
Code Clone Detection via Software Visualization
Representation Learning

Shaojian Qiu, Shaosheng Wang, Yujun Liang
College of Mathematics and Informatics

South China Agricultural University
Guangzhou, China

qiushaojian@scau.edu.cn

Wenchao Jiang, Fanlong Zhang*
School of Computer Science and Technology

Guangdong University of Technology
Guangzhou, China

zhangfanlong@gdut.edu.cn

Abstract—Code clone detection technology aims to automat-
ically detect code similarity and help developers identify and
reduce code duplication. While code syntax analysis-based meth-
ods are commonly used for clone detection, they may not capture
semantic information due to bypassing the analysis of code text.
To address this issue, this paper proposes a new method called
visualization representation learning for code clone detection
(VRL4CCD). This method converts source code fragments into
grayscale images to preserve textual information and then utilizes
VGG16 and a self-attention mechanism to extract features related
to code semantic similarity. A siamese neural network is used to
learn the similarity pattern between code features. Experimental
results on the Big Clone Bench and Google Code Jam datasets
demonstrate that VRL4CCD outperforms current clone detection
methods regarding precision, recall, and F1-score, indicating the
effectiveness of code visualization technology in clone detection
tasks.

Index Terms—Code clone detection, software visualization,
siamese neural network, attention mechanism

I. INTRODUCTION

During software development, programmers frequently
reuse existing code fragments by copying and pasting them,
known as code cloning. However, excessive code cloning can
result in code redundancy, which increases the maintenance
cost of the software system. Moreover, code defects in the
software system can spread through code clones. In response
to the above problems, researchers try to detect code clone
pairs during software development and encapsulate these clone
codes to simplify subsequent software maintenance.

Recently, there has been considerable interest in code clone
detection methods that exploit deep learning techniques to
extract structural-semantic features from code. These methods
typically convert code into intermediate forms that contain
both syntax and semantic information, such as Abstract Syntax
Trees (ASTs), Control Flow Graphs (CFGs), and Program De-
pendency Graphs (PDGs) [1], [2]. However, these intermediate
representations are indirect, and the effectiveness of feature
extraction is heavily reliant on the completeness of the infor-
mation contained in the syntax tree and semantic graph. More-
over, after conversion to these intermediate representations, the
textual information in the source code is no longer utilized,

* is the corresponding author.
DOI reference number: 10.18293/SEKE23-226

which can result in the loss of valuable information needed
to evaluate semantic similarity. Additionally, these methods
rely on isomorphism techniques to match code subgraphs and
global graphs, which can be computationally expensive and
time-consuming.

To address the aforementioned issues, we aim to leverage
software code visualization technology to enhance the accu-
racy of code clone detection. Figure 1 serves as a motivating
example. It displays two actual code fragments from the
Big Clone Bench (BCB) dataset. We wondered if visualizing
the code would aid in illustrating the differences between
the two programs. To accomplish this, we converted the
ASCII decimal value of each character in the source code
into rows and columns and interpreted it as a rectangular
image. By visually comparing the code images, significant
differences between the two programs can be observed. As a
result, we conducted experiments to determine whether these
characteristics contribute to clone detection.

example1.java example2.java

example1.png

example2.png

Fig. 1. Motivation Case.

In this paper, we propose a method called Visualization Rep-
resentation Learning for Code Clone Detection (VRL4CCD).
VRL4CCD first utilizes software visualization technology to
convert each source code fragment into a grayscale image
at the pixel level, preventing the loss of code information.
Secondly, we uniformly reshape the generated code images to
a standard size. For images that are smaller than the standard
size, we pad them with 0 values. For images that are larger
than the standard size, we reshape the code image directly.
We then feed the code images of the cloned pairs into a
siamese neural network fused with Visual Geometry Group 16
(VGG16) and attention modules to extract semantic similarity
features. Finally, we perform a clone detection task using the
features generated by VRL4CCD.

