
Expansion Mechanism for Runtime Verification of

Self-adaptive Systems

Masaya Fujimoto, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology, Osaka University

Email: {m-fujimoto, nakagawa, t-tutiya}@ist.osaka-u.ac.jp

Abstract—Self-adaptive systems can adapt to environmental

changes by modifying their behavior and require runtime

verification after adaptation. More efficient verification

mechanisms are required because verification mechanisms such as

model checking are computationally and memory intensive. A

possible method is to generate expressions for model checking at

design time and execute such expressions at runtime. Our previous

work proposed a caching mechanism and parameterization to

improve the expression generation method. In this study, we

improve our previous work by generating expressions using

Laplace expansion. This method expands the probabilistic model

at the points where it is different from the design model and brings

the model closer to a model in a cache for generating expressions.

We also propose a method to generate candidate metrices to

increase the number of cached matrices and improve the cache hit

ratio. We conducted experiments with three types of changes, that

is, adding, changing, and deleting states. We observed that our

approach is effective when the model’s states are added or changed.

Keywords- requirements, self-adaptive system, runtime

verification.

I. INTRODUCTION

Software systems are increasingly being used by more
people and should be highly reliable regardless of changing
operating environments. Self-adaptive systems [1,2,3,4] are
systems that can operate stably in changeable environments. A
self-adaptive system can restructure itself in response to changes
in the external environment, making it easy to change and
manage the system. However, a self-adaptive system requires
verification at runtime to ensure that the modified system meets
system requirements. We focus on the reachability property,
which states that a target state can be eventually reached from an
initial state. The state space is represented as a discrete-time
Markov chain (DTMC) [5] model. This is because many
properties useful in software development can be reduced to
reachability. Filieri et al. [6,7] proposed a method that places the
state transitions that are expected to be changed as variables in
advance. This method generates a set of verification expressions
that include the variable at design time and assigns obtained
parameters at runtime to perform verification. This allows for
faster verification. However, Filieri’s method generates a
verification expression for system behavior at design time;
therefore, it is not possible to perform verification quickly when
the behavior changes significantly after adaptation. To address
this problem, our previous work [8,9] proposed a method that
uses a caching mechanism: Intermediate formulas obtained

during the generation of verification formulas are stored in a
cache. When the system state changes significantly and
recalculation is necessary, the results of the intermediate
formulas are reused from the cache, thereby reducing the
computation time during system execution. Furthermore, by
generating predicted models after adaptation and storing them in
the cache as well, the cache hit ratio is improved, further
decreasing computation time.

In this study, we attempt to further speed up runtime
verification time by improving the caching method in our
previous study. Previously, the cache size increased along with
the size of the predicted model, resulting in slower execution
times. In this study, we use model modification information and
perform Laplace expansion from the point where the model state
changes when re-generation is necessary. We also generate
candidate matrices to improve the cache hit ratio and reduce the
calculations done in generating expressions.

The experiment results shows that this approach is faster than
other methods in specified situation, such as adding states and
changing states.

II. RELATED WORK

Previous studies have developed the approach of model
checking for runtime verification. For example, [10] proposed a
fast parametric model checking (fPMC) approach that generates
an abstract model, which represents multiple states with a single
state. Thus, even if the model size increases, this method can
reduce the computational time. Furthermore, [11] proposed an
incremental quantitative verification method for probabilistic
models, which re-uses results from previous runtime verification
to accelerate the process. The key in this approach is to use a
decomposition of the model into its strongly connected

DOI reference number: 10.18293/SEKE2023-223

Fig 1. MAPE feedback loop mechanism.

components (SCCs). This method also uses the structure of
models and requires the analysis of the change impact on the
model before the previous verification. Ref. [12] investigated
three techniques, namely caching, lookahead and nearly-optimal
reconfiguration. While this technique assumes that the
verification is continuously executed, our technique assumes
that the verification is divided into at runtime and at design time.
A technique of caching is the basis of our approach. A technique
of lookahead uses spare CPU to pre-verify stochastic models,
which are expected to arise in the future. A technique of nearly-
optimal reconfiguration terminates runtime verification as soon
as a system configuration satisfies some condition. This paper
shows that these techniques can lead to significant reductions in
runtime verification.

