
DOI reference number: 10.18293/SEKE23-218

Just-in-Time Defect Severity Prediction
Ran Mo, Yushuo Wang, Yao Zhang, Zengyang Li

School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning
Central China Normal University

moran@ccnu.edu.cn, yswang@mails.ccnu.edu.cn, mm1314955811@mails.ccnu.edu.cn, lzy@ccnu.edu.cn

Abstract—To efficiently fix defects within a specific time frame
during software development, researchers have proposed defect
severity prediction to help developers determine which defects to
fix first and make efficient use of limited resources. Additionally,
to improve the efficiency of defect fixing, just-in-time (JIT) defect
prediction has been proposed to promptly predict code fragments
that may introduce defects when developers make code changes
(i.e., submit a commit). In this way, defect feedback is prompt
and localization precision is high. Typically, high-priority defects
must be addressed as soon as possible, but when the bug report
records a defect back to developers, they need to take time to
get reacquainted with the related code fragments, slowing down
the speed of high-priority defect fixes. Therefore, we used three
machine learning algorithms to develop a JIT defect severity
prediction model that allows developers to classify the severity
of potential defects when submitting code changes. Our models
were tested on ten large-scale projects and showed they can
effectively predict defect severity just in time. With Random
Forest, our models achieved an average precision of 0.552, and
an average recall, F1-measure, and AUC of 0.579, 0.528, and
0.729, respectively. Using Decision Tree, the average precision,
recall, F1-measure, and AUC achieve 0.479, 0.494, 0.485, and
0.619, respectively; Using KNN, the average precision, recall, F1-
measure, and AUC are 0.466, 0.468, 0.467, and 0.593, respectively.
Meanwhile, we find a large portion (90.3% on average) of defect-
introducing changes are at a high severity level.

Index Terms—JIT Defect Severity Prediction; Defect-fixing
Changes; Defect-introducing Changes

I. INTRODUCTION

During software development and maintenance, repairing
software defects is an indispensable task, and it often needs
to be completed within a specified time period [1]. Hence
developers usually assign a severity level to different defects,
so that developers can give priority to fixing the high-severity
defects when given limited time [1], [2]. In addition, the
defect severity level also helps to reasonably assign defect-
repairing tasks to the developers with appropriate development
experience, which could avoid incorrect repairs [3]. However,
classifying defect severity is mainly done manually by testers
relying on their own expertise and experience [2], [4]. For
software systems with massive defects, the manual assessment
of defect severity would be time-consuming and error-prone
[4], [5]. Therefore, more and more researchers have paid
attention to defect severity prediction and explored approaches
for automatically predicting the severity of defects [1]–[7].

JIT defect prediction has become an active research
area [8]–[11], which predicts code fragments that may intro-
duce defects when developers make a code change (i.e. submit

a commit) [8]. Compared with the defect prediction based on
the coarse-grained level of modules, packages, files, etc., this
change-level prediction can narrow the scope of the location
of the defects introduced [8], so that developers can quickly
review potential defects, and each change has a unique author
[8], so it is easy to determine the developers who introduced
the defects. In addition, the defects are predicted before the
changes are submitted, so developers can immediately repair
the code when they are very familiar with the code fragments
[8], saving time in recalling the implementation decisions.

In this paper, we introduced the concept of JIT defect pre-
diction into the prediction of defect severity. Unlike traditional
methods, a defect often got documented and classified several
weeks or months later than it was introduced. Consequently,
developers may need to take time to get reacquainted with the
related code fragments for analyzing or even fixing the defect.
With the JIT prediction on defect severity, developers would
be able to promptly classify the severity of potential defects
when committing code changes. This would help developers
quickly assess the severity of defects and allocate resources for
further repairs. Especially for the high-severity defects, which
need to be fixed as soon as possible, developers can quickly
review code snippets and fix them, since they are familiar with
the code, which saves time in recalling the code and speeds
up the repair of high-priority defects.

In this study, we use Random Forest, Decision Tree, and
KNN classifier to establish JIT defect severity prediction
model and apply the model to ten large-scale projects. The
results show that our models can effectively predict defect
severity just in time. The Random Forest-based model can get
a precision of 0.552 on average, and the average recall, F1-
measure, and AUC are 0.579, 0.528, and 0.729, respectively.
For the Decision Tree-based model, the average precision,
recall, F1-measure, and AUC are 0.479, 0.494, 0.485, and
0.619, respectively. When using KNN, the average precision,
recall, F1-measure, and AUC can reach 0.466, 0.468, 0.467,
and 0.593, respectively. In addition, we find a large portion
(90.3% on average) of defect-introducing changes are at a high
severity level.