The main contributions of our work are as follows:
• We explore the feasibility of code clone detection based

on software visualization technology.
• We propose the VRL4CCD method, a code feature ex-

traction method based on code images and siamese neural
networks with attention mechanisms.

• We conduct experiments based on two open code clone
detection datasets, BCB and Google Code Jam (GCJ).
The experimental results show that the precision, recall,
and F1-score of VRL4CCD are superior to many current
code clone detection methods.

II. RELATED WORK

A. Code Clone Detection

According to the degree of similarity, code clone pairs can
be broadly classified into four types [3]. Type-1 (T1) refers to
code fragments with the same syntax except for comments and
white spaces [4]. Type-2 (T2) corresponds to code fragments
with the same grammatical structure but different identifiers,
constants, and types [5]. Type-3 (T3) represents code frag-
ments that have undergone modifications after copying, such as
changing, adding, or deleting a few statements [6]. Type-4 (T4)
denotes code fragments that perform the same function but
are implemented using different syntactic constructs, such as
bubble sort and quick sort [7]. Since the distinction between T3
and T4 is often ambiguous, researchers have further classified
them into three types: strongly type-3 (ST3), moderately type-
3 (MT3), and weakly type-3/type-4 (WT3/T4) [8].

With the rise of machine learning and deep learning, many
researchers have turned to these techniques for code clone
detection. Fang et al. [9] proposed a joint code representation
that combines fusion embedding to learn the hidden syntactic
and semantic features of source code. Tai et al. [10] developed
a tool called CDLH, which utilizes binary Tree-LSTM [11]
to encode ASTs and hash functions to optimize the distance
between AST vector pairs using hamming distance. Wang et
al. [12] extended original ASTs by adding direct control and
data flow edges and built a graph representation of programs
called Flow-Augmented Abstract Syntax Tree (FA-AST).

B. Software Visualization

Visualization technology has a wide range of applications
in software engineering. Tian et al. [13] studied the rela-
tionship between software architecture and source code, and
they found that nearly 30% of practitioners used software
architecture visualization and modeling tools. They believe
using these tools can help improve system quality attributes,
maintainability, and reliability. Lima et al. [14] designed a
software visualization method that graphically shows how
code comments are distributed and organized in a software
system and interact with the user. Chen et al. proposed
software visualization and deep transfer learning for effective
software defect prediction (DTL-DP) [15]. DTL-DP visualizes
programs as images, applies the self-attention mechanism to
extract image features, and feeds the image files into a pre-
trained, deep-learning model for defect prediction.

Currently, some researchers applied visualization technol-
ogy in code cloning. Linsbauer et al. [16] propose a visual
software reuse method that automatically extracts and com-
bines code to achieve cloning and reuse. Kuar et al. [17]
studied the application of machine learning in code clone
detection and visual management. Keller et al. [18] proposed
the visualization method for code clone detection, where
visualization representations of source code are fed into pre-
trained image classification neural networks from the field of
computer vision. Inspired by these works, we aim to explore
further the potential of applying code visualization technology
to code clone detection.

III. METHOD

A. Overall Framework

The VRL4CCD method consists of three main steps: (i)
generating code images, (ii) constructing a siamese neural
network for code feature extraction, and (iii) detecting code
clones. Specifically, we start by converting all code fragments
into grayscale images. Then we build a features extraction
model based on a siamese neural network that incorporates the
VGG16 [19] network and efficient channel attention module
(ECA) [20]. Finally, we utilize the features extracted by the
network to perform clone detection.

B. Code Image Generation

The process of generating code images is illustrated in
Figure 2. In this step, we cluster code fragments into different
clone groups and record their corresponding indices. For code
fragments of types T1, T2, ST3, and MT3, we group them
based on the transitivity of the clones. Each clone pair forms
a clone group for code fragments of types WT3/T4.

