
Token-level Input Grammar Synthesis
1st Yunlai Luo

College of Computer, National University Of Defense Technology, Changsha, China
luoyl@nudt.edu.cn

Abstract—It is challenging to synthesize the input grammars
for complex parsing programs. To address this issue, this paper
proposes a novel token-based synthesis method for learning input
grammars. The key idea is to synthesize the input grammar at
the token level, rather than the character level, which improves
both the synthesis efficiency and the grammar’s completeness.
Specifically, we propose using token-based symbolic execution to
automatically generate valid token sequences. Then, we propose
a token-level grammar synthesis method that incorporates a
novel generalization operation to improve the generalization
of the grammar. Additionally, we utilize SMT optimization to
generalize the character representation of each token to enhance
the grammar’s precision. The preliminary experimental results
is promising.

Index Terms—Grammar, Synthesis, Token, Symbolic Execu-
tion

I. INTRODUCTION

Software inputs are typically expected to adhere to spe-
cific formats. If an input does not comply with the format
requirements, the software will typically reject it and may
generate input errors. For more intricate and structured input
formats, there are often input grammars that can be expressed
using regular expressions or context-free grammars, such as
programming language grammars. Nonetheless, there may be
situations where the input grammar is not readily available [1].
Input grammars are generally considered to be the domain of
software developers. Even in cases where there are descrip-
tions of the input grammar in natural language, such descrip-
tions are often incomplete and rarely in a machine-readable
format. Furthermore, manually creating an input grammar can
be a time-consuming task [2]. When the input grammar of the
software is complex and not available, the automatic testing
of the software becomes significantly challenging.

State-of-the-art methods for grammar synthesis [3]–[5] gen-
erally presume that a set of initial valid inputs are available.
These inputs are typically provided in character-level format,
such as strings or byte-level files. However, the availability
of valid inputs for a program can be limited, and it may be
challenging to ensure that such inputs have a representative
distribution that covers all production rules and terminals in the
grammar. One promising approach to address this issue is to
leverage symbolic execution to generate valid character-level
inputs for grammar learning [1]. This approach involves using
a set of sample strings to derive a series of generalizations,
but the large search space associated with character-level
methods may render the learning process inefficient and limit
the effectiveness of the learned grammar.

DOI reference number: 10.18293/SEKE2023-230

Our key observation is that tokens play a critical role
in grammar. The typical parsing process involves tokenizing
the input into a sequence of tokens during lexical analysis,
followed by verification of the token sequence based on syntax
rules during syntax analysis. As token sequences are more
closely aligned with the productions in the grammar, learning
the grammar at the token level could potentially lead to more
efficient and effective learning, resulting in a more precise and
comprehensive learned grammar.

Based on this insight, we present an approach for synthesiz-
ing input grammars by leveraging token-level symbolic execu-
tion. Unlike the existing methods, our approach is a white-box
learning approach that leverages grammar-agnostic symbolic
execution [6] to generate token sequences for programs with
complex input formats. These generated token sequences are
then used to synthesize the corresponding input grammars.
To enhance the generalization process, we introduce a new
operation that enables the exchange of sub-expressions within
regular expressions, thereby expanding the scope of general-
ization. Furthermore, we propose a novel method for gener-
ating token values that utilizes Satisfiability Modulo Theories
(SMT) optimization to generalize the possible character-level
values of a given token, thereby improving the precision of
the synthesized grammar.

II. SYNTHESIS FRAMEWORK
Our synthesis framework is illustrated in Figure 1. It is

composed of two distinct phases: the token learning phase and
the grammar synthesis phase. The first phase is carried out
by means of grammar-agnostic dynamic symbolic execution
(GADSE) [6]. Specifically, GADSE analyzes a given program
in two stages. In the first stage, it performs the dynamic sym-
bolic execution of the program’s tokenization code, collecting
the character-level constraints for each token value. In the
second stage, GADSE symbolizes the generated tokens rather
than each individual character of the input, producing the
corresponding token-level path constraints. After executing the
program concretely, GADSE generates a new token-level path
constraint that corresponds to an alternative input grammar
case, thereby enabling the generation of a new token sequence.

The second phase of our synthesis framework utilizes the
token sequence and token constraints generated during the first
phase to synthesize the input grammar of the program. The
Grammar Synthesis phase comprises two distinct steps. Firstly,
a token-level context-free grammar is learned through token-
based grammar synthesis. Subsequently, the learned token-
level grammar is generalized into a character-level grammar
by means of token generalization.

Source Code

Grammar-
Agnostic
Symbolic
Execution

Token level
Grammar
Synthesis

Initial CFG

Token
generalization

Result CFG

Phase 1 Phase 2

Token
Sequences

 Constraints
for the
Tokens

Fig. 1: Token-level Grammar Synthesis Framework

A. Token-level Context-free Grammar Synthesis

1) Regular Expression Generalization: During the first
phase of synthesis, the input string is generalized into a regular
expression. In contrast to the generational operations employed
in GLADE, we propose a novel operation called Exchange,
which facilitates generalization by merging the first and third
parts of the regular expression if they are interchangeable.
This operation enhances GLADE’s generalization ability on
single input. Moreover, Exchange ensures that the resulting
generalized expression remains a valid regular expression and
retains the structure of the expression prior to generalization.
The generalization conforms to the following meta-grammar.