The rest of the paper is structured as follows: Section II
introduces the background of this paper. Section III reports the
related work. Section IV introduces the methodology of our
model building. Section V presents the experimental findings.
Section VI describes the shortcomings of this research and
future work. Section VII concludes.



II. BACKGROUND

A. Bug Report

During software development and maintenance, issue track-
ing systems are often used to record and track possible change
requests, such as feature addition, bug fix, improvement, etc.,
in which the bug-fixing information is recorded in the bug
report. The format of bug reports may vary from the issue
tracking system, but there is always some common information
in a bug report, including the ID, description, severity of a bug,
and the products or components affected by the bug [2].

B. Defect Severity

The defect severity level is used to characterize the degree of
negative impact by software defects [1]. Commonly used issue
tracking systems always have a field to denote the severity
of a defect in the report. This paper describes the severity
level through the Priority field provided by Jira 1. We consider
Blocker, Critical, and Major as high severity levels similar to
[4], while Minor and Trivial are considered low severity levels.

C. Defect-fix change and Defect-introducing change

A defect-fix change is to fix a defect as recorded in the issue
tracking system. Following the prior studies [12], we matched
the committed changes with bug reports to identify defect-
fix changes: if a commit’s message references a bug id, we
considered it to be a defect-fix change. A defect-introducing
change is a change that introduces a defect that needs to be
fixed in the future during a code change [13], [14]. In this
paper, we identify defect-introducing changes by using the
SZZ algorithm Section II-D elaborated in the next section.

D. SZZ Algorithm

Śliwerski et al. [13] first proposed the SZZ algorithm to
automatically identify changes as defect-introducing or non-
defect-introducing, which has played a critical role in JIT
defect prediction. This algorithm mainly consists of these
steps: 1) matching the bug reports with the commits recorded
in revision history to identify defect-fix commits; 2) using
the diff command of the version control system to compare a
defect-fix commit with its previous commit to get the changed
code fragments, i.e, defect-fix code; 3) using the annotate
command to retrace the history of defect-fix code fragments
to locate the nearest commit where the code was added. Then
this commit is considered as the commit inducing the defect-
fix code, thus it is a candidate for the defect-introducing
commit (change); 4) filtering out the candidates whose defect-
introducing time is later than the defect-fix time. Since a defect
should be introduced first, then it can be fixed later [13].

III. RELATED WORK

Our work is mainly related to JIT defect prediction and
defect severity prediction. We will introduce some prior studies
from these two aspects.

1https://www.atlassian.com/software/jira

JIT defect prediction. Kamei et al. [8] applied SZZ algo-
rithm [13] to mark code changes as defect-introducing or non-
defect-introducing, extracted 14 metrics from the dimensions
of Diffusion, Size, Purpose, History, and Experience and
built a logistic regression model for JIT defect prediction,
which showed 68% accuracy and 64% recall. Yang et al.
[10] extracted the same features as Kamei et al. [8] from
changes with known labels and employed a two-layer ensem-
ble learning approach TLEL for JIT defect prediction. The
result showed that TLEL was more effective than employing
a single machine learning algorithm and it requires only
checking 20% of the lines of code to discover over 70% of
the defects. Borg et al. [15] utilized the SZZ algorithm [13] to
label code changes, extracted metrics from various dimensions,
such as Diffusion, Size, Experience, etc, and built a random
forest model for JIT defect prediction. The researchers also
made the SZZ algorithm open-source. In addition to the above
supervised learning algorithms, researchers [16]–[18] have
leveraged unsupervised learning algorithms to predict defects
just in time without labeling data.