Next, we extract the decimal values of the ASCII encoding
for each letter and symbol in the code snippet. For instance,
the letter ’a’ and the symbol ’(’ correspond to decimal ASCII
values of 97 and 40, respectively. This process is repeated
for all code fragments, generating a collection of ASCII
sequences, each corresponding to a code fragment (as depicted
in Figure 2). We then arrange these decimal values into a
square matrix and convert it into a grayscale image. Each pixel
in the resulting image represents a decimal value in the original
sequence, with grayscale values ranging from 0 to 255.

To enable clone detection, we transform code snippets into
grayscale images with a size of 105x105x1, which can accom-
modate up to 11025 pixels. This size is sufficient to represent
most code snippets in the BCB and GCJ datasets. Although we
could have used the standard input size of VGG16, 224x224,
it would have included redundant information and slowed
down network training. Therefore, we chose a smaller size
of 105x105 to capture more effective semantic and structural
features within an appropriate sequence length. We opted for
a square image because DTL-DP [15] demonstrated that the
network’s average prediction result improves when the image
is closer to a square shape.

Code Fragment 1

Code Fragment 2

…

Clone Cluster

…

ID-1 ID-2

Clone Detection
Datasets

Clone Pairs

… …

ID-n ID-m

Cluster …

Clone Category

…

Serialize

[ASCII Vector 1]

[ASCII Vector 2]

Visualize …

Code Images

…

1.png

2.png

[118,111,125, …]

[100,132,105, …]
…

…

…

…

Fig. 2. Code Visualization Process.

C. Network Construction

As depicted in Figure 3, we construct a siamese neural net-
work with two VGG16 branches to extract features and use the
code images generated in the previous step as inputs. After the
two images pass through several convolution layers, maximum
pooling layers, and RELU activation layers, they become two
one-dimensional vectors, δ1 and δ2, each with a length of
4096. We then subtract the two one-dimensional vectors and
calculate the L1-norm of interpolating the two eigenvectors,
which is equivalent to finding the distance between the two
vectors. Next, we perform two fully connected layers on this
distance, with the second layer connected to a neuron whose
result is passed through a sigmoid function to restrict the value
between 0 and 1. This value represents the similarity between
the two input code images.

In the VGG16 structure, we incorporate two attention mech-
anisms: self-attention and efficient channel attention (ECA).
These mechanisms extract structural-semantic features of code
images, assign weights, and highlight the differences between
the two vectors. We will provide detailed descriptions of these
modules later.

1) Network Backbone: We adopt VGG16 as our network’s
backbone, consisting of five convolutional layers. Each con-
volutional layer comprises two 3x3 convolution operations
and one 2x2 maximum pooling layer, and each feature layer
produces 64, 128, 256, 512, and 512 channels, respectively.
The input image size is 105x105x1, and the output is 4096x1.

2) Self-Attention Module: To improve the clone detection
performance of VRL4CCD by allowing it to focus on key
features in different images of code clone fragments, we
introduce a self-attention mechanism into our model inspired
by the outstanding performance of self-attention in GANs [21].
The self-attention mechanism can effectively capture long-
range dependencies by computing the relationship between
two locations of code images without stacking many convo-
lutional layers to establish connections between each pixel in
the image and other pixels.

As illustrated in the branch of the siamese neural network
in Figure 3, we incorporate the attention mechanism into the
last three convolutional layers of VGG16. In the attention
layer, given a feature map x, we use a 1x1 convolutional
layer to linearly map the input features x, resulting in f(x),
g(x), and h(x), where f(x) = Wfx, g(x) = Wgx, and

h(x) = Whx, and Wf , Wg , and Wh are learned weight
matrices. For example, if the width, height, and number of
channels of x are W , H , and C, respectively, the size of
x is [C, N], where N = W × H , and the size of f(x)
and g(x) is [C/8, N]. The transposed f(x) and g(x) are
matrix-multiplied to obtain the auto-correlation in the features,
i.e., the relationship of each pixel to all other pixels, where
Sij = f(xi)

T g(xj). We then apply the softmax activation
function to obtain an attention map (βj,i), which indicates the
degree of attention the model pays to the i-th position when
generating or obtaining the feature of the j-th pixel. Next,
we multiply βj,i pixel by pixel with h(x) to obtain adaptive
attention feature maps o. The output of this layer is o.

