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Abstract

With the development of event knowledge graph tech-
nology, researchers have solved the singleness problem of
event graph based on temporal relationship by constructing
event logic graph, but have not integrated the multiple rela-
tionships among events with time series data for trend pre-
diction. In addition, due to the impact of COVID-19, cor-
porate credit risks have been gradually exposed in recent
years, and defaults have occurred frequently. The technol-
ogy of event graph and event logic graph is mostly used for
event schema induction, script induction, etc., but abundant
graph knowledge is not well exploited for forecast task.

To fill this gap, we construct an event logic graph by ex-
tracting various types of event relationships, such as causal
relationship, sequential relationship, parallel relationship,
and reversal relationship. Different types of edges among
events are used to represent different relationships. Com-
bined with the time series of corporate credit bonds, a tem-
poral convolutional network driven by event logic graph is
built, and applied to forecast corporate credit risk.

We extract structured events from financial news, con-
struct event logic graph and learn the graph knowledge.
Then, the event logic graph embedding is combined with
time series of bonds to forecast whether the corporate will
default. Experiments show that the proposed method out-
performs baseline methods in forecasting credit risk.

1 Introduction
Events contain a large number of internal composition

structures (such as participants, time, place, etc.) and ex-
ternal associations (such as causal relations, sequential re-
lations, parallel relations, reversal relations, etc.). The news
information platform has accelerated the spread of infor-
mation among various social groups. How to perceive hot
events and sort out the context among them has become the
key to tracking sudden social turmoil, epidemic diseases,
credit defaults and other events.

Most of the existing intelligent news system construct
the event graph based on temporal relationship, but there are
complex internal and external correlations among events.
The cascade reactions brought about by different event re-
lationships are disparate. We can assist decision-making in

many fields such as natural disasters, aviation safety, and
public health, in the method of extracting events and identi-
fying relationships from news texts.

There are three key technologies in applying event graph
to forecasting: event detection, event relationship extrac-
tion, and trend forecast.

In terms of event detection , topic detection and text
clustering are traditional technical methods, using BoW
model and LDA model to represent the topic of the text.
These methods have the following problems: 1. Clustering
algorithms need to determine the number of clusters in ad-
vance to achieve event classification. 2. The unbalanced
distribution of event clusters increases the difficulty of clus-
tering.

In terms of event relationship extraction , the tradi-
tional solution is to implement topic discovery through arti-
cle clustering, and construct the relationship among events
based on sequence of events. However, how many relation-
ship types among events is still a controversial issue, and
identifying different relations from text is challenging.

In terms of trend forecast , most of the current research
based on event context is applied to smart news in the aim
of assist the public in visualizing hot spots. A small num-
ber of financial quantification teams extract structured event
tuples from financial news, and use knowledge graph tech-
nology to correlate discrete event tuples with each other.
Event embeddings are obtained by training event tuples and
knowledge graph triples. On this basis, the method of multi-
channel connection is adopted, the price vector and event
embedding are used as the input of model to forecast the
stock price. However, such methods do not use the multiple
relationship among events for forecast.

Our contribution can be summarized as follows:
Extract multiple event relationships, such as sequential

relationships, causal relationships, reverse relationships and
parallel relationships. Construct event logic graph using
events as nodes and multiple event relationships as edges.

Build a temporal convolutional network model driven by
event logic graph, which integrates news events and corpo-
rate credit bond transaction data to forecast credit risks. The
comparative experiments and ablation experiments show
that our approach outperforms the baseline methods, and
multiple relationship has better performance in trend fore-
cast than the single relationship.
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2 Related Work
2.1 Event Extraction

The research and application of event extraction mainly
rely on machine learning and deep learning. Based on the
existing models, the following two common problems are
summarized:

1.How to learn the semantic representation of events
from the given text: mining effective features is the key to
the model. Early methods designed fine-grained features
such as lexical, syntactic, and kernel-based features. Neural
networks have been tried in this tasks, including CNNs and
Transformers. Due to the complexity of event structures, re-
cent studies have begun to use additional information such
as entities, document-level information, and syntactic struc-
tures.

