is localization: not only it is crucial to

locate objects all over the network, but it is essential to

understand where hub should be placed in order to guarantee

that some metrics are respected and exploited. Clearly, many

proposals have been made in literature concerning the

localization topic but, in this and our previous work, we use a

logic approach based on Prolog facts and rules to simulate the

hubs positioning over the interesting environment, based on

successive approximation of nodes distribution: the relative

position of each node is opportunely arranged at each iteration

in such a way that the metric taken into account is respected.

While in our previous work we focus on the coverage

property, meaning that the hubs distribution was only aimed to

optimize the signal spreading in each area of the reference

environment, in this work we improve this approach by adding

another meaningful metric: the usage of the network.

Intuitively, the resources supply can be better performed if

we focus on the areas where the usage of the network is very

high, rather than areas where no one uses the provided signal.

From the other hand, a displacement in favour of usage

statistics can seriously impact the coverage property, meaning

that with this approach whole rooms could be not covered at all

by any kind of signal. This is obviously something to avoid: for

this reason, we introduce a displacement factor, which

represents how much one is ready to sacrifice the coverage in

favor of a better user-based distribution of the signal. We have

shown some Prolog code lines that explain how this strategy

works: two maps are used, the first one is the one resulting from

our previous approach, and the second one is the one with a

hundred percent of displacement factor. None of them

constitute the final solution, which is rather a trade-off between

them: indeed, by using the Jaccard similarity measure we

managed to have a final map with a minimum displacement

factor required, but without losing the coverage metric.

We went through two approximations of our solution: first,

we have considered the possibility to move the nodes in the first

map according to the displacement factor which determines the

minimum similarity required for each pair of corresponding

nodes in the two maps. This solution clearly solves the problem

of introducing the user’s information in the node distribution,

but still does not guarantee that the coverage property is kept:

this is the reason why the second approximation has been done,

73

by introducing an additional check, ensuring that no areas can

became free of signal at all.

REFERENCES

[1] Lewis, F. L. (2004). “Wireless sensor networks”. Smart environments:
technologies, protocols, and applications, 11, 46.

[2] Kumar, A., Shwe, H. Y., Wong, K. J., & Chong, P. H. (2017). Location-
Based Routing Protocols for Wireless Sensor Networks: A Survey.
Wireless Sensor Network, 9(01), 25.

[3] Ssu, K. F., Ou, C. H., & Jiau, H. C. (2005). Localization with mobile
anchor points in wireless sensor networks. IEEE transactions on
Vehicular Technology, 54(3), 1187-1197.

[4] Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network
localization techniques. Computer networks, 51(10), 2529-2553.

[5] Chintalapudi, K., Padmanabha Iyer, A., & Padmanabhan, V. N. (2010,
September). Indoor localization without the pain. In Proceedings of the
sixteenth annual international conference on Mobile computing and
networking (pp. 173-184). ACM.

[6] Parker, R., & Valaee, S. (2007). Vehicular node localization using
received-signal-strength indicator. IEEE Transactions on Vehicular
Technology, 56(6), 3371-3380.

[7] Liu, C., Wu, K., & He, T. (2004, October). Sensor localization with ring
overlapping based on comparison of received signal strength indicator. In
Mobile Ad-hoc and Sensor Systems, 2004 IEEE International Conference
on (pp. 516-518). IEEE.

[8] Rong, P., & Sichitiu, M. L. (2006, September). Angle of arrival
localization for wireless sensor networks. In Sensor and Ad Hoc
Communications and Networks, 2006. SECON'06. 2006 3rd Annual IEEE
Communications Society on (Vol. 1, pp. 374-382). IEEE.

[9] Severino, R., & Alves, M. (2007, June). Engineering a search and rescue
application with a wireless sensor network-based localization mechanism.
In World of Wireless, Mobile and Multimedia Networks, 2007. WoWMoM
2007. IEEE International Symposium on a (pp. 1-4). IEEE.

[10] Savvides, A., Park, H., & Srivastava, M. B. (2002, September). The bits
and flops of the n-hop multilateration primitive for node localization
problems. In Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications (pp. 112-121). ACM.

[11] Belloni, F., Ranki, V., Kainulainen, A., & Richter, A. (2009, March).
Angle-based indoor positioning system for open indoor environments. In

Positioning, Navigation and Communication, 2009. WPNC 2009. 6th
Workshop on (pp. 261-265). IEEE.

[12] Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2003,
November). Anchor-free distributed localization in sensor networks. In
Proceedings of the 1st international conference on Embedded networked
sensor systems (pp. 340-341). ACM.