βj,i =
exp(sij)∑N
i=1 exp(sij)

, oj =

N∑
i=1

βj,ih(xi) (1)

where exp is the logarithmic function, and o =
(o1, o2, . . . , oj , . . . , oN)εRC×N .

3) ECA Module: This module enhances the performance
of cross-channel interaction. It allows the aggregation of
convolutional features from multiple channels of code images
to improve the code structure and semantic feature extraction.
The module utilizes a one-dimensional convolution with a
kernel size k that is adaptively determined and learns chan-
nel attention through the sigmoid function. As illustrated
in Figure 3, the ECA module captures local cross-channel
interactions by considering each channel and its k neighbors,
which is:

k = ψ(C) =

∣∣∣∣ log2 Cγ +
b

γ

∣∣∣∣
odd

(2)

where C is the channel size, γ and b are the parameters of
mapping function, and odd means to take an odd number.

In the ECA module, Wk represents the learned local cross-
channel information interaction attention, which is:

w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC,C−k+1 · · · wC,C

(3)

where Wk involves C ∗ k parameters.

105

105 3
×
	3

C
on

v,
 6

4

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 1

28

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 2

56

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

3
×
	3

C
on

v,
 5

12

A
tte

nt
io

n
La

ye
r

A
tte

nt
io

n
La

ye
r

A
tte

nt
io

n
La

ye
r

Convolution
Feature Maps (x)

1×1 Conv
f(x)

g(x)

h(x)

Transpose

Softmax

Attention Map

Self-Attention
Feature Maps

×2 ×2 ×3 ×3 ×3

GAP

1×1×C 1×1×C

s

Adaptive selection of kernel size:
)(Ck y=

1×1×C

Self-Attention Module

105

105 3
×
	3

C
on

v,
 6

4

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 1

28

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 2

56

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

2
×
	2

 M
ax

Po
ol

in
g

3
×
	3

C
on

v,
 5

12

3
×
	3

C
on

v,
 5

12

A
tte

nt
io

n
La

ye
r

A
tte

nt
io

n
La

ye
r

A
tte

nt
io

n
La

ye
r

4096×1

4096×1

Features

Absolute Difference
|𝛿! − 𝛿"|

Siamese Neural Network

𝛿!

ECA Module

𝛿"

Fig. 3. The network structure of VRL4CCD.

For the weight oj , this paper only considers the information
interaction between yj and its k neighbors. After the output of the
two branches of the siamese neural network passes through two fully
connected layers, we can obtain two high-dimensional vectors: δ1
and δ2. We subtract these two vectors and take the absolute value
to obtain the final output prediction value y. Therefore, for the i-th
input feature map xi, the wj and final output is given by:

wj = σ(

k∑
i=1

wi
jo

i
j), yi = αwi + xi (4)

where Ωk
j indicates the set of k adjacent channels of oj . Where

yi
j ∈ Ωk

j , And the α variable is a learnable variable that is initialized
to 0. Introducing α allows us to rely on nearby regions to provide
informative cues and gradually assign more weight to non-local
regions.

D. Clone Detection

During the training of VRL4CCD, code clone fragments with and
without the clone relationship are used as inputs to the network.
The convolutional and attention layers share the same parameters and
extract features from the input fragments. The obtained feature maps
are then fed to the fully connected layer of VGG16 for classification
prediction.

During testing, we utilize the softmax function as the base classi-
fier. Following the code visualization steps, we extract mixed features
related to clone detection from each code file and input two images
into the network to obtain a similarity score. A score closer to one
indicates the network’s inclination toward predicting the presence of
clonal relationships between code fragments.