III. BACKGROUND

 In this section we explain self-adaptive systems and the
DTMC method of model verification, which is widely used to
model the reliability of software systems. In our study, we
assume that the system states are represented as models, which
enable easy and efficient verification of the reliability of systems
in terms of non-functional properties, such as memory
consumption and the computational cost.

A. Self-adaptive systems and model verification

The primary mechanism for self-adaptive systems is the
monitor-analyze-plan-execute over a shared Knowledge
(MAPE-K) feedback control loop [13], which repeats the four
steps: monitoring, analyze, plan, and execute (Fig. 1). At runtime,
a self-adaptive system monitors its external environment and
analyzes information obtained from monitoring. If the system
state violates the requirements, the system plans a new behavior
that meets requirements and updates itself. This mechanism
enables automatic adaptation to the environment. A self-
adaptive system requires efficient verification [14] to meet
requirements and update itself over time.

B. Discrete-time Markov Chcain Model

A DTMC model is defined as state transition augmented with
probabilities that meet the Markov process requirement that
future states depend only on the current states without depending
on previous states. The elements of a DTMC model are as
follows:

• S is a finite set of states

• 𝑆0(⊆ 𝑆) is a set of initial states

• P: S × 𝑆 → [0,1] is a transition matrix representing the
transition probability between states

A DTMC model has two types of states. The first is an
absorbing state, which has transition probability of 1 to itself,
while the second is a transient state which has a transition to
other states. In this study, the state transition probability is
represented as a real value [0, 1] and variables.

Fig.2 shows a model of how a cleaning robot acts. This
model analyzes the information obtained by the sensor and
decides actions based on the information. The model transitions
to either a failure or success state. The circles in Fig.2 denote
states and each arrow represents a transition from a state to a
next state. The number on each arrow stem denotes the
probability of a state transition. The probability variable is a
parameter obtained through execution or expected to change.
The system starts at an initial state 0 and transitions to states 1-
3, based on information acquired by the sensors. External
information is acquired via infrared sensor 1. If infrared sensor
1 has a problem, it transitions to states 1, or 3. In state 4, the
system analyzes the information obtained. In state 5, it plans
response actions based on the analysis, and transitions to states
6-8. States 6-8 indicate the robot motions; if a movement action
is performed without any problems, a transition is made to state
9, which denotes success. Conversely, if the corrective action
cannot be performed owing to obstacles, a transition is made to
state 10, which denotes a failure state.

A DTMC model can be represented by an adjacency matrix.
Fig.3 shows a matrix representation of the example in Fig. 2. In
such a matrix, row i, column j represents the probability of
transition from state i to state j.

Fig. 3. The transition matrix of Fig. 2.

Fig. 2. An example of DTMC model verification: a cleaning robot.

Fig. 4. Sub-matrices Q, R, O and I of the DTMC model for the

cleaning robot illustrated in Fig. 2.

C. Runtime verification using DTMC model

In this section, we explain how to calculate state transition
probabilities for model checking from a DTMC model and
system requirements. A DTMC model with absorbing states can
be represented by the following four matrices.

𝑃  =   (
𝑄 𝑅
𝑂 𝐼

)

The matrix Q is a matrix of probabilities of transitioning
from a transient to transient state; the matrix R is a matrix of
probabilities of transitioning from a transient to an absorbing
state, and the matrix I is a matrix of probabilities of transitioning
from an absorbing to absorbing state. The matrix I is an identity
matrix because the transition probability to itself is 1. The matrix
O represents the transition probability from an absorbing to a
transient state, which is always zero because an absorbing state
has only transitions to itself. Hence, matrix O can be expressed
as a zero matrix, as shown in Fig. 4.

Reachability in DTMC model can be expressed by the
probability operator 𝑃⋈𝑝(𝑙) , where 𝑙 is a path formula. ⋈

denotes the comparison operator, such as <, ≤, >, and ≥, and
𝑝 is a threshold of the probability that is defined by the
requirements. 𝑃⋈𝑝(𝑙) represents whether the probability meets

⋈ 𝑝 under the condition 𝑙. We verify whether the probability of
reaching an absorbing state satisfies ⋈ 𝑝.The following section
describes how to obtain the transition probabilities for verifying
reachability. To verify reachability in a DTMC, we consider the
transition probability from a transient to transient state. If Q
denotes the transition probability from a transient state, the
transition probability after the first two transitions can be
expressed as Q2, which is the product of the first and second
transition probabilities. The probability in some steps can be
calculated in same way as follows.