Defect severity prediction. Lamkanfi et al. [6] compared
Naive Bayes, Naive Bayes Multinomial, Support Vector Ma-
chines, and K-Nearest Neighbour in severity prediction, and
presented that Naive Bayes Multinomial is the most effective
for classifying severe and non-severe bug reports in two open-
source systems, Eclipse and GNOME. Sahin and Tosun [7]
found that using word embeddings for feature extraction and
constructing models using Convolutional Neural Networks
(CNN), Long Short Term Memory (LSTM), and Extreme Gra-
dient Boosting (XGBoost) algorithms can effectively predict
defect severity. Meanwhile, they found that word embeddings
and deep learning techniques can also be used to directly
predict the severity score of defects. Arokiam et al. [5] utilized
previous bug report writing styles as features to predict defect
severity, which outperformed existing keyword-based methods
and can detect defects early in new projects.

In recent years, researchers have proposed various studies
for JIT defect prediction or defect severity prediction, but
none of them has focused on JIT defect severity prediction.
Our paper is the first attempt to address this research gap.
When developers submit changes, it is helpful to predict which
change may introduce defects and how severe the defects are.
Thus we conduct JIT defect severity prediction models in this
work.

IV. METHODOLOGY

This section focuses on our experimental approach. The
flow chart of our method is shown in Fig. 1. It mainly includes
the steps of labeling, feature extraction, and model building.

A. Labeling

In this paper, we used the tool of SZZ Unleashed 2 by
Borg et al. [15] to obtain the commit Ids of all defect-fix
and defect-introducing change pairs. Then we traversed all

2https://github.com/wogscpar/SZZUnleashed



Fig. 1. Overview of our approach

TABLE I
EXTRACTED FEATURES

Type Feature Description

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Purpose FIX Whether or not the change is a defect fix

History
NDEV The number of developers that changed the modified

files
NUC The number of unique changes to the modified files

AGE The average time interval between the last and
current change

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

commits in a project’s revision history to identify the defect-
introducing commits: if a commit’s id is not in the identified
Ids, we label this commit as 0, which means that this commit
does not introduce defects. For a defect-introducing commit,
we first get its paired defect-fix commit. Then based on the bug
Id in the defect-fix commit’s message to analyzed the report
of this defect to determine its severity. Following the prior
studies, Minor and Trivial are considered to be low severity
levels [4], since there is little difference in severity between
them, thus we labeled both of them to be 1, Major is labeled
as 2, Critical is labeled as 3, and Blocker is labeled as 4.
The greater the value, the more severe the defect. If a commit
introduced multiple defects, we labeled it based on the defect
with the greatest severity.

B. Feature Extraction

Table I lists the features we extracted to represent each
change. The first column shows the types of selected features;
the second column is each feature; the third column shows the
description of each feature. These fourteen features of the five
dimensions used in this paper are widely used in JIT defect
prediction [8]–[11].

Size dimension measures the size of the change. Larger
code modifications are more likely to introduce defects, and
relative code churn metrics are better defect predictors than

absolute metrics [19], so we standardize the LA, LD, and LT
by dividing LA and LD by LT and dividing LT by NF, as in
[15].

Diffusion is used to measure the distribution of changed
code in related files. When code change is spread across
multiple related files, it can increase complexity and introduce
potential defects [20]. We calculate these four features using
the method described in [8].

Purpose takes the purpose of the modified code fragments
into consideration. Defects are more likely to be introduced
in the process of repairing [13], so many studies [9]–[11],
[21] have used this type of feature for JIT defect prediction.
For the FIX, we define its value based on whether the current
change fixes the defect and the severity of the defect being
fixed. If the change is not committed to fix the defect, FIX is
0. Otherwise, when the severity of the defect repaired by the
change is Minor or Trivial, Major, Critical and Blocker, the
Fix is 1, 2, 3, and 4, respectively.

History dimension measures the modification history of files
that the current change is about to modify. The more times
related files are modified or modified by more developers or
the smaller the time difference between the latest change and
this change in a relevant file, the more likely there are defects
[8], [22]. Therefore, this dimension is commonly used for JIT
defect prediction [9], [11], [15].

Experience dimension measures the experience of devel-
opers making changes. The more experienced the developer
who changes the code, the less likely it is to introduce defects
[21], so we use the features from this dimension for JIT defect
prediction, similarly to [10], [11], [23].