2.How to extract events across sentences or at docu-
ment level: Current research mainly focuses on the sen-
tence level, with the basic assumption that events are man-
ifested in sentences. Compared with sentence-level event
extraction, document-level event extraction needs to con-
sider more complex issues: including parameter dispersion,
multi-event expression, etc.

2.2 Event Relation Extraction

Event Co-reference Resolution is to confirm whether
multiple event elements belong to the same event, which
is treated as a classification or ranking problem. Machine
learning models are widely used in this field, such as de-
cision tree classifier[1], information propagation models[2]
and multi-loss neural models[3]. These models focus on
understanding the context of two events.

Event Causality Extraction is often viewed as a clas-
sification task. Existing models generally complete clas-
sification under the premise of supervision, the key point
is how to extract clues and how to represent the semantics
of causality. Extracting effective clues of contextual event
causality requires the use of various text features, includ-
ing syntactic features[4], lexical features, explicit causal
patterns[5], statistical causality, etc.

Temporal Relation Extraction is mainly based on the
TimeML format[6], and most methods solve it as a classi-
fication problem. Early ETE models usually relied on tem-
poral rules[7]. Some researchers also used temporal context
features to build models and extract temporal relationships
based on machine learning[8]. In addition, neural network
models are widely used, such as the classic CNNs, LSTMs
methods[9] and the BiLSTM model based on dependent
paths[10]. In addition, some more refined improved meth-
ods achieve more accurate extraction results[11].

2.3 Event Knowledge Graph

Gottschalk and Demidova[12] designed and imple-
mented the Event Knowledge Graph(EKG). At present,

events and their temporal relationships are mostly dis-
tributed in entity-centric knowledge graphs and artificially
curated semi-structured resources. The proposal of EKG
promotes a global view of events and temporal relation-
ships. Ding et al.[13] proposed Event Logic Graph(ELG).
Nodes in ELG represent events, and edges represent rela-
tionships among events. ELG reveals the development and
evolution process of objective events.

Zhang et al.[14]proposed a large-scale event knowledge
graph (ASER) for discovering real-world activity knowl-
edge. ASER defines a brand new knowledge graph, in
which each vertex is the basic element of an event, and
the event relationship is the connection a hyperedge of sev-
eral vertices. In addition, some researchers try to construct
commonsense knowledge graphs around events, such as
Event2Mind, GLUCOSE, ATOMIC.

2.4 Applications in Trend Forecasting

The event graph is centered on events, describing event
information and the relationship among events. Based on
this, technologies such as event prediction and trend pre-
diction are realized. By analyzing the development process
of historical events, it is possible to predict future events.
Many researchers use contextualized events such as event
skeletons in different fields to predict trends, such as the
evolution process of natural disasters, event evolution anal-
ysis, stock price prediction, etc.

3 Method

3.1 Explicit Event Relationship Extraction

We unify the extraction methods of various event rela-
tionships to make the processing of news corpus more effi-
cient. Inspired by Chang et al., this paper adopts the com-
bination of explicit relationship trigger words and pattern
recognition. Different from Chang’s approach, in addition
to establishing temporal relations, this paper formulates ex-
plicit trigger words and linguistic rules for causal, parallel,
and reversal relations. We set different types of relational
triples (preword, postword, type) for pattern matching and
event tuple constructing, where preword and postword do
not necessarily appear at the same time, such as (”due to”,
”resulting in”, causal ).

We constructed the corresponding syntactic patterns, and
extracted event tuples (text, type, preword, prepart, post-
word, postpart) of various relations. ”type” is the type of
event relationship, ”text” is the original text, ”preword” and
”postword” represent the event relationship trigger words
obtained by pattern matching, the prepart and postpart are
the event content before and after the relationship trigger
words.



3.2 Construction of Event graph

The event graph we constructed uses events as nodes and
the relationship among events as edges. Both ”event” and
”relation” are obtained from the event-relation tuple.

