
Quantum Software Models: Quantum Modules
Tomography and Recovery Theorem

Iaakov Exman
School of Computer Science, Faculty of Sciences

HIT – Holon Institute of Technology
Holon, Israel

iaakov@hit.ac.il

Ariel Zvulunov
Software Engineering

The Jerusalem College of Engineering, Azrieli
Jerusalem, Israel

ariel.zvulun@gmail.com

Abstract—Quantum Tomography partially measures and then
recovers the remaining density matrix quantum state, in order to
verify that a certain device – processor or detector – indeed
outputs the intended quantum state. However, single matrix
element measurements rapidly increase in number with the
density matrix dimension and are error-prone. This work
proposes a novel quantum software viewpoint on quantum
tomography. Instead of individual matrix elements, measurements
and density matrix recovery are performed on higher-abstraction
modules, i.e. semantically meaningful groups of matrix elements.

Quantum Modules Tomography potentially reduce the necessary
number of explicit measurements, while still allowing recovery of
the whole density matrix. A Recovery Theorem is formulated and
proved: density matrix diagonal measurements suffice to recover
the whole system density matrix, in terms of modules. The
recovery procedure is illustrated by a few case studies.

Keywords-quantum software; quantum modules tomography;
density matrix; software modules; density matrix recovery theorem

I. INTRODUCTION

Quantum Software Models deal with quantum software
systems represented by density matrices. In a previous paper of
this series [7], it has been shown that software system modules
span sub-spaces, obtained by projectors acting on the whole
software system state. 1

Quantum Tomography (QT) is a set of techniques to check
behavior correctness of quantum devices, i.e. whether they
output the intended quantum state, represented by a density
matrix. QT measures some matrix elements, recovering the
remaining density matrix elements, from the measured ones.

This paper argues that quantum modules tomography may
reduce the number of necessarily measured matrix elements, and
enables recovery of the whole density matrix of quantum
software systems, from the matrix diagonal.

A. Quantum Software is Measurable

Quantum software is represented by a Density Matrix, whose
most important characteristic is to be modularizable, as
described in the next section. Quantum Software is a generic

1DOI: 10.18293/SEKE2023-214

concept, that may refer to any of three types – quantum systems
processing qubits, classical systems processing classical bits, or
hybrid systems transitioning back and forth between quantum
and classical sub-systems, due to the representation similarity
of these three kinds of systems. Quantum software systems will
be shown to comply with quantum computing measurements
(see e.g. Nielsen and Chuang [12]). They are measurable, which
is essential for Quantum Tomography.

B. Quantum Software Modules Tomography

There are two kinds of Quantum Tomography: quantum
state tomography (e.g. Gross et al. [10]) reconstructing quantum
states, and quantum process tomography which reconstructs
processes by physical systems ([4],[13]).

Quantum Modules Tomography, proposed in this paper, is a
novel kind of Quantum Tomography. Measurements and
recovery of the whole software system density matrix are based
upon system modules, instead of individual matrix elements.
This is enabled by quantum software algebraic constraints.

C. Paper Organization

The rest of the paper is organized as follows. Section II
characterizes Quantum Software. Section III deals with quantum
software measurement. Section IV details Quantum Modules
Tomography, then formulates and proves the Recovery Theorem
for the whole density matrix. Section V illustrates the procedures
with case studies and a simulation. Section VI concisely refers
to related work. Section VII is a Conclusion of the paper.

II. QUANTUM SOFTWARE MODELS

This section introduces the reader to the main characteristics
of Quantum Software Systems. It explains Density Matrix
generation and modularization for these systems.

A. Conceptual Semantics and Bipartite Graph

Quantum Software systems display two main properties,
structure and behavior, fitting two kinds of entities: Structors &
Functionals. Structors generalize classes in Object Oriented
Design (OOD). Functionals generalize OOD class methods.

Structors & Functionals have a double role. They are the
concepts conveying meaning of the Quantum Software system.
In the other role, their associated indices stand for vertices of
graphs, which generate density matrices – the underlying linear
algebraic representation of quantum software theory.

The Command Design Pattern ([9], page 233) is a running
example in this paper, to explain basic ideas. Its goal is to
abstract typical commands – copy, paste, delete, save – found in
a variety of useful applications, into a reusable generic pattern.
Behind every Structor Sj or Functional Fk indices there is a real
meaningful concept understandable by software engineers.

The Command Design Pattern conceptual semantics is
collected in Fig. 1. The Command module contains the
command abstraction. Its Structors are ICommand, a generic
interface, and Concrete Command standing for any commonly
used command. Their Functionals enable to specify or execute
commands. The Invoker module stands for menu-items or
buttons used to invoke commands. The Receiver module refers
to either a file or a formatted document receiving the outcome of
a command execution.