C. Model Development
Machine Learning Algorithms. We selected three machine

learning algorithms for building our prediction models. All of
them have been widely used in defect predictions and support
multi-classifications, with their effectiveness having been em-
pirically validated [10], [15], [24], [25]: 1) Random Forest [26]
is a classifier containing multiple decision trees. It can be
used to build binary or multi-classification prediction models
with high accuracy, robustness, and stability; 2) Decision Tree
is a model that uses a tree-like data structure to represent
decision rules and classification results. It can quickly find
the characteristic variables that distinguish different categories
and is suitable for multi-classification prediction; 3) k-Nearest
Neighbor (KNN) is a method that classifies instances into K
classes with high accuracy. It is one of the simplest machine
learning algorithms and is suitable for multi-classification
prediction.

In this paper, we used the Random Forest, Decision Tree
(J48), and KNN classifiers that come with the Weka 3 toolkit
to predict the severity of defects introduced by changes. We
directly applied the default setting of each classifier in Weka
in our prediction models.

Model Training and validation. Numerous studies of JIT de-
fect prediction have used the ten-fold cross-validation method

3https://www.cs.waikato.ac.nz/ ml/weka/



to train and validate prediction models [18], [27]. The ten-fold
cross-validation method first disrupts the dataset and divides
it into ten parts. Then it selects one of them as the test set
and the remaining nine as the training set. A total of ten
experiments are run, and the average of the ten results is taken
as the evaluation result of the ten-fold cross-validation. The
advantage of this method is that each set of data can be used
as training data and test data, so as to avoid over-learning or
under-learning.

D. Model Evaluation

In this paper, well-known precision, recall, F1-measure, and
AUC are selected to evaluate the prediction models’ perfor-
mance. Precision and recall are the indicators of evaluation
models commonly used in machine learning. Precision repre-
sents the proportion of all defects whose severity is correctly
classified as i(i is 0, 1, 2, 3, or 4) to all defects classified as i;
recall refers to the proportion of all defects whose severity is
correctly classified as i to all defects whose severity is i. To
harmonize and average precision and recall, we also used the
metric of F1-measure, which is commonly used to measure the
accuracy of JIT defect prediction models [8], [10], [27]. In a
project, the labeled data is often imbalanced, that is, defect-
introducing changes with different severity don’t distribute
equally. Thus we added AUC into the evaluation metric suite.
AUC is often used to evaluate the predictive ability of models
built with unbalanced data [8], [23]. AUC is the Area Under
the Curve of the receiver operating characteristic. Its scope is
in [0,1]. The higher the value of AUC, the better the prediction
performance of a model.

V. EVALUATION

A. Subjects

We selected ten open-source projects from Apache 4 as our
subjects. The number of commits for each project ranges from
2,414 to 16,025 before May 6, 2022. Each severity level of
the projects we selected contains at least 30 defect-introducing
changes. We set this standard to guarantee the non-triviality
of our selected subjects, and the dataset used for analyses is
large enough to substantiate the reliability of the results.

Table II reports the statistics of defect-introducing changes
at different severity levels: #1 (i.e. Minor or Trivial), #2 (i.e.
Major), #3 (i.e. Critical), and #4 (i.e. Blocker). The first row
shows the number of changes that introduced defects at #1
severity level (i.e. Minor or Trivial), and the following line
shows the proportion of it to all defect-introducing changes.
Similarly, rows 3 - 8 present the number of changes at #2,
#3, #4 severity level and their proportion, respectively. Row
9 represents the proportion of the sum of the changes at #2,
#3, #4 severity levels to all defect-introducing changes. Row
10 shows the total number of commits. The last two rows
show the total number of defect-introducing commits and the
proportion of it to all studied commits.

4https://apache.org/

From this table, we can make a few straightforward obser-
vations: 1) a relatively large portion (from 19.5% to 46.4%,
30.0% on average) of all commits have induced defects,
meaning that it is necessary to predict potential defects in
advance when developers submit code changes; 2) The num-
bers of defect-introducing changes at different severity levels
are various. The majority of defect-introducing changes are
at the severity level #2, the percentages range from 29.1% to
78.5% (60.9% on average). The second largest proportion is
at the severity level #4, reaching an average of 16.4%, and the
third one is at the severity level #3, with an average of 13.0%.
Defect-introducing changes at the severity level #1 occupy the
smallest proportion with an average of 9.7%. According to
the interpretation in prior work [28], Blocker, Critical, and
Major represent high severity levels, while Minor and Trivial
represent low severity. The above results show that the changes
that introduce high-severity defects account for a really large
proportion of all defect-introducing changes (from 80.8% to
97.9%, 90.3% on average). Because most of the high severity
defects need to be fixed as soon as possible to avoid serious
impact on the software system, it is necessary to predict the
severity of the introduced defects just in time, which will
help the development team to fix more serious defects in the
shortest possible time.