N = I + 𝑄1 + 𝑄2 + 𝑄3 + ⋯ = ∑ 𝑄𝑘

∞

𝑘=0

Because matrix N is an infinite series of matrix Q, matrix N
can be taken as the inverse matrix of matrix (𝐼 − 𝑄). Next, given
that matrix N is the transition probability from a transient to
transient state, the reachability can be obtained with the
following equation.

B =  N × 𝑅

Reachability 𝑏𝑖𝑘 from an initial state 𝑆𝑖 to an absorbing state
𝑆𝑗 can be calculated as follows.

𝑛𝑖𝑗 =
1

𝑑𝑒𝑡(𝑊)
⋅ α𝑗𝑖(𝑊)

𝑏𝑖𝑘 = ∑ 𝑛𝑖𝑥

𝑥∈0..𝑡−1

⋅ 𝑟𝑥𝑖 =
1

𝑑𝑒𝑡(𝑊)
α𝑥𝑖(𝑊) ⋅ 𝑟𝑥𝑗

The calculation of 𝑏𝑖𝑘 requires the calculation of
determinants. The determinant is calculated by Laplace
expansion and LU-decomposition.

D. Generating runtime verification expressions

The calculation of determinants is computationally intensive
but must be performed at runtime. Therefore, Filieri et al. [5,6]
proposed a method by performing some of the calculations
required for model checking at design time.

The method consists of two processes: precomputation at
design time and verification at runtime. First, precomputation
parameters that can only be obtained or may change at runtime
are placed as variables, and verification expressions are
generated. At runtime, the desired transition probabilities are
calculated by substituting parameters into the verification
equation to determine whether the requirements are met. This
allows for fast model checking even if some of the transition
probabilities have unknown parameters. The transition
probabilities calculated by this method from initial state 0 to
absorption state 10 in Fig. 3 are as follows:

𝑏010(𝑥0,𝑥1,𝑥2,𝑥3) =
0.02(𝑥0 + 𝑥1)(𝑥2 + 𝑥3) + 0.024(𝑥0 + 𝑥1)

−𝑥0 − 𝑥1

At runtime, the reachability property can be obtained by
substituting parameter values obtained from sensors and other
sources into this expression.

In this method, LU-decomposition is not possible when the
matrix includes variables. Therefore, Laplace expansion is
performed first; then the variables are removed from the matrix
to enable LU-decomposition. This allows for shorter
computation times than would have been with Laplace
decomposition alone. We denote the size of Q matrix as 𝑡, the
average transition number as τ, and the number of rows
including variables as c. To calculate 𝑏𝑖𝑘 , the calculation of t
determinants that is (𝑡 − 1) × (𝑡 − 1) sizes of sub-matrices
using Laplace expansion is given by 𝑂(𝑡3). In the case of
calculation of determinants with variables, the row including
variables is expanded and requires 𝜏𝑐 determinants. The
expanded matrices are then calculated by LU-decomposition
because the matrix has no variables. The calculation of a runtime
verification formula is as follows:

𝑂(τ𝑐・(𝑡 − 𝑐)3) ∼ 𝑂(τ𝑐・𝑡3)

E. Caching mechanism and grouping of states

In this section we describe the caching mechanism in the
proposed runtime verification reduction method. Filieri’s
method cannot use the generated expression when the system
has changed significantly, such as if states have been added and
deleted, and needs to re-generate the expression. The re-

Fig. 5. An example of grouping of states.

calculation of the generated verification formula at design time
is time-consuming and affects system performance and
execution. To address this problem, a caching mechanism is
used. This caching mechanism stores pairs of matrices and the
intermediate expressions obtained during the generation of
verification formulas and reuses an expression if the matrices
match. This is because the changes in self-adaptive systems are
partial, and most of the models are similar.

To reduce computational time, this approach generates
candidate models and stores their matrix pairs as well. This can
enable an early match of a matrix during calculation. Only
matrices including the variable are stored in a cache, because a
matrix without variables can be efficiently calculated by LU-
decomposition. When the size of model matched is large, a
correspondingly large computational time improvement is
gained from using a cache. The converse is the case when the
matched model size is small.