[13] Mourad, F., Snoussi, H., Abdallah, F., & Richard, C. (2009). Anchor-
based localization via interval analysis for mobile ad-hoc sensor networks.
IEEE Transactions on Signal Processing, 57(8), 3226-3239.

[14] Balzano, W., Del Sorbo, M. R., Murano, A., & Stranieri, S. (2016,
November). A logic-based clustering approach for cooperative traffic
control systems. In International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (pp. 737-746). Springer, Cham.

[15] Balzano, W., Del Sorbo, M. R., & Stranieri, S. (2016, March). A logic
framework for c2c network management. In Advanced Information
Networking and Applications Workshops (WAINA), 2016 30th
International Conference on (pp. 52-57). IEEE.

[16] Balzano, W., Murano, A., & Stranieri, S. (2017). Logic-based clustering
approach for management and improvement of VANETs. Journal of High
Speed Networks, 23(3), 225-236.

[17] Balzano, W., & Stranieri, S. (2017, November). LoDGP: A Framework
for Support Traffic Information Systems Based on Logic Paradigm. In
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (pp. 700-708). Springer, Cham.

[18] Giordano, M., Polese, G., Scanniello, G., Tortora, G. (2010, February).
A System for Visual Role-Based Policy Modelling: In
International Journal of Visual Languages and Computing,
Vol. 21, No. 1, Elsevier, pp. 41-64.

[19] Balzano, W., Murano, A., & Vitale, F. (2016, March). WiFACT--Wireless
Fingerprinting Automated Continuous Training. In Advanced Information
Networking and Applications Workshops (WAINA), 2016 30th
International Conference on (pp. 75-80). IEEE.

[20] Balzano, W., Murano, A., & Vitale, F. (2016). V2V-en–vehicle-2-vehicle
elastic network. Procedia Computer Science, 98, 497-502.

[21] Balzano, W., Murano, A., & Vitale, F. (2018). SNOT-WiFi: Sensor
network-optimized training for wireless fingerprinting. Journal of High
Speed Networks, 24(1), 79-87.

[22] Balzano, W. Stranieri, S. (2018). A Logic Range-Free Algorithm for
Localization in Wireless Sensor Networks, in The 24th International DMS
Conference on Visualization and Visual Languages, San Francisco,
California, 2018. DOI reference number: 10.18293/DMSVIVA2018-008.

74

Smart City Control Room Dashboards: Big
Data Infrastructure, from data to decision

support
P. Bellini, D. Cenni, M. Marazzini, N. Mitolo, P. Nesi, M. Paolucci

DISIT lab (http://www.disit.org http://www.km4city.org)
University of Florence, pierfrancesco.bellini@unifi.it, daniele.cenni@unifi.it,

mino.marazzini@unifi.it, paolo.nesi@unifi.it, michela.paolucci@unifi.it

Abstract: Smart City Control Rooms are mainly focused
on Dashboards which are in turn created by using the so-
called Dashboard Builders tools or generated custom. For
a city the production of Dashboards is not something
that is performed once forever, and it is a continuous
working task for improving city monitoring, to follow
extraordinary events and/or activities, to monitor critical
conditions and cases. Thus, relevant complexities are due
to the data aggregation architecture and to the
identification of modalities to present data and their
identification, prediction, etc., to arrive at producing high
level representations that can be used by decision
makers. In this paper, the architecture of a Dashboard
Builder for creating Smart City Control Rooms is
presented. As a validation and test, it has been adopted
for generating the dashboards in Florence city and other
cities in Tuscany area. The solution proposed has been
developed in the context of REPLICATE H2020 European
Commission Flagship project on Smart City and
Communities.

Keywords: smart city dashboard, decision support
system, widget, control room.

1. Introduction
 In the development of a Smart City there is a great
emphasis to the set-up of the so-called Smart City
Control Room, SCCR. A SCCR is an area in which all the
data are collected, aggregated and where high-level
data/results are summarized and made accessible for the
decision makers and shared to the city operators. In large
metropolitan cities, the SCCR includes large
panels/monitors (even covering large walls) in which the
status of the city is reported in real-time presenting the
view of the city with some synthesis, predictions, alert of
data regarding: mobility, energy, social activities,
environment, weather, public transportation, people
flow, health, water, security, ICT, governmental, first aid,
civil protection, police (118/112/911), fire brigade,
hospital triage, and thus almost all the city resources
expressed via KPI (Key Performance Indicator). Most of
the KPI are representative of the status of resources
deployed in the city and may be not geo-localized. Some
of the city monitored resources are representative of the
critical infrastructures for the city functionality and for
the life of city users such as: transportation, energy,