Take the news of ICBC as an example, ”Regulations
have tightened the reporting standards, leading to a general
decline in the stock of public offerings sold by securities
companies.” The event relationship tuple can be obtained
through the explicit event relationship extraction method
(type=”causal”,preword=null, prepart=”Regulations have
tightened the reporting standards”, postword=”leading to”,
postpart=”The stock of public offerings sold by securities
companies has generally dropped”). Then set an edge
whose type is ”causal” between the two events. The con-
struction methods of sequential relationship, parallel rela-
tionship and reverse relationship are the same.

3.3 ELGTCN

When forecasting the credit risk of corporates, it is also
necessary to combine with financial time series data, such
as the lowest transaction price of bonds. This paper uses
Event Logic Graph Driven Temporal Convolutional Net-
works (ELGTCN) to combine event logic graph with bond
data in corporate credit risk forecast.

Figure 1. ERCDTCN

3.3.1 Representation of Original News

For the original news, we use word2vec to encode and ob-
tain vector sequences. Calculate the maximum value of
each dimension through the maximum pooling operation to
capture the most significant attributes in the sequence. The
average value of each vector sequence is calculated by the
average pooling operation to obtain universal information.
The max pooling and average pooling operations on vector
sequences are two complementary ways. Finally, the results
of the two operations are connected in parallel to obtain the

representation of mean-max. The calculation process is as
follows:

Figure 2. "mean-max" schematic diagram of
control mechanism
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3.3.2 Representation Method of ELG

We transform the multiple relationship graph structure into
a low-dimensional space vector by means of TransE[15].
Suppose there is an event relation triplet of (e1, relation,
e2), where the vector of event e1 is expressed as Ve1 , event
e2 The vector representation of Ve2 , the relationship be-
tween event pairs is Vrelation. The ultimate goal is to
map events and their relationships into k dimensional vec-
tors. The essential idea is that if there is a relationship
relation between the event pair e1 and e2, then try to make
Ve1 + Vrelation ≈ Ve2 , otherwise, keep as far away as pos-
sible.

In order to realize the representation learning of multi-
ple relations, the relation ri is modeled as a hyperplane wri

and a transfer vector dri . First, project the two events on
the square of wri , and then calculate the distance on the
projected hyperplane. That is, Vri(e1) = e1 − w>rie1wri ,
r is expressed as a transition vector dri , Vri(e2) = e2 −
w>rie2wri . Use the Euclidean distance between Vri(e1) +
dri and Vri(e2) as the difference between two events.

Multivariate event relations are projected to different hy-
perplanes, and different relations of events are represented
by vector calculations between different hyperplanes. Set
the distance function d(Vri(e1)+Vri , Vri(e2)), for all event
pairs in the event logic graph, minimize the distance func-
tion d(Vri(e1) + Vri , Vri(e2)). Specifically, the loss func-
tion L is defined as follows, where ri represents different
event types, i ≤ 4.

L =
∑

(e1,ri,e2)∈S

∑
(e′1,ri,e′2)∈S′

[λ+ d (Vri (e1) + Vri , Vri (e2))

−d
(
Vri (e1)

′
+ Vri , Vri (e2)

′)]
+

(2)



Where [x]+ represents the positive part of [x], S′(e1,r,e2)
represents the relational tuple whose head or tail is ran-
domly replaced . Increase the distance function of non-
existent event-pair relations by constructing error samples.
The composition of S′(e1,r,e2) is as follows:

S′(e1,relation,e2) = {(e1
′, relation, e2) | e1′ /∈ E}

∪ {(e1, relation, e2′) | e2′ /∈ E}
(3)

3.3.3 Representation of Time Series Data Related to
Corporate Credit Debt

According to financial market experience, bond variables,
corporate variables and macro variables have a certain early
warning effect on corporate credit risk. Bond variables in-
clude minimum transaction price, coupon rate, etc. Corpo-
rate variables include return on total assets, proportion of
long-term liabilities, etc. Macro variables include risk-free
interest rates and the CSI 300 Index. We use the above in-
formation as time series data reflecting corporate credit risk.
By splicing the vector representations of the above three
kinds of data, the original news N , the event logic graph
G, and the time series data X are fused (as shown on the
right side of Figure 1), as the input for forecast.