B. Research Questions

RQ: What is the performance of our models on JIT
defect severity prediction?

This question will show the predictive ability of our models,
that is, whether the defect-introducing changes to be submitted
by developers can be effectively predicted just in time. Since
most serious defects need to be repaired as soon as possible
and the quality of defect repair should be guaranteed to
avoid serious impact on the software system, the timeliness
of feedback defect severity should be fast and the precision
of defect location should be high. At the same time, it is
necessary to allocate defect repair personnel reasonably and
avoid introducing new defects in the process of defect repair
as far as possible. Therefore, it is very necessary to predict
the severity of defects just in time, which can improve the
efficiency and quality of defect repair and make greater use
of limited resources.

C. Results

In each project, the amount of data with the defect severity
level of 0 is far greater than that with the defect severity
levels of 1, 2, 3, and 4. Therefore, this paper samples the
data with the defect severity level of 0 in each project, so
that its data amount is the same as the average data amount
of the remaining levels. We used four metrics of precision,
recall, F1-measure, and AUC to evaluate the predictive ability
of our models.Tables III, IV, and V shows the experimental
results when using Random Forest, Decision Tree, and KNN
classifiers, respectively.

We can find that the average precision of the models built
by Random Forest is 0.552, the average recall is 0.579, the



TABLE II
DEFECT DATA OF ALL PROJECTS

Project Nutch Avro Zookeeper Struts Mahout Openjpa Iotdb Pdfbox Thrift Airflow Avg

#1 192 61 44 227 163 160 42 196 203 277
#1/Defect-introducing Commits 19.2% 5.7% 3.9% 17.5% 12.0% 11.7% 2.1% 8.1% 8.0% 8.9% 9.7%
#2 419 565 326 732 996 966 1,572 1,906 1,612 2,035
#2/Defect-introducing Commits 41.9% 53.2% 29.1% 56.5% 73.5% 70.7% 77.1% 78.5% 63.5% 65.2% 60.9%
#3 146 146 186 157 89 211 344 196 359 371
#3/Defect-introducing Commits 14.6% 13.7% 16.6% 12.1% 6.6% 15.4% 16.9% 8.1% 14.1% 11.9% 13.0%
#4 244 291 564 180 107 30 80 129 364 436
#4/Defect-introducing Commits 24.4% 27.4% 50.4% 13.9% 7.9% 2.2% 3.9% 5.3% 14.3% 14.0% 16.4%
(#2+#3+#4)
/Defect-introducing Commits 80.8% 94.3% 96.1% 82.5% 88.0% 88.3% 97.9% 91.9% 92.0% 91.1% 90.3%

Defect-introducing Commits
(#1+#2+#3+#4) 1,001 1,063 1,120 1,296 1,355 1,367 2,038 2,427 2,538 3,119

Commits 3,283 3,223 2,414 6,233 4,506 5,251 6,360 10,800 6,543 16,025
Defect-introducing Commits
/Commits 30.5% 33.0% 46.4% 20.8% 30.1% 26.0% 32.0% 22.5% 38.8% 19.5% 30.0%

TABLE III
THE PERFORMANCE OF THE MODELS USING RANDOM FOREST

Project Commits Precision Recall F1-measure AUC

Nutch 3,283 0.441 0.448 0.427 0.707
Avro 3,223 0.486 0.515 0.482 0.727
Zookeeper 2,414 0.457 0.516 0.475 0.747
Struts 6,233 0.539 0.552 0.509 0.740
Mahout 4,506 0.628 0.649 0.590 0.762
Openjpa 5,251 0.573 0.600 0.529 0.696
Iotdb 6,360 0.601 0.650 0.594 0.712
Pdfbox 10,800 0.704 0.700 0.650 0.771
Thrift 6,543 0.482 0.542 0.470 0.687
Airflow 16,025 0.604 0.613 0.553 0.738
Avg 0.552 0.579 0.528 0.729