The caching mechanism has a drawback in that the size of
the system model increases as the number of stored matrices in
a cache becomes large. To solve this problem, in our previous
study, similar states are grouped, and the transition of states is
limited within the same group. The assumption is that processes
can typically be grouped by functions. Hence, processes in the
same group are completed in one function and adding of states
is restricted to the same group. This can reduce the number of
candidates.

Fig.5 represents the grouping of states example in Fig.2.
States 0-4 belong to sensing group and states 5-10 are in
migration group.

IV. EFFICINET LAPLACE EXPANSION FOR CACHING

The cache mechanism uses intermediate formulas to
generate expressions efficiently. As model size increases, cache
size also increases. An increasing cache size makes it difficult to
perform by the robot, which has restriction of memory usage.
Therefore, to improve hit ratio without increasing the cache size,
we focus on Laplace expansion. In Laplace expansion, for a
square matrix of order n, row I is chosen arbitrarily and
coefficient 𝐴𝑖𝑗 is calculated for each component of the i th row,

so that the resulting expansion formula matches the determinant
of A. The equation is expressed as follows:

det(A) = ∑(−1)𝑖+𝑗𝑎𝑖𝑗

n

j=1

  ⋅  det(Aij)

Laplace expansion can be applied to column j in a similar
process by calculating the coefficient Aij for each component in

column j to obtain the determinant of 𝐴.

To improve the cache hit ratio, we store changes in the model
at design time. At execute time, we perform Laplace expansion
on the changed points to remove them. Compared to other
methods, the matrix does not contain the changed points after
adaptation; thus, it is more likely to match the matrices stored in
the cache.

Fig.6 shows an example of how Laplace expansion is
performed, and the resulting generated intermediate expression
and its matrix are stored in the cache. At runtime, if the matrix
does not include any variables, the matrix is calculated by LU-
decomposition because LU-decomposition is faster than Laplace
expansion. If the matrix includes any variables, the system
acquires added rows as model change information and performs
Laplace expansion on the rows added during the calculation of
determinants. A search is performed on the obtained matrices,
and if a matching matrix exists, the matrix is replaced with the
expressions corresponding to the matrix.

V. GENERATING CANDIDATE MATRICES

To improve the cache hit ratio, we expand the matrix at
design time in different rows, and intermediate expressions are
stored in a cache. This increases the number of matrices stored
in the cache and improves the cache hit ratio. Reducing the
computational time at runtime depends on replacing the
calculation of determinants with expressions stored at design
time. This requires more matrices corresponds with partial
changes.

Fig.7 shows an example of generation of candidate matrices.
The third row of the top matrix in the figure is expanded. The
expanded matrix and the verification expression from the
calculation are stored in a cache. Laplace expansion is done on
the fourth row of the bottom matrix in the figure. The resulting
matrix is different from the one obtained by Laplace expansion
on the third row. The intermediate formulas for these matrices

Fig. 7. An example of generation of candidate matrices.

Fig. 6. An example of the proposed method, which uses on Laplace

expansion.

are stored in the cache as well to efficiently use the model at
design time. This increases the number of matrices stored in the
cache.

VI. EXPERIMENTS

The experiments compare the calculation time and cache size
of the proposed method with those of other methods. In addition,
the cache hit ratio is compared; that is the number of matches
with the matrix stored in the cache at runtime divided by the
number of cache searches. All the programs used in the
experiments were implemented in Java. The experiments were
conducted using the following methodology.

• State size ranges from 10 to 25 states; the increment is
by five states.

• Transition from one state to another is randomly
generated within the same group.

• The number of trails is 10, and the average computation
time over the 10 trials is used.

• The computation time and cache size required to obtain
the probability of transition to absorbing state are
measured.

Methods to be compared.

• Baseline method 1: Filieri's method

• Baseline method 2: Intermediate generative formulas
using a cache + candidate model.

• Proposed Method 1: Using Laplace expansion.

• Proposed Method 2: Proposed method 1 + generating of
candidate matrices.

Baseline method 1 is the method by Filieri et al. Baseline
method 2 uses a cache, generates candidate models at design
time, and stores them in the cache. Proposed method 1 uses
efficient Laplace expansion. Proposed method 2 performs
Laplace expansion at different points at stores the matrices in the
cache. We conducted experiments on three types of changes,
namely adding states, changing states, and deleting states. The
first experiment adds a design model to one state whose
transition probability is restricted to the same group. Second
experiment changes transition probabilities in one row. The last
experiment randomly deletes one state in the design model. We
conducted this experiment on a Mac equipped with a 7th
generation Core m3(1.2GHz), 8.0 GB RAM, and Java program
running on Eclipse.