3.3.4 ELGTCN for Forecast

Inspired by Bai et al. [16], the TCN model is used to pre-
vent the look-ahead error that may exist in the application
of time series data. Longer historical data can be looked
back through deep networks augmented with dilated convo-
lutions and residual layers.

We employ a 1D fully convolutional network (FCN) ar-
chitecture, where each hidden layer has the same length as
the input layer, and zero padding is added to keep subse-
quent layers the same length as the previous layer. In this
way, the network can produce an output of the same length
as the input. In addition, TCN uses causal convolution, and
the output at time t is only convolved with elements at time
t and earlier in the previous layer, so that there is no look-
ahead bias.

The historical information that causal convolution can
recall is linear with the depth of the network. The prediction
of enterprise credit risk is a task that requires a long histori-
cal review. Therefore, we use the expansion convolution to
achieve an exponentially large receptive field. Specifically,
for a one-dimensional sequence input x ∈ Rn and a filter
f : {0, . . . , k − 1} → R, the dilated convolution operation
F on element s in the sequence is defined as:

F(s) = (x ∗ df)(s) =
k−1∑
i=0

f(i) · xs−d·i (4)

where d is the dilation factor, k is the filter size, and s−d · i
represents the direction of the history. Therefore, the di-
lation factor is equivalent to introducing a fixed step size

between every two adjacent filters. If the size of d is 1, the
expansion convolution is an ordinary convolution kernel; if
a larger expansion factor is used, the output result can rep-
resent a larger range of input data, that is, the receptive field
of the convolutional network is larger.

Deep networks are prone to the problem of gradient dis-
appearance or gradient explosion. At present, BN, regu-
larization and other methods can be used to improve it,
but it still cannot support too deep networks. Therefore,
we use the residual module to realize the identity mapping
of cross-layer connections, and learn the residual function
F (X) = H(X) − X , that is, to learn the partial modifi-
cation of the input X. Introducing the residual module can
solve the problem of gradient disappearance.

The input of the ELGTCN model includes: bond-related
time series data X (bond variables, corporate variables,
macro variables), original news N and event logic graph
G. The data is normalized and mapped to a vector represen-
tation, where each vector pt represents the fusion vector of
the time series data, news corpus, and event logic graph of
the bond trading day t.

P = {p0, p1, · · · , pt−1} (5)

Credit risk prediction can be abstracted as a binary classi-
fication problem. Considering that the liquidity of bonds is
weaker than that of stocks, we choose to use one week as the
step size. We use historical n days of company news and fi-
nancial data to predict whether the company in the specified
target S = {s1, . . . , sN} has credit risk.

4 Experiment
4.1 Datasets and Compared Methods

The data required for the experiment include financial
data and news texts, and the access methods include: wind
database and news websites. All industrial credit bonds in
China from January 2014 to December 2021 were extracted
from the wind database, with a total of 36,702 samples. The
financial news that can be periodically obtained through the
Scrapy crawler framework involves more than 4,000 listed
companies. Bond variables include the minimum trans-

Table 1. Baseline Models with Different Inputs

Model Input

Raw Data Training Data

TCN X TS vector
PVEB-TCN X +N TS vector + event embedding1

TDPVEB-TCN X +N + L TS vector + event embedding2

KDTCN X +N +K TS vector + knowledge embedding
ELGTCN X +N + G TS vector + relation embedding

action price, coupon rate, issue size, remaining maturity,



callability, putability, etc. Company changes include return
on total assets, proportion of long-term liabilities, company
size, whether it is a listed company, etc. Macro variables
include risk-free interest rate, CSI 300 index.

4.2 parameters and comparison settings

Set time series data as X , news text as N , event knowl-
edge graph as K, event graph as G. We select several com-
monly used baseline models and set the data types they con-
tain as shown in Table 1.