Figure 1. Command Design Pattern Modules, Structors & Functionals – It has 3
modules, Command, Invoker, Receiver, with sizes 2-by-2, 1-by-1, 2-by-2. For
instance, the Command Module Structors & Functionals set is {S1, S2, F1, F2}.
(Figures in color online).

A simple depiction of a quantum software system is a
bipartite graph [15]. These graphs have two vertex sets, where a
vertex is linked only to vertices in the other set. One set has
Structor vertices {S1, S2, …, Sj} and another set has Functional
vertices {F1, F2, …, Fk}. A Structor providing a Functional –
say, a class providing a method definition, in OOD parlance – is
linked to the Functional.

The Command Design Pattern bipartite graph is seen in Fig.
2. Algebraic manipulations for modularization of quantum
software systems, are totally independent of the specific
conceptual semantics of the system indices.

Figure 2. Command Design Pattern Bipartite Graph– Its 10 vertices are: 5 (green)
Structors {S1, S2, …, S5} and 5 (orange) Functionals {F1, F2, …, F5}. Also
seen 3 (blue) background Modules. The middle module has {S3, F3} as vertices.
Arrows link Structors to provided Functionals, e.g. S2 provides F1 & F2.

B. From Bipartite Graph to Density Matrix

A Laplacian matrix L [11], [18] is defined upon any graph,
in particular a bipartite graph, according to equation (1).

L = D - A (1)

where D is the diagonal Degree matrix – showing the degree djj
of vertex j – and A is the Adjacency matrix – showing the
neighbors of each vertex with a 1-valued matrix element, with
negative sign due to equation (1).

It has been observed by Braunstein et al. [3] that a Density
Matrix can be obtained from a Laplacian L normalized by its
Trace, the sum of the diagonal degrees, as in eq. (2).

 = L / Trace(L) (2)

A Density matrix generated from the bipartite graph in
Fig. 2, by equation (1) and normalized as in eq. (2) can be seen
in Fig. 3.

Figure 3. Command Design Pattern Density Matrix – One can see the Laplacian
matrix L within square brackets, normalized by the Trace = 14. Within the
Laplacian, one perceives the Diagonal Degree matrix D (green) and the two
quadrants of the Adjacency matrix A (blue), above the diagonal and reflected
below the diagonal. Above the column indices one sees kets, and to the left of
the row indices the bras of this software system basis set.

Algebraic features of software systems represented by a
Density Matrix derived from the Laplacian are essential for this
paper’s goal, viz. to facilitate recovery of the quantum software
system state. One can easily show, from eq. (1) that each of the
Laplacian rows and columns sum to zero. This is preserved in
the Density Matrix – and perceived e.g. in Fig. 3.

The Adjacency matrix of a Quantum Software system, also
appearing in eq. (1), has two quadrants, as seen in Fig. 3. The
upper-right quadrant is above the diagonal and reflected into the
lower-left quadrant below the diagonal. Further algebraic
properties of relevance to Quantum Module Tomography are
collected in Definition 1, in sub-section IV.B.

C. Modules from the Density Matrix

Modules of Quantum Software systems can be obtained
directly from the Laplacian eigenvectors fitting zero-valued
eigenvalues (see [6]). Modules can also be obtained by partition
of the sum of projection operators fitting kets of the system basis
set, into disjoint sets of projection operators, as explained in [7].
Modularized matrices of a Software system have mutually
orthogonal modules.

III. QUANTUM SOFTWARE MEASUREMENT

This section shows that Quantum Software systems comply
with quantum computing projective measurements [12] for
modules, illustrated with the running example software system.

A. Quantum Software Projective Measurement

Module projectors span sub-spaces of a whole Quantum
Software system. A natural choice for modules is projective
measurement, defined by its observables and final state.

An observable is a Hermitian operator Mm on the state space
of the whole system Density Matrix Its properties are:
mutually orthogonal observables and spectral decomposition as
in eq. (3).

Mm = ∑ 𝒏 ∗ 𝑷𝒏𝒏 (3)

𝑷𝒏 is a projector onto the Mm eigenspace with eigenvalue n.

The final state of the system 𝑺𝒎 after measurement is
obtained by equation (4).

𝑺𝒎 = (𝑴𝒎 𝝆𝑴𝒎)/𝑻𝒓𝒂𝒄𝒆(𝑴𝒎 𝑴𝒎 𝝆) (4)

where 𝑴𝒎 is the conjugate transpose of 𝑴𝒎 .

B. Quantum Software Module Observables

The upper module {S1, S2, F1, F2} in each quadrant of Fig.
3 exemplifies eq. (3) by its observable as a projectors’ sum:

𝑴𝟏 = |𝟎𝟎𝟎𝟎⟩⟨𝟎𝟎𝟎𝟎| + |𝟎𝟎𝟎𝟏⟩⟨𝟎𝟎𝟎𝟏|

 + |𝟎𝟏𝟎𝟏⟩⟨𝟎𝟏𝟎𝟏| + |𝟎𝟏𝟏𝟎⟩⟨𝟎𝟏𝟏𝟎|

(5)

This observable is seen as a full-matrix in Fig. 4.