security, health, water, civil protection, ICT, etc. In
medium sized cities, the daily management of city
resources is performed by a set of city operators, which
could be legally independent with respect to the central
municipality. Thus, they autonomously manage their
control rooms, accessing and rendering their own data to
take their own decisions which may be limited in scope,
and according to some defined protocols and strategies,
[1], [2]. For example, when the energy network has a
problem in an area of the city the energy is rerouted to
reach the all possible subareas via a different path; when
the water service network has a problem on major
distribution tubes, the water is provided in other means
(for example using tanks); in presence of traffic
congestion the red-light timing is acted to facilitate the
flow and bus paths are changed/rescheduled according
to planned schemas.
Once identified and understood the needs of having an
integrated SCCR, it is necessary: (i) to choose what must
be shown on the panels on walls; (ii) to choose what
must be shown on computers of the operators in the
rooms and remotely connected; (iii) to understand how
the data have to be collected and computed (in the case
of prediction and early warning). The ingestion,
aggregation and data analytics processes are very
complex to be managed since the information is
heterogeneous (different format, providers, protocols,
etc.) and the total amount of data is a Big Data problem,
moreover, the final indicators, provisions and
suggestions calculated by these complex processes must
be easily understood by the observers of the panels. It is
a problem of data representation which also must
consider the competence of the final users: citizens
/observers/operators/experts/decision makers/etc. In
most cases, the final users have to be trained to
understand the data and graphics representations. They
must become confident on what they see to understand
in deep all the single details represented on the screen.
They are not going to have time to learn when a critical
event happens. Some data or events are easy to be
represented and understood in a dashboard, for
example: a traffic representation observing the city map
with red, orange, yellow, and green segments on the
streets; a sensors measuring some values like
temperature, humidity percentage, etc.; while it is more
difficult to comprehend other, more complex, kinds of

75

KSI
Typewritten Text

KSI
Typewritten Text
DOI reference number 10.18293/VLSS2018-030

data/results/provisions, for example: tables of pollution
and pollination; traffic flow trends by numbers, etc. To
make it easy to read even the most complex metrics, it is
possible to use: alarm signals in red, blinking signal, etc.
[2].
 From the technical point of view, the tools for
rendering information on SCCR are typically called
Dashboards and are supported by Big Data aggregation
tools [4]. The Dashboards should be capable to present
real time data in several different manners with real time
updates on screen autonomously H24 7/7 days,
according to the refresh time of each data source, and
have to be interactive to allow the users to make drill
down activities on data to better understand the
situation and the context. Dashboards for control rooms
should not be confused with business intelligence tools
that produce graphics from the combination of data
extracted from some sources (database, files, API, etc.).
In most cases, business intelligent tools may access to
data with faceted indexing and search, for example in
SOLR or ElasticSearch, [24], [25] . Those kinds of
Dashboards are focused on single view of data, filtering
and drilling down on data, rather that representing the
city KPI and status. Examples of tools for drilling down on
time and facet can be obtained by using Apache Banana
([26]), or HUE ([27]).
 Moreover, the concept of Dashboard for SCCR is also
often confused with the data aggregator tool that is a
fundamental tool for the Control Room and city control
in general and can be regarded as the back office of the
Control Room. Many solutions for control rooms and
their back-offices has been proposed such as those of
IBM [5] on services for citizens, business, transport,
communication, water and energy; [6] on governmental,
educational, e-health, safety, energy, transport and
utilities; etc. Most of these solutions present a multi-tier
architecture ranging from 3 to 6 layers [7], [8], [9].
 In this document, the Dashboard solution developed in
the context of REPLICATE research and development
projects of the European Commission is presented.
Replicate is an SCC1 project of the European Commission
on H2020 ([10]). The solution proposed is been based on
Km4City Smart City Ontology ([11]) and data aggregator
[4], [10], [22]. Please note that the Dashboard
Management System of DISIT Lab is released as Affero
GPL Open Source on GitHub, see DISIT lab page. The
present solution is managing more than 1.2 million of
complex events/data per day.
 The paper is structured as follows. In Section 2, the
requirements of smart city control room are discussed.
Section 3 presents the adopted smart city architecture. In
Section 4, the dashboard system for the smart city
control room is presented with its architecture. Section
5 reports a set of experimental results and lesson learnt.
Conclusions are drawn in Section 6.