Tab. I shows the results when the number of states is changed
by adding states. The execution times of the proposed methods
1 and 2 show that they can generate runtime verification
expressions in less time than other methods. Baseline method 1
does not use a cache; hence, cache hit ratio is 0. Among the other
methods, the proposed method 2 has a high cache ratio of 0.61
for 25 states. The proposed method 2 has a smaller cache size
than the proposed method 1. Tab. II shows the results when the
number of states is changed, and states are partially changed.
The execution time of the proposed method 2 is faster than other
methods in generating a runtime verification expression, while
the proposed method 1 is slower than other methods when the
number of states is 25. Despite adding states as well, the cache
size and cache hit ratio of baseline method 1 is 0. Tab. III shows
the results when the number of states is changed by deleting

 TAB. I RESULTS OF EXPERIMENTS ON ADDING STATES WHEN THE SIZE OF MODEL IS CHANGED

 Execute Time [ms] Cache Hit Ratio Cache Size [KB]

 Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

10 13.349 8.824 6.468 4.424 0 0.07710 0.3029 0.48564 0 105.274 3.744 40.051

15 192.841 133.019 57.737 11.470 0 0.01772 0.22672 0.59066 0 999.584 13.402 324.704

20 677.729 662.884 255.478 20.201 0 0.00572 0.18992 0.61975 0 3091.104 21.990 1037.523

25 2338.353 2278.914 795.951 50.123 0 0.00142 0.12013 0.61611 0 6527.738 32.525 2330.170

TAB. II RESULTS OF EXPERIMENTS ON CHANGING STATES WHEN THE SIZE OF MODEL IS CHANGED

 Execute Time [ms] Cache Hit Ratio Cache Size [KB]

 Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

10 13.752 11.17 19.282 6.419 0 0.11517 0.09475 0.10473 0 100.186 7.2 64.934

15 389.014 270.952 355.673 157.602 0 0.13521 0.11095 0.08238 0 3007.06 65.741 1037.952

20 3451.744 3472.968 5005.558 2631.507 0 0.01082 0.00766 0.05104 0 17082.573 208.378 6373.037

25 15957.526 17634.146 21003.851 12243.737 0 0.00745 0.00488 0.04352 0 50554.291 433.862 20658.054

TAB. III RESULTS OF EXPERIMENTS ON DELETING STATES WHEN THE SIZE OF MODEL IS CHANGED

 Execute Time [ms] Cache Hit Ratio Cache Size [KB]

 Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

Baseline

Method 1

Baseline

Method 2

Proposed

Method 1

Proposed

Method 2

10 1.792 2.412 1.371 1.986 0 0.18576 0.29313 0.46791 0 92.192 6.579 62.15

15 26.777 19.018 35.371 11.694 0 0.05338 0.0578 0.27756 0 2005.037 42.912 813.434

20 312.608 328.058 630.843 468.733 0 0.00923 0.00675 0.21231 0 13078.673 238.944 7049.606

25 1333.708 1695.101 3427.358 3194.640 0 0.00122 0.0055 0.09127 0 35126.054 297.363 15790.061

states. The execution time of method 1 is the fastest and
proposed method 1 is the slowest in these experiments.

VII. DISCUSSION

A. Experiments on adding states

In the experiments on adding states, proposed method 2 is
faster than other methods in generating a runtime verification
expression. Efficient Laplace expansion enhances the cache hit
ratio and leads to reduction in computational time by replacing
the calculation of determinants with expressions. In particular,
the cache hit ratio of proposed method 2 is stable owing to large
size of matrices in the early phase, whereas the cache hit ratio of
the other methods decreases.

B. Experiments on changing states

Tab. II shows the execution time for "changing states"
experiments. The execution time of the proposed method 2 is
less than those of other methods; however, the proposed method
1 takes the longest time to generate an expression. This is
because the number of intermediate expressions stored with
proposed method 1 is smaller than the number stored with
proposed method 2. The cache of proposed method 1 does not
include the matrices in cases of partial model changes. This leads
to waste of cache search and increases computational time.
Compared to adding states, as the states increase, the cache hit
ratio of proposed method 2 is lower because of having to match
a small number of matrices.