Trep ::= β | T ∗
alt | βT ∗

alt | T ∗
altTrep | (Repetition)

βT ∗
altTrep | Texh | βTexh | TexhTrep | βTexhTrep

Talt ::= Trep | Trep + Talt (Alternation)
Texh ::= (TmegTrep)

∗Tmeg (Exchange)
Tmeg ::= Trep + Trep

Trep represents Kleene star, Talt represents alternation, Texh
represents exchanging sub-expressions, and ranges over all
substrings of the input string. Hence, each generalization step
of regular expression can be translated into one or multiple
rules in the context-free grammar.

In the context of our token-based synthesis method, each
generalization setup may have multiple candidates due to the
existence of multiple decompositions. However, this limitation
is less severe than character-level generalization, since token
sequences are typically shorter than character-level inputs. As
a result, we only need to consider the decompositions between
tokens, which are fewer than those between characters.

2) Context-free Grammar Generalization: The second
phase of grammar synthesis involves the generalization of the
regular expression obtained in the first phase into a context-
free grammar. This phase comprises two steps. Firstly, the
regular expression is translated into an equivalent context-
free grammar by leveraging the production rules of the meta-
grammar corresponding to the first stage’s generalization of the
regular expressions. Subsequently, we generalize the context-
free grammar by merging non-terminals derived from repeti-
tion and exchange operations, which may introduce recursions
in the resulting grammar. Notably, in our approach, each token

is assigned a dedicated non-terminal, and the non-terminals
of tokens can also be merged during this stage, representing
an advantage of synthesizing at the token-level.
B. Token Generalization

Since our approach synthesizes the grammar at the token-
level, the resulting grammar is also a token-level context-
free grammar. To fully complete the grammar, we need to
generate the character-level values for each token. This is
achieved by synthesizing a grammar for each token and
utilizing the constraints collected by GADSE in the first stage
of our synthesis method. As a token’s values can often be
represented by regular expressions, we employ the first stage
of our synthesis method to synthesize the seed values for
each token. Furthermore, to refine the search space for token
generalization, we use the token’s constraints to calculate the
range of each character’s value through SMT optimization.

III. PRELIMINARY EVALUATION AND NEXT STEP

We have implemented our approach for Java programs using
GLADE [3] and GADSE [6], with the underlying Satisfiability
Modulo Theories (SMT) solver of GADSE being Z3. The
effectiveness of synthesized grammars is evaluated through
three metrics: precision, recall, and F1 score. The precision
is determined by calculating the proportion of inputs sampled
from the synthesized grammar that is accepted by the oracle
grammar. On the other hand, the recall is determined by
calculating the proportion of inputs sampled from the ora-
cle grammar that is accepted by the synthesized grammar.
Efficiency is measured by comparing the synthesis time of
different synthesis methods. Our approach is evaluated using
three real-world Java parsing programs123 with complex and
diverse input grammars. We compared our approach with
two existing state-of-the-art methods: GLADE and Arvada
[5]. Our approach achieves 17x and 19x higher F1 scores,
respectively, on average. Furthermore, our approach achieves
a high efficiency compared with both GLADE and Arvada.

The subsequent steps entails three key aspects: (1) The
evaluation on extensive parsing programs; (2) The application
of our approach in fuzzing or symbolic execution to enhance
its efficiency; (3) The exploration of a synthesis method for
context-sensitive grammars.

REFERENCES

[1] Z. Wu, E. Johnson, W. Yang, O. Bastani, D. Song, J. Peng, and
T. Xie, “REINAM: reinforcement learning for input-grammar inference,”
in ESEC/FSE ’19. ACM, 2019, pp. 488–498.

[2] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in PLDI ’08. ACM, 2008, pp. 206–215.

[3] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” in PLDI ’17. ACM, 2017, pp. 95–110.

[4] R. Gopinath, B. Mathis, and A. Zeller, “Mining input grammars from
dynamic control flow,” in ESEC/FSE ’20. ACM, 2020, pp. 172–183.

[5] N. Kulkarni, C. Lemieux, and K. Sen, “Learning highly recursive input
grammars,” in ASE 2021. IEEE, 2021, pp. 456–467.

[6] W. Pan, Z. Chen, G. Zhang, Y. Luo, Y. Zhang, and J. Wang, “Grammar-
agnostic symbolic execution by token symbolization,” in ISSTA ’21.
ACM, 2021, pp. 374–387.

1https://github.com/rindPHI/FirstOrderParser
2https://github.com/abcdw/javacc-clojure
3https://github.com/mwnorman/JSONParser