2. Smart City Control Room Requirements

 In this section, the main requirements of Dashboard
systems for SCCRs are summarized. They have been
collected during the above-mentioned research project
by interviewing a number of operators and decisions
makers belonging to several cities and nationalities.
 A SCCR dashboard system is substantially a Decision
Support System tool, DSS, since it provides evidence of
critical conditions, and may offer solutions. On this
regard, it may integrate/exploit artificial intelligence
algorithms, for example, reporting prediction, identifying
anomalies, manifesting early warning, providing
relationships among entities exploiting inference
geospatial reasoning about what is located in the city:
resources, structure, people, areas, critical
infrastructures, etc. [10], [17], [19], [20].
According to our analysis, a Dashboard system for smart
city must be capable to:

• Show dashboard on web browser in a H24/7
modality;

• show data on widgets according to several graphic
paradigms (tables, graphs, histograms, maps, Kiviat,
lists, tv camera, heatmaps, weather, critical city
events, etc.) with a level of interactivity and
animation;

• show data on autonomous and connected/
synchronized widgets;

• collect, show and keep update on screen data with
automated refresh for each view, and real time data
according to the even driven paradigm;

• show data both real time and historical, allowing
the drill down on time, space and relationships
among data and city entities;

• collect and show data coming from different big data
and classic data sources (SQL, NoSQL, RDF, P2P, API,
SOLR, etc.) also in aggregated manner;

• compose the Dashboards as a set of graphic and
integrated widgets that can be separately set up
assigning several parameters: data source, size,
colors, shape, etc.;

• work with large amount of data providing high
performances, as short response time;

• compute alarms, and provide support by a flexible
notification system capable to send alerts, activate
tickets for maintenance, automate actuators, post
on social, etc.;

• provide actuators widgets together with showing
graphs, and capable to act on IOT Devices;

• provide support for collaborative production of
dashboards and for co-working;

• provide support for embedding dashboards into
third party web pages;

• provide data engine for collecting connection
response time on different protocols, and for
verifying the consistency of web pages via HTTP;

• integrating with IOT Applications by managing real
time data and connecting its actuators to real time
IOT applications;

76

• integrate dashboards in more complex dashboard
systems;

• support authentication and authorization with the
most general approaches such as LDAP, Kerberos,
etc.;

• collect and get data from batch resources and in real
time, using a large range of protocols and formats.

This means that each Dashboard should be composed by
several configurable Widgets, each of them can collect
data coming from several data sources. On each data
stream, one or more criteria as firing conditions should
be set up for the notification of alerts, intervention, etc.
 In small cities, with about 100.000 inhabitants the
number of relevant data sources to be integrated by the
data aggregator and represented in Dashboard can be in
order of 20-30 while in larger cities they can rapidly grow
for the presence of multiple operators for each utility.
Thus, the complexity is also greater as the number of
stakeholder actors involved in.
 Therefore, before starting with the development of the
proposed Dashboard solution, several state-of-the-art
solutions and proposals have been analyzed. As
nonfunctional requirements, the Dashboard system must
be scalable, interoperable with several tools, open
source, robust, usable, secure in protecting data views
according to the GDPR [17] and flexible.
 A set of solutions, both commercial and open-source,
have been analyzed to identify a functional platform to
be adopted. Most of the solutions which are present at
the state of the art derive from business intelligence
solutions (e.g., SpagoBI, Tableux, OpenDataSoft, etc. [13],
[14], [16]), in which the tools provide some data mart
(data virtualization) tool to access data sources and thus
have powerful tools in this sense. On the contrary, they
provide limited capabilities and tools on rendering and
dashboard for control rooms that must stay H24/7,
rendering specific kind of structured data. For these

reasons, several specific custom solutions have been
proposed by many cities such as: London
(https://data.london.gov.uk/), Amsterdam
(http://citydashboard.waag.org/), Dublin, etc. On the
bases of the analysis made, regarding the solutions
available on the market, none of them satisfied all the
requested functionalities and functional aspects, above
described, and this is the reason why we decided to start
the development of our solution, ([14]).