Figure 4. Observable Matrix of Upper Module of the Command Design Pattern
in Fig. 3 – The only non-zero matrix elements in this observable are in the
diagonal, fitting the eq. (5) projectors. Matrix element indices, kets and bras of
this Module are seen. The module locations in are marked as blue background.

B. Quantum Software Module Measurement Final State

Now we insert the Observable M1 into eq. (4) to exemplify
the final state after measurement of the Command Design
Pattern. Equation (4) is simplified, as M1 is real, diagonal and
has only 1-valued matrix elements. Also the normalizing factor
(1/14) of in Fig. 3 cancels out, as it appears in both numerator
and denominator of eq. (4). The resulting final state is in Fig. 5.

Figure 5. Final state after measurement of the Command Design Pattern upper
module in Fig. 3 – It is a decreased size Density Matrix of the Module itself,
embedded in its exact location of the whole system density matrix. The
normalizing factor 1/6 is adjusted to preserve Density Matrix properties.

This final state is an interesting result, since the whole
system Density Matrix can be obtained from a bidirectional
direct sum of the modules reduced density matrices (see [8]).

IV. QUANTUM MODULES TOMOGRAPHY

This section states the idea of Quantum Modules
Tomography and presents its overall procedure. The Recovery
Theorem enabling a more efficient Quantum Software Density
Matrix recovery is formulated and proved.

A. Idea of Quantum Modules Tomography

Abstraction is the basic idea behind software modules and
any of their applications. Abstraction means reducing the
number of concepts necessary to formulate the purpose and
functionality of a system and its sub-systems. The benefits are
deeper understanding and increased efficiency.

Quantum Modules Tomography is based upon two
assumptions:

 Reduction of measurements number – to at most
proportional to the size of the diagonal Degree matrix;

 Constraining of Density Matrix completion – based
upon the Laplacian standard algebraic features
collected below in Definition 1, in the next sub-section.

An important observation is that the number and sizes of
Modules in a software system is finite and small. This is justified
by dealing with software systems in a hierarchical way. The
same is true concerning the numerical values of the diagonal
Degree matrix elements which express the relative dimensions
of the modules.

B. Towards the Recovery Theorem: Density Matrix Algebraic
Features

The standard algebraic features of the Laplacian are
preserved by Density Matrices. These features are collected in
Definition 1, in the next text box.

C. The Recovery Theorem

After the needed measurements are done for a quantum
software system, the next theorem assures that one can
recover lacking values to complete the system density matrix.

Proof:

The number of the off-diagonal density matrix additions
is obviously finite. It is enough to complete the set of
additions to the upper-right quadrant of the Adjacency
matrix. The lower-left quadrant is the reflection of the upper-
right quadrant. The exact number of additions to the upper-
right quadrant of the Adjacency matrix is half of the Trace of
the whole matrix.

For each diagonal 1-valued matrix element one should
add one negative 1-valued matrix element in the same row
and/or column. For each diagonal 2-valued matrix element
one should add two negative 1-valued matrix elements in the
same row and/or column. And so on for higher valued
diagonal matrix elements. All the remaining matrix elements
above the whole matrix diagonal are zero-valued, and
reflected below the diagonal.

The above unequivocally determines all the density
matrix element numerical values to be added. The exact
addition locations are constrained by the standard Laplacian
algebraic features. ⧠

We emphasize an essential aspect of the above theorem:

 the number of additions is small as module sizes are
limited by collecting only related concepts in each
module, to facilitate human understanding.

D. Quantum Modules Tomography Procedure

The Quantum Modules Tomography Procedure is:

1) Measure whole matrix degree diagonal elements;
2) Fill the Adjacency matrix diagonal of the upper-

right quadrant with negative 1-valued elements;
3) Add other non-zero elements in the Adjacency

matrix upper-right quadrant according to the
Density Matrix degree diagonal;

4) Complete with zero-valued elements above the
Density Matrix degree diagonal;

5) Reflect the upper-right quadrant to elements below
the Density Matrix degree diagonal.

V. CASE STUDIES

This section illustrates the Quantum Modules
Tomography procedure by means of two Quantum Software
systems: the Grover Search design, a strictly quantum system,
and a simulation of a simplified classical system.

A. Quantum Grover Search

Grover Search (see e.g. [2] page 166) is a well-known
quantum algorithm which performs search of unstructured
(unsorted) N data items with a reduced complexity of
O(𝑵), instead of the classical complexity of O(N).

Modules, Structors and Functionals of strictly quantum
systems (processing only qubits) are obtained from quantum
circuits, as in Fig. 6.

Figure 6. Grover Search quantum circuit - Structors are “boxes” (