C. Experiments on deleting states

Tab. III shows the results for deletion of state. Our proposed
method is not effective in deletion of states, method 1 is the
fastest, and the proposed method 2 is the slowest of the methods.
Because proposed methods 1 and 2 do not have enough matrices
(which corresponds with deleting states), search misses increase
execute time. The cache hit ratio of the proposed method 2 is
higher than those of the other methods, because cache hit locally
is much higher. We should consider improvement to increase the
number of matrices in deleting states situations.

These experiments demonstrate that our approach is
effective in adding and changing states but is not effective in
deleting states. Additionally, we found that the size of the
matrices matched affects the execution time. In future work we
will devise a method that matches as large a size of model as
possible. We would decrease the cache size to increase the
applicability of this method.

VIII. CONCLUSION

In this study we described a runtime verification mechanism
for self-adaptive system. We propose the method using efficient
Laplace expansion for caching. We also generate candidate
matrices to increase storage of intermediate runtime verification
expressions when significant changes occur, such as adding,
deleting, and changing of states. These approaches improved the
cache hit ratio by expanding the changed points of the matrix
and reduced the computational time for generating runtime
verification expressions. This led to fast runtime verification.
The proposed method, which generates candidate matrices and

expands the changed points, is effective when the states can be
grouped and the model undergoes changes, such as adding or
changing states. A possible application of the proposed
mechanism is dynamic web applications.

In future research, we aim to improve this method with
experiments on deletion of states and partially changing states.
Additionally, we will consider different adaptation patterns,
such as adding more states and changing the number of variables
to extend the applicability of the caching mechanism.

ACKNOWLEDGMENT

This work was supported by JSPS Grants-in-Aid for
Scientific Research (No.20H04167).

REFERENCES

[1] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by runtime parameter adaptation,” Proceedings of the 31st
International Conference on Software Engineering, pp.111–121, ICSE ’09,
IEEE Computer Society, Washington, DC, USA, 2009.

[2] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.
ACM, vol.55, no.9, pp.69–77, Sept. 2012.

[3] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G.
Tamburrelli, “Dynamic qos management and optimization in service-
based systems,” IEEE Transactions on Software Engineering, vol.37, no.3,
pp.387–409, May 2011.

[4] J. Zhang and B.H.C. Cheng, “Model-based development of dynamically
adaptive software,” Proceedings of the 28th International Conference on
Software Engineering, pp.371–380, ICSE ’06, ACM, New York, NY,
USA, 2006.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series), The MIT Press, 2008.

[6] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” Proceedings of the 33rd International
Conference on Software Engineering,pp.341–350, ICSE ’11, ACM, New
York, NY, USA, 2011.

[7] Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation via
quantitative verification and sensitivity analysis at run time,” IEEE
Transactions on Software Engineering, vol.42, no.1, pp.75–99, Jan. 2016.

[8] H. Nakagawa, K. Ogawa, and T. Tsuchiya, “Caching strategies for run-
time probabilistic model checking,” in Proc. of the 11th International
Workshop on Models@run.time (MRT 2016), pp.18, Oct. 2016.

[9] H. Nakagawa, H. Toyama, T. Tsuchiya, Expression caching for runtime
verification based on parameterized probabilistic models, Journal of
Systems and Software 156 (2019) 300–311.

[10] X. Fang, R. Calinescu, S. Gerasimou and F. Alhwikem, “Fast Parametric
Model Checking through Model Fragmentation,” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), Madrid, ES,
2021, pp. 835-846.

[11] M. Kwiatkowska, D. Parker and H. Qu, “Incremental quantitative
verification for Markov decision processes,” 2011 IEEE/IFIP 41st
International Conference on Dependable Systems & Networks (DSN),
Hong Kong, China, 2011, pp. 359-370.

[12] Simos Gerasimou, Radu Calinescu, and Alec Banks. 2014. Efficient
runtime quantitative verification using caching, lookahead, and nearly-
optimal reconfiguration. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2014). Association for Computing Machinery, New
York, NY, USA, 115–124.

[13] K. Goseva-Popstojanova and K. Trivedi, “Architecture-based approach to
reliability assessment of software systems,” Performance Evaluation,
vol.45, pp.179–204, 07, 2001.

[14] Taylor, H.E., Karlin, S., 1998. An Introduction to Stochastic Modeling.
Academic Press.