3. Smart City Architecture
 This section presents the overview of the Smart City
architecture which is presently in place in the Tuscany
area. With the aim of producing a smart city
infrastructure for stimulating sustainable mobility, smart
energy, and smart utility in the city, a data aggregator
has been developed (see Figure 1). It presents a front-
end layer for the City Dashboard and control room,
Smart City API for web and mobile App, decision support
tools, personal assistants via mobile App, participative
portals, crowd sourcing, etc. The data aggregation
infrastructure also supports Data Analytics and Data
Intelligence based on integrated data collected from
public administrations open data, private data from
operators, and personal data coming from social media
and city users. In this paper, the architecture enabling
the construction of the Control Room in terms of
Dashboards and Data Aggregator is described.
 In the Km4City layer, City Operators and Data Brokers
provide data which are collected by using streams, data
driven and/or ETL processes which are scheduled on the
Big Data processing back office based on DISCES
(Distributed Smart City Engine Scheduler) tool. Among
the data collected those provided in Open Data from the
municipalities, Tuscany region (Observatory of mobility),
LAMMA weather agency, ARPAT environmental agency,
etc., and several private data coming from City/Regionals
Operators: mobility, energy, health, cultural heritage,

Figure 1: Km4City Architecture for Smart City.

77

o on Metric Historical Values taken in Push
from the data base of the builder;

o on the streams directly arriving from the
Data Collector;

o from the data stream arriving directly from
outside,

o From the external tools embedded as
IFRAME into widget if there is some
integration.

• Dashboard Builder is the core tool for creating
dashboards by using a graphic user interface. In the
tool the user can set up Data Sources: IP address,
protocol, user name and password for accessing at
each specific the data source. Once the data sources
are identified several Metrics can be defined. Then
new Dashboards can be created taking interested
Metrics and associating them with one or more
Widget. A Widget may render/exploit the same
Metric by means of different graphic models. For
example, a temperature read every 5 minutes, can
be visualized as current value on a thermometer, as
temperature trend in a graphic along the last 24
hours, last week, last month, etc. Therefore, the
composition of a Dashboard consists of placing and
configuring a set of Widgets into the Dashboard
frame. The Dashboards are created by using the
visual interface of the Dashboard Builder.

• Integration with IOT. This feature has been covered
by (i) producing special MicroServices as blocks that
can be used into IOT applications developed in
NodeRED, (ii) connecting NodeRED applications with
several IOT brokers, ([33]). Point (i) implied the
development of a layer that allowed the traditional
Dashboard Widget to be directly connected to (a)
IOT Applications by using WebSockets, (b) IOT
Brokers (for example, via NGSI, MQTT, etc.). To this
end, one of the most suitable IOT Brokers resulted to
be the Fi-Ware Orion Broker.

Dashboards are typically adopted for reporting KPI of the
city and thus of specific infrastructures and services. This
means that specific alerts and notifications have to be
activated and managed at level of single Metric. On the
other hand, the same Metric can be used on different
dashboards and widgets for different purposes. So that,
for each Widget of each Dashboard specific alerts and
firing conditions can be set up. For example, when Metric
M is adopted in Widget W of Dashboard D, the certain
criterion C is saved and computed for firing (M, W, D, C).
One or more Criteria can be defined (M, W, D, C1 … Cc),
each of them may produce multiple Notifications,
N: (M, W, D, C1 (N1, …, Nn), …, Cc (…)).

Therefore, the solution has been to design and develop a
Notifier to

• Accept registrations of possible tuples <m,w,d,c>, to
enable the reception of Notification Requests, that

are used to send Notifications according to different
approaches;

• Accept registration by third-party tools, in addition
to those of the Dashboard Builder, to send alarms
about the firing of the registered conditions;

• Produce emails and REST calls, that can be used for
calling SMS, as well as for the activation of
maintenance ticketing system on OpenMaint tool for
example ([32]);

• Log all the registrations and Notification Requests
for further analysis and security evidence;

• Maintain and use a list of Notification recipients,
that are the users which are going to receive the
notifications. This list of uses is just listed as: name,
surname, email, telephone (if any), role,
organization.

To this end we suggest using specifically development
tools, Such as the ServiceMap ([34]) which is used for
knowledge base browsing over the city data as Km4City
knowledge base, which is RDF store as well, exploiting
geospatial reasoning and inference [Bellini et al., 2014].
In addition, the technical browsing on the RDF Graph
Store may be needed to discover relationships. To this
end, the LOG ([35]) tool for browsing into any RDF store
by using SPARQL and visual interface has been developed
in the past and now used in this context. This tool allows
to browse all the RDF stores accessible in the world
which provide a public end point for SPARQL queries,
from dbPedia, to Europeana, Geonames, Km4City,
Camera, Senato, Getty, etc. [23].