IV. EXPERIMENT DESIGN

A. Datasets
The BCB dataset is a well-known benchmark for code clone de-

tection tasks, comprising over 6 million true clone pairs and 260,000
false clone pairs [8] from 10 functions, where each code instance
represents a Java method. The GCJ dataset [22] is a collection of
Java files from Google’s annual online programming competition,
and we use the version curated by [12], which includes 1,669 Java
files.

B. Compaired Methods
We compare our approach VRL4CCD with the following code

clone detection methods:
GGNN [23] is a variation of graph neural networks that updates the

node’s representation by incorporating information from neighboring
nodes.

ASTNN [24] utilizes recursive neural networks (RNN) to encode
AST subtrees for statements, then feeds the encodings of all statement
trees into an RNN to compute the vector representation for a program.

FA-AST [12] enhances original ASTs by adding control and
data flow edges, building a graph representation of programs called
Flow-Augmented Abstract Syntax Tree (FA-AST), and applying two
different types of graph neural networks on FA-AST to measure the
similarity of code pairs.

TBCCD [25] is a state-of-the-art code clone detector that uses
ASTs and tree-based convolutions to measure code similarity.

C. Evaluation Indicators
To evaluate the detection performance, we utilize precision, recall,

and F1-score as the evaluation metrics of our code clone detection
research [26]. Specifically, if clones exist between two code fragments
and the prediction result is a clone, it is referred to as a true positive

(TP). Otherwise, it is considered a false positive (FP). Similarly, if
two code fragments are not clones, and the prediction result is not
a clone, it is called a true negative (TN). Otherwise, it is a false
negative (FN). Then, precision (P), recall (R), and F1-score can be
defined as:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1− score =
2× P ×R

P +R
(7)

TABLE I
RESULTS ON THE BCB AND GCJ DATASET

Model BCB GCJ
P R F1 P R F1

GGNN 0.72 0.89 0.79 0.72 0.87 0.79
ASTNN 0.92 0.94 0.93 0.98 0.93 0.95
FA-AST 0.96 0.94 0.95 0.99 0.97 0.98
TBCCD 0.96 0.96 0.96 0.79 0.85 0.82

VRL4CCD 0.98 0.98 0.98 0.99 0.99 0.99

TABLE II
F1-SCORE COMPARISION WITH VARIOUS CLONES TYPES IN

BIGCLONEBENCH DATASET

method T1 T2 ST3 MT3 WT3/T4

GGNN 1.0 1.0 0.79 0.70 0.60
ASTNN 1.0 1.0 0.99 0.99 0.93
FA-AST 1.0 1.0 0.99 0.98 0.95
TBCCD 1.0 1.0 0.98 0.96 0.96
VRL4CCD 1.0 1.0 0.99 0.99 0.98

V. EXPERIMENT RESULT

Table I presents our code clone detection experiments’ precision,
recall, and F1-score values. Since deep learning-based methods
have inherent randomness, we executed each method 20 times and
recorded their averages.

The table shows that our VRL4CCD outperforms the other four
methods in all metrics. Specifically, on the BCB dataset, VRL4CCD
achieved the highest precision, recall, and F1-score values, all ex-
ceeding 0.98, surpassing all the comparison methods. Furthermore,
the results of VRL4CCD are highly stable, as the precision, recall,
and F1-score values are very close.

Detecting clones in the GCJ dataset is more challenging than in
BCB. However, unexpectedly, VRL4CCD showed better in detecting
clones in the GCJ dataset than in BCB. This reflects the superior
ability of visualization methods to detect clones at the semantic level.

Furthermore, since the results in Table I are obtained by training
the model on a mixture of all clone types, it indicates that VRL4CCD
can detect a specific type of clone alone and function as a unified
model to detect all types of clones. This demonstrates the strong
generalization ability of VRL4CCD.

Table II presents the F1-score values of the compared methods
on different types of clones. It is evident that our method exhibits
a strong detection effect on T1, T2, and ST3 types of clones.
Furthermore, the detection performance of VRL4CCD on MT3 and
WT3/T4 types is comparable to the state-of-the-art clone detection
methods in recent years. The results in Table II also highlight the
superior performance of VRL4CCD on ST3, MT3, and WT3/T4
types of clones. Among all the methods, better detection results are
observed for T1 and T2 types of clones. For the challenging MT3

and WT3/T4 types, VRL4CCD shows a 2 to 5 percent improvement
compared to other baseline methods.