TABLE IV
THE PERFORMANCE OF THE MODELS USING DECISION TREE

Project Commits Precision Recall F1-measure AUC

Nutch 3,283 0.371 0.379 0.374 0.615
Avro 3,223 0.434 0.440 0.436 0.627
Zookeeper 2,414 0.425 0.428 0.426 0.624
Struts 6,233 0.454 0.459 0.455 0.619
Mahout 4,506 0.550 0.574 0.558 0.635
Openjpa 5,251 0.486 0.499 0.492 0.604
Iotdb 6,360 0.556 0.586 0.568 0.615
Pdfbox 10,800 0.592 0.617 0.601 0.635
Thrift 6,543 0.430 0.449 0.438 0.585
Airflow 16,025 0.489 0.506 0.497 0.627
Avg 0.479 0.494 0.485 0.619

average F1-measure is 0.528, and the average AUC value is
0.729; For the models applying the Decision Tree algorithm,
the average precision is 0.479, the average recall rate is 0.494,
the average F1-measure is 0.485, and the average AUC value
is 0.619. For the models applying the KNN algorithm, they
have an average precision of 0.466, an average recall rate of
0.468, an average F1-measure of 0.467, and an average AUC
value of 0.593.

The above results have demonstrated that our approach
could effectively conduct JIT defect severity prediction. In ad-
dition, in terms of the development languages of the projects,
because our data labeling work is based on the tool SZZ
Unleashed (it is suitable for multiple development languages),
our models are suitable for predicting projects in multiple
development languages. From Tables III, IV, and V, we can

TABLE V
THE PERFORMANCE OF THE MODELS USING KNN

Project Commits Precision Recall F1-measure AUC

Nutch 3,283 0.346 0.346 0.346 0.572
Avro 3,223 0.415 0.413 0.414 0.594
Zookeeper 2,414 0.409 0.410 0.410 0.600
Struts 6,233 0.417 0.421 0.419 0.591
Mahout 4,506 0.528 0.532 0.530 0.607
Openjpa 5,251 0.495 0.496 0.495 0.580
Iotdb 6,360 0.530 0.535 0.532 0.571
Pdfbox 10,800 0.592 0.595 0.593 0.630
Thrift 6,543 0.416 0.422 0.419 0.559
Airflow 16,025 0.507 0.508 0.508 0.623
Avg 0.466 0.468 0.467 0.593

also find that our models have a good predictive ability for
projects with Java, Python, or C++ as the main development
language. The number of commits of the projects studied in
this paper ranges from 2,414 to 16,025, the span is relatively
large. Whether it is small sample data or large sample data,
our models still perform well, and we can also find that the
more the number of project commits, the better the prediction
ability of the models. Therefore, the prediction results of our
models are credible, and the scope of application of the models
is relatively wide.

VI. DISCUSSION

In this paper, we only studied ten open-source projects,
thus we cannot guarantee that the experimental results are
generalizable to all projects, and there may exist some extra
discoveries that have not yet been exhibited in our paper. But
we have partially addressed this problem by selecting projects
with different sizes, ages, and domains.

We used the ten-fold cross-verification method for our mod-
els’ training and validation. Although some studies [8], [18],
[27] and our research have achieved good prediction results,
Tan et al. [29] pointed out that the cross-validation method
divides the data set randomly, which may take the future code
change information as the training set and the past code change
information as the test set. Therefore, in our future work, we
plan to adopt some other methods, such as the time-wise-cross-
validation method [9], out-of-sample bootstrap technique [11],
or cross-project-validation method [9] in our approach.



VII. CONCLUSION

In this paper, we build the JIT defect severity prediction
models by using Random Forest, Decision Tree, and KNN
Classifiers, respectively. Through the evaluation of ten open-
source projects, we have presented that our derived models
can effectively predict defect severity just in time. More
specifically, the prediction model using Random Forest can
get a precision of 0.552 on average, and the average recall,
F1-measure, and AUC are 0.579, 0.528, and 0.729, respec-
tively. For the prediction models using Decision Tree, the
average values of precision, recall, F1-measure, and AUC are
0.479, 0.494, 0.485, and 0.619, respectively. For the prediction
models using KNN, the average precision, recall, F1-measure,
and AUC are 0.466, 0.468, 0.467, and 0.593, respectively. In
addition, we find the majority (90.3% on average) of defect-
introducing changes are at a high severity level.