As a conclusion, the generated Dashboards are
Dashboard Instances which are available for view and
activate corresponding widgets according to their
Settings. The saving of data into the database of Metric
Historical Values, allows keeping track of what has been
visualized/monitored and thus enabling the replay of
data logged. On the other hand, it is also possible to
adopt widgets that: (i) directly show/provide the data
from in/out streams, respectively (for example, Civil
protection alert status, etc.); (ii) directly render/visualize
web page segments into the Dashboard (for example for
showing social media analytics, traffic flow
reconstruction tools).

5. Experimental Results and Validation
 The solution proposed in this paper has been
developed in REPLICATE flagship research and
development project SCC1 H2020 of European
Commission for Florence City. It has been also used in
other large projects such as Sii-Mobility Smart City
Nazionale on Mobility and Transport of MIUR, RESOLUTE
H2020 project for critical infrastructure and resilience of
transport systems, and GHOST MIUR for Cagliari smart
city experimentation. The proposed Dashboard solution
is strictly connected with a number of tools of the Sii-
Mobility/Km4City suite of tools which are used to

79

perform smart city analytics, semantic browsing, and
decision support, etc., such as: ServiceMap ([34]),
smartDS, system thinking decision support based on
Bayesian models (http://smartds.disit.org [21]), Wi-Fi
monitoring and predictions, smart parking prediction,
traffic flow reconstruction and prediction, energy
metering, first aid monitoring, environmental
monitoring, social media monitoring and alerting,
weather forecast, etc.; most of them based on clustering,
machine learning, etc. [4].
 In general, the decision makers in the city are
politicians, assessors, and director of units. Some of the
units have already adopted a high level of technology, for
example, the mobility and transport, the civil protection,
etc. In other units, the level of control is low since the
technical activity is mainly delegated to City Operators
such as: energy operators, water management, health
care hospitals, environmental agency, waste
management, police and alert (112, 118, 911), etc. All of
them have their own monitoring system, that is tuned to

vertical control their own information and status. In
some cases, the general information about weather
forecasts and status is shared among the different

operators. The dashboard can organize data according to
different views/paradigms: horizontal view (synthetic
view reporting many different aspects of the city status)
and vertical (or thematic).

5.1 Examples of Horizontal User Oriented
A horizontal dashboard contains a synthetic view
reporting many different aspects of the city status, such
as:
Event oriented: a dashboard for controlling the status of
city with respect to a large event (such as the visit of
Pope, or of the US President). In that case, the dashboard
would be dedicated to monitor the paths that would be
probably used to reach some point of interest, the status
of traffic in those area and the major points that may
influence that area (directly and indirectly), the number
of police and security resources in those area, the TV
cameras, the hospitals, the aggregation area, the other
events and micro-events (accidents, crashes, fights), etc.
Tourism oriented: a dashboard reporting the major

events in the city, the number of arrivals in the city, the
number of people in the major points of the city, the

Figure 3: Florence Smart City Dashboards, dashboard reporting first aid status, and a final user dashboard for hotels.

80

number of accesses to the museums, the number of
touristic busses arriving in the city and their paths, etc.

5.2 Example of Vertical thematic oriented
A thematic dashboard contains the available data related
to a specific context. It can be viewed as an in-deep
representation of one of the aspects reported in the
horizontal dashboards. Some samples can be:
public transportation: position of busses in real time,
number of active busses, average delay at the bus stops,
number of active taxis with respect to the plan, number
of recharging stations for public vehicles and their status,
number of people on busses, percentage of busses with
respect to the plan, number of events/incidents on
traffic, status of the underpasses, status of the bridges,
number of tickets, number of free lots in parking, events
in the city, etc.
private mobility: level of traffic flow, traffic flow
reconstruction with classic colors (green, yellow, orange
and red), number of free slots in parking, number of
cycling people on paths, number of vehicles entered into
the RTZ per hour, number of vehicles entered in the city
per hours, number of trucks on the main streets, number
of shared bikes in percentage respect to the total
available, events in the city, etc.
Energy: KW/h or GW/h consumed in the last hour for
public services, KW/h or MW/h consumed in the last
hour for recharge stations, KW/h or MW/h saved by
public services since the usage of renewable energy
production, KW/h or MW/h saved in the store and
available for consumption, number of monitored meters
grid, saved energy by following suggestion provided by
Apps, Co2 saved by using e-Vehicle, etc.
Environmental data referring to different area of the
city: temperature, humidity, PM10, PM2, CO2, wind,
pollination, etc.; weather forecast; real time data from
environment (temperature, humidity, wind velocity,
etc.); level of water in the rivers; level of drinkable water;
Tons of collected garbage; Tons of collected garbage
differentiated; earthquake monitoring; etc.
Social: status and stream of the social media; the most
cited users on Tweet; the most mentioned hashtags on
Twitter.com; the sentiment analysis on Tweets
connected to the city in the last minutes; number of
people moving the main area; number of people arrived
by train in the City; TV cameras about the main points of
interest in the city; number and list of the major
entertainments, political, and sport events in the city;
etc.
Security: data also presented on the Social Dashboard
describing the presences in the city of people; any kind of
event in the city from entertainment, sport, political,
religious, critical events on the road, etc.; eventual paths
and area of the events; TV cameras observing the areas
of the events; number of resources available for
controlling the city and their deploy on the city map (cop,
ambulances, 118, 911); aspects related to the
environmental data; aspects related to mobility for