VI. DISCUSSION

A. Are VRL4CCD Suitable For Code Clone Detection?
Regarding the model structure, siamese neural networks are an

excellent approach for performing image similarity discrimination
tasks. Furthermore, we combined the siamese neural network with
the VGG16 network and attention mechanism to enhance the model’s
effectiveness. The experimental results demonstrate that the principle
of image processing is suitable for processing code images, and
VRL4CCD already demonstrates remarkable performance even when
using default parameters.

In terms of experimental results, as shown in Table I, our
method achieved high precision, recall rate, and F1-score values, with
VRL4CCD even reaching 0.99 on the GCJ dataset. These results
reflect the effectiveness of VRL4CCD.

In practice, we demonstrate a pair of real clones (Fig.4(a) and
Fig.4(b)), where both code snippets achieve file copying. Our method,
VRL4CCD, can accurately identify this clonal pair. Additionally,
Fig.5 displays a pseudo-cloning pair in BCB, where Fig.5(a) performs
the function of URL content crawling and Fig. 5(b) completes
the function of file copying. Although these two code fragments
are similar at the token and statement levels, our method can still
recognize that they are not clones. These two examples demonstrate
that our method, VRL4CCD, can effectively learn features from the
training data to discriminate between code clones.

ba

Fig. 4. An example of a true clone pair in BCB.

ba

Fig. 5. An example of a false clone pair in BCB.

B. What Is The Improvement Made by The Code Features
Learned From VRL4CCD?

Although code intermediate representations, such as ASTs and
CFGs, can be used for code clone detection, this approach is indirect
and requires additional tools to build the intermediate representations.
Once the intermediate representation is generated, the original code
text is usually discarded. In contrast, VRL4CCD uses the code as the
input, avoiding any information loss from intermediate representation
conversion. This method extracts features related to code similarity

by mining the relationship between each character and pixel in the
code.

Moreover, we improve the feature extraction process by incorpo-
rating a self-attention mechanism into the network. This allows the
network to focus on the pixel-to-pixel associations, i.e., character-
to-character associations in code snippets. We also introduce the
ECA module to enhance the performance of cross-channel network
interaction. We add the above two attention mechanisms to the
bottleneck region of the network, which has the largest number
of separated channels, further to improve the feature extraction
capability of the network.

C. Threats to Validity
1) Implementation of Compared Methods: In our experi-

ments, we implemented some baseline methods, such as TBCCD
and ASTNN, using their open-source code available online. For the
baseline methods without open-source code, we followed the details
mentioned in the original paper as closely as possible to ensure their
implementation.

2) Precision, Recall, and F1-Score Might Not be the Only
Appropriate Measures: Although we used the most widely used
metrics, i.e., precision, recall, and F1-score, to evaluate the effective-
ness of code clone detection, other performance indicators could also
be used, such as AUC, MCC, and G-mean.

3) Generalization of Experimental Results Might be Lim-
ited: We conducted experiments on the BCB and GCJ datasets,
which have different data scales, to enhance the generalization of our
method. However, we cannot guarantee that VRL4CCD will achieve
similar improvements on other datasets.

VII. CONCLUSION

This paper explores the application of software visualization tech-
niques to code clone detection. Our proposed clone detection method,
VRL4CCD, utilizes code visualization and a siamese neural network
with a self-attention mechanism to extract code similarity-related fea-
tures. Our experimental results demonstrate that VRL4CCD outper-
forms current state-of-the-art code clone detection methods. Moving
forward, we plan to conduct more code detection tasks in real-world
scenarios and explore further applications of software visualization
technology in the area of code representation learning.