The rational allocation and efficient utilization of resources
are particularly important in the process of defect repair. Thus
it is necessary to predict the severity of potential defects when
the code is committed. We believe that with the help of our
prediction models, the development teams can make more
effective use of limited resources and improve the quality and
efficiency of defect repair.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under grant No. 62002129, The Knowl-
edge Innovation Program of Wuhan-Shuguang Project under
grant No. 2022010801020280.

REFERENCES

[1] M. Iliev, B. Karasneh, M. R. Chaudron, and E. Essenius, “Automated
prediction of defect severity based on codifying design knowledge
using ontologies,” in 2012 First International Workshop on Realizing
AI Synergies in Software Engineering (RAISE). IEEE, 2012, pp. 7–11.

[2] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,” in 2012 19th
Working Conference on Reverse Engineering. IEEE, 2012, pp. 215–
224.

[3] Y. Tan, S. Xu, Z. Wang, T. Zhang, Z. Xu, and X. Luo, “Bug severity pre-
diction using question-and-answer pairs from stack overflow,” Journal
of Systems and Software, vol. 165, p. 110567, 2020.

[4] L. A. F. Gomes, R. da Silva Torres, and M. L. Côrtes, “Bug report
severity level prediction in open source software: A survey and research
opportunities,” Information and software technology, vol. 115, pp. 58–
78, 2019.

[5] J. Arokiam and J. S. Bradbury, “Automatically predicting bug severity
early in the development process,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and
Emerging Results, 2020, pp. 17–20.

[6] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in 2011
15th European Conference on Software Maintenance and Reengineering.
IEEE, 2011, pp. 249–258.

[7] S. E. Sahin and A. Tosun, “A conceptual replication on predicting the
severity of software vulnerabilities,” in Proceedings of the Evaluation
and Assessment on Software Engineering, 2019, pp. 244–250.

[8] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2012.

[9] X. Yang, H. Yu, G. Fan, and K. Yang, “Dejit: a differential evolution
algorithm for effort-aware just-in-time software defect prediction,” Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 31, no. 03, pp. 289–310, 2021.

[10] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble learning
approach for just-in-time defect prediction,” Information and Software
Technology, vol. 87, pp. 206–220, 2017.

[11] R. Duan, H. Xu, Y. Fan, and M. Yan, “The impact of duplicate changes
on just-in-time defect prediction,” IEEE Transactions on Reliability,
2021.

[12] D. Cubranic and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in 25th International Conference on
Software Engineering, 2003. Proceedings. IEEE, 2003, pp. 408–418.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[14] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic iden-
tification of bug-introducing changes,” in 21st IEEE/ACM international
conference on automated software engineering (ASE’06). IEEE, 2006,
pp. 81–90.

[15] M. Borg, O. Svensson, K. Berg, and D. Hansson, “Szz unleashed:
an open implementation of the szz algorithm-featuring example usage
in a study of just-in-time bug prediction for the jenkins project,” in
Proceedings of the 3rd ACM SIGSOFT International Workshop on
Machine Learning Techniques for Software Quality Evaluation, 2019,
pp. 7–12.

[16] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 2016 24th
ACM SIGSOFT international symposium on foundations of software
engineering, 2016, pp. 157–168.

[17] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction,” in 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2017, pp. 159–170.

[18] W. Fu and T. Menzies, “Revisiting unsupervised learning for defect pre-
diction,” in Proceedings of the 2017 11th joint meeting on foundations
of software engineering, 2017, pp. 72–83.

[19] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th international
conference on Software engineering, 2005, pp. 284–292.

[20] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in 2010 7th IEEE working conference on
mining software repositories (MSR 2010). IEEE, 2010, pp. 31–41.

[21] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[22] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Naka-
mura, “An analysis of developer metrics for fault prediction,” in Pro-
ceedings of the 6th International Conference on Predictive Models in
Software Engineering, 2010, pp. 1–9.

[23] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans-
actions on Software Engineering, vol. 44, no. 5, pp. 412–428, 2017.

[24] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public
unified bug dataset for java and its assessment regarding metrics and
bug prediction,” Software Quality Journal, vol. 28, no. 4, pp. 1447–
1506, 2020.

[25] H. Osman, M. Ghafari, and O. Nierstrasz, “Hyperparameter optimization
to improve bug prediction accuracy,” in 2017 IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation (MaL-
TeSQuE). IEEE, 2017, pp. 33–38.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[27] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on software engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[28] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, 2010, pp. 1–10.

[29] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 99–108.