planning the evacuations; aspects related to the public
transportation for eventual change the paths.
Health: data reporting the status of the triage in the
major hospitals; position of the emergency stations;
number and position of the ambulances; environmental
data for hot waves, temperature, etc., which can
increase the risk of stroke.

 5.3 Validation
As a conclusion, after the production of a set of
Dashboards some of them where selected for trial and
are reported in the Km4city portal, [11], where most of
them are presenting public data that can be rendered on
screen. This does not mean that the published data are
open and that can be downloaded to be reused and
published/exploited for other purpose. Moreover, the
Dashboard can also contain data that cannot be
visualized by public, for safety reasons, and thus are
protected by some conditional access solution. For
instance, since they are sensitive data describing the city
status in real time or by predictions. Many examples of
dashboards produced by the presented tool can be
accessed from the Km4City Portal, [11].

Figure 4: Minutes per Day. All dashboards and only first 20.

Figure 5: Average number of minutes the people stay

connected on dashboard for each access
Actually, 653 Dashboards are present in the system: the
total number of minutes of access to the dashboards is
62.410.108 (29.045,28333 total hours) and the total
number of clicks on them is 1.742.798, 33% are public

81

and the 67% are private. Private dashboards are those
accessible only by their author while the others are
visible to all the web users. In Fig.4 it can be seen how
many minutes per day each dashboard is accessed by the
users: at the top right you can see the trend of all the
dashboards, at the bottom left only the dashboards that
have a total greater than minutes of access. In Fig.5, it is
possible to see the average number of minutes the
people stay connected on dashboard for each access
(calculated as {total minutes per day}/{total accesses per
day). This second instagram, is relevant to evaluate
which type of dashboard is best suited to stay in a
control room means: the dashboards having the highest
values are those kept longer on the screen and more
comfortable as staying in a control room.

6. Conclusions
Smart cities are becoming more and more advanced, for
this reason it is necessary to ingestion a multitude of
data not only static and periodic but in real time. This
amount of data (Big Data) must be analyzed to provide
information on the state of the city both to citizens and
especially to decision makers. A fundamental aspect is to
study and apply ad hoc methodologies to visualize the
events in real time, in Smart City Control Room
Dashboards. In this work we have analyzed the functional
characteristics that these Dashboards must have to
better represent the state of the city. The analysis has
led us to conclude that there are no solutions on the
market that meet all the requirements outlined, so it has
led us to develop our own solution which fits the
Km4City Big Data architecture.

7. Acknowledgements
Thanks to the European Commission for founding. All
slides reporting logo of REPLICATE H2020 are
representing tools and research founded by European
Commission for the REPLICATE project. REPLICATE has
received funding from the European Research Council
(ERC) under the European Union's Horizon 2020 research
and innovation program (grant agreement n° 691735).

8. References
[1] M. Azzari, C. Garau, P. Nesi, M. Paolucci, P. Zamperlin, "Smart

City Governance Strategies to better move towards a Smart
Urbanism", The 18th International Conference on Computational
Science and Its Applications (ICCSA 2018), July 2 - 5, 2018 in
Melbourne, Australia in collaboration with the Monash University,
Australia.

[2] C. Garau, P. Zamperlin, M. Azzari, P. Nesi, G. Balletto, M.
Paolucci, THE ROLE OF KM4CITY DASHBOARD IN URBAN
POLICIES: GOVERNANCE STRATEGIES FOR DYNAMIC
URBAN SYSTEMS from 2nd International Conference on Smart
and Sustainable Planning for Cities and Regions 2017,
Bolzano/Bozen (Italy), 22-24 March 2017.

[3] Few, Stephen. "Information dashboard design." (2006).

[4] C. Badii, P. Bellini, D. Cenni, A. Difino, P. Nesi, M. Paolucci,
Analysis and Assessment of a Knowledge Based Smart City
Architecture Providing Service APIs, Future Generation Computer
Systems, Elsevier, 2017.