Table 2. Evaluation Metrics
Model Accuracy Precision Recall F1-scare

TCN 68.88% 52.04% 93.30% 66.81%
PVEB-TCN 76.43% 69.60% 82.65% 75.57%
TDPVEB-TCN 78.99% 73.89% 83.37% 78.35%
KDTCN 69.43% 63.27% 76.52% 69.27%
ELGTCN 85.38% 84.83% 84.93% 84.88%

The baseline model has different inputs. In the first col-
umn, EB means event embedding, PV means bond time se-
ries data vector, TD means event graph driven, KDTCN is
a stock prediction method driven by knowledge graph, EL-
GTCN is proposed for this paper model. event embedding1

means that the event structure is extracted from the text
and used directly for trend forecasting, event embedding2 is
used for trend forecasting after the time context of the event
is generated, event knowledge embedding is the embedding
of knowledge graph constructed by event elements, and
event relation embedding is the embedding of event logic
graph.

The training process uses the Adam optimizer. In order
to avoid model overfitting, set the Batch Size to 5, the learn-
ing rate lr to 1× 10−3, and the Dropout Rate to 0.3.

4.3 Experimental Results

4.3.1 Visualization of Event Logic Graph

Taking ”Shanghai Electric” as an example, we use hot news
in 2021 to generate an event logic graph. It can be seen in
Figure 3 that there are many examples of causal and reverse
relationship, which is common in listed companies.

We visualized Liu et al.[17]’s event relationship extrac-
tion method based on knowledge enhancement. As shown
in Figure 4, this method realizes the identification and ex-
traction of causality, but the type of event relationship is
relatively single and covers less content.

Comparing Figure 3 and Figure 4, it can be found that the
method in this paper has advantages over the control method
in terms of the diversity of event relationships, the compre-
hensiveness of event scope, and the integrity of event devel-
opment.

Figure 3. ELG

Figure 4. Knowledge-enhanced Event Extrac-
tion

4.3.2 Analysis of Evaluation Metrics

We compare the performance of the models under different
inputs, and calculate the accuracy, precision, recall and F1-
score of each model.

It can be seen from Table 2, PVEB-TCN incorporates the
event information in the news corpus, and the performance
of the model has improved. KDTCN builds a knowledge
graph based on event elements and combines bond data for
prediction, whose performance is lower than other models.
ELGTCN has the best performance.



Table 3. Performance Evaluation of Ablation
Experiments

Model B/W Accuracy Presision Recall F1-score

TCN Best 68.88% 52.04% 93.30% 66.81%
Worst 66.02% 50.02% 88.29% 63.86%

TDPVEB
Sequential

Best% 72.13% 65.59% 82.89% 73.24%
Worst 69.45% 62.36% 81.00% 70.47%

CRPVEB
Causal

Best 72.98% 72.91% 71.39% 72.14%
Worst 63.22% 61.10% 67.64% 64.21%

PRPVEB
Parallel

Best 68.39% 77.04% 60.83% 67.98%
Worst 64.08% 66.73% 58.99% 62.62%

IRPVEB
Reversal

Best 71.12% 62.26% 76.03% 68.46%
Worst 67.12% 58.36% 71.24% 64.16%

ELGTCN Best 85.38% 84.83% 84.93% 84.88%
Worst 82.32% 79.35% 83.34% 81.30%

In order to reflect that multiple relationships are more
advantageous than single relationships, we separately use
sequential relationships, causal relationships, parallel rela-
tionships and reversal relationships as the basis for trend
prediction. Table 3 shows the best performance and worst
performance of single event relationship and compound
event relationship in forecast. Through the experimental re-
sults, it can be found that the indicators of ELGTCN that
integrates multiple event relationships are the best.

5 Conclusion
We design temporal convolutional networks driven by

event logic graphs(ELGTCN). We constructed a graph of
event by identifying multiple relationships, and applied it
to the forecasting of corporate credit risk. First, we used
a combination of relational triggering and pattern matching
to extract multiple event relations from news text. Secondly,
when constructing the graph structure, events were regarded
as nodes and event relations were regarded as edges. Fi-
nally, ELGTCN was designed to integrate the event logic
graph with time series data, used for corporate credit risk
forecast. Experiments show that the method outperforms
baseline methods in forecasting default risks.
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