ACKNOWLEDGEMENT

This work is supported in part by the Guangdong Basic and
Applied Basic Research Foundation (No. 2022A1515110564), in
part by the Science and Technology Program of Guangzhou (No.
202201010312), in part by the Youth Innovative Talents Project of
Ordinary Universities of Guangdong (No. 2020KQNCX008).

REFERENCES

[1] X. Guo, R. Zhang, L. Zhou, and X. Lu, “Precise code clone detection
with architecture of abstract syntax trees,” in International Conference
on Wireless Algorithms, Systems, and Applications. Springer, 2022, pp.
117–126.

[2] C. Huang, H. Zhou, C. Ye, and B. Li, “Code clone detection based
on event embedding and event dependency,” in Proceedings of the 13th
Asia-Pacific Symposium on Internetware, 2022, pp. 65–74.

[3] D. Yu, Q. Yang, X. Chen, J. Chen, and Y. Xu, “Graph-based code seman-
tics learning for efficient semantic code clone detection,” Information
and Software Technology, vol. 156, p. 107130, 2023.

[4] G. Shobha, A. Rana, V. Kansal, and S. Tanwar, “Code clone detec-
tion—a systematic review,” Emerging Technologies in Data Mining and
Information Security, pp. 645–655, 2021.

[5] A. Gupta and R. Goyal, “A study on the metrics-based duplicated code
type smell detection techniques relating the metrics to its quality,” in
Inventive Communication and Computational Technologies. Springer,
2023, pp. 515–532.

[6] M. A. Yahya and D.-K. Kim, “Clcd-i: Cross-language clone detection
by using deep learning with infercode,” Computers, vol. 12, no. 1, p. 12,
2023.

[7] A. Zhang, L. Fang, C. Ge, P. Li, and Z. Liu, “Efficient transformer with
code token learner for code clone detection,” Journal of Systems and
Software, vol. 197, p. 111557, 2023.

[8] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[9] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[10] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[11] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[12] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[13] F. Tian, P. Liang, and M. A. Babar, “Relationships between software
architecture and source code in practice: An exploratory survey and
interview,” Information and Software Technology, vol. 141, p. 106705,
2022.

[14] P. Lima, J. Melegati, E. Gomes, N. S. Pereira, E. Guerra, and
P. Meirelles, “Cadv: A software visualization approach for code an-
notations distribution,” Information and Software Technology, vol. 154,
p. 107089, 2023.

[15] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, and V. Filkov,
“Software visualization and deep transfer learning for effective software
defect prediction,” in Proceedings of the ACM/IEEE 42nd international
conference on software engineering, 2020, pp. 578–589.

[16] L. Linsbauer, S. Fischer, G. K. Michelon, W. K. Assunção,
P. Grünbacher, R. E. Lopez-Herrejon, and A. Egyed, “Systematic
software reuse with automated extraction and composition for clone-
and-own,” in Handbook of Re-Engineering Software Intensive Systems
into Software Product Lines. Springer, 2023, pp. 379–404.

[17] M. Kaur and D. Rattan, “A systematic literature review on the use of
machine learning in code clone research,” Computer Science Review,
vol. 47, p. 100528, 2023.

[18] P. Keller, A. K. Kaboré, L. Plein, J. Klein, Y. Le Traon, and T. F.
Bissyandé, “What you see is what it means! semantic representation
learning of code based on visualization and transfer learning,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 2, pp. 1–34, 2021.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “Supplementary
material for ‘eca-net: Efficient channel attention for deep convolutional
neural networks,” in Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA,
2020, pp. 13–19.

[21] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International conference on machine
learning. PMLR, 2019, pp. 7354–7363.

[22] “Google code jam,” https://code.google.com/codejam/contests.html Ac-
cessed: 2016-10-8.

[23] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” arXiv preprint arXiv:1806.09835, 2018.

[24] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[25] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC).
IEEE, 2019, pp. 70–80.

[26] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A
systematic review on code clone detection,” IEEE access, vol. 7, pp.
86 121–86 144, 2019.