[5] IBM Institute for Business Value, “How Smart is your city?
Helping cities measure progress”, [online]. Available: oct 2013,
http://www.ibm.com/smarterplanet/global/files/uk__en_uk__cities
__ibm_sp_pov_smartcity.pdf

[6] Alcatel-Lucent Market and Consumer Insight team, “Getting t
about Smart Cities Understanding the market opportunity in the
cities of tomorrow”, Oct. 2013.

[7] Anthopoulos L., Fitsilis P. "Exploring architectural and
organizational features in smart cities." Advanced Communication
Technology (ICACT), 2014 16th Int. Conference on. IEEE, 2014.

[8] Filipponi L., Vitaletti A., Landi G., Memeo V., Laura G.; Pucci P.,
"Smart City: An Event Driven Architecture for Monitoring Public
Spaces with Heterogeneous Sensors," in Sensor Technologies and
Applications (SENSORCOMM), 2010 Fourth International
Conference on , vol., no., pp.281-286, 18-25 July 2010.

[9] Chourabi, Hafedh, et al. "Understanding smart cities: An
integrative framework." System Science (HICSS), 2012 45th
Hawaii Int. Conference on. IEEE, 2012.

[10] Replicate Project, http://www.replicate-project.org

[11] Km4City, https://www.km4city.org

[12] P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch,
"Km4City Ontology Building vs Data Harvesting and Cleaning for
Smart-city Services", International Journal of Visual Language and
Computing, Elsevier, 2014.

[13] SpagoBI, http://www.spagobi.org/

[14] P. Bellini, D. Cenni, M. Marazzini, N. Mitolo, P. Nesi, M.
Paolucci, "Smart City Control Room Dashboards Exploiting Big
Data Infrastructure", The 24th International DMS Conference on
Visualization and Visual Languages, DMSVIVA 2018, Hotel
Pullman, Redwood City, San Francisco Bay, California, USA,
June 29 - 30, 2018.

[15] Tableau, https://www.tableau.com

[16] OpenDataSoft, https://www.opendatasoft.com

[17] GDPR, General Data Protection Regulation,
https://www.eugdpr.org

[18] Suakanto, Sinung, Suhono H. Supangkat, and Roberd Saragih.
"Smart city dashboard for integrating various data of sensor
networks." ICT for Smart Society (ICISS), 2013 International
Conference on. IEEE, 2013.

[19] McArdle, Gavin, and Rob Kitchin. "The Dublin Dashboard:
Design and development of a real-time analytical urban
dashboard." (2016): 19-25.

[20] De Marco, Alberto, Giulio Mangano, and Giovanni Zenezini.
"Digital Dashboards for Smart City Governance: A Case Project to
Develop an Urban Safety Indicator Model." Journal of Computer
and Communications 3.5 (2015): 144-152.

[21] E. Bellini, P. Nesi, G. Pantaleo, A. Venturi, "Functional Resonance
Analysis Method based Decision Support tool for Urban Transport
System Resilience Management", IEEE Int. Smart Cities
Conference (ISC2), 12-15 Sept. 2016, Italy.

[22] Bellini P., DiClaudio M., Nesi P., Rauch N., "Tassonomy and
Review of Big Data Solutions Navigation", as Chapter 2 in "Big
Data Computing", Ed. Rajendra Akerkar, Western Norway
Research Institute, Norway, Chapman and Hall/CRC press, ISBN
978-1-46-657837-1, eBook: 978-1-46-657838-8, july 2013, pp.57-
101, DOI: 10.1201/b16014-4.

[23] Bellini P., Nesi P., Venturi A., "Linked Open Graph: browsing
multiple SPARQL entry points to build your own LOD views",
http://log.disit.org International Journal of Visual Language and
Computing, Elsevier, 2014.

[24] Elasticsearch, https://www.elastic.co/products/elasticsearch

[25] Apache Solr, http://lucene.apache.org/solr

[26] Apache Banana, https://github.com/Lucidworks/banana/

[27] HUE, http://gethue.com/overview

[28] HBase, Apache HBase, https://hbase.apache.org/

[29] MongoDB, https://www.mongodb.com

[30] RDF https://www.w3.org/RDF/

[31] SPARQL: https://www.w3.org/TR/rdf-sparql-query

[32] Openmaint: http://www.openmaint.org/en/project/how-it-works

[33] Node-Red, https://nodered.org

[34] ServiceMap, http://servicemap.disit.org

[35] LOG, http://log.disit.org

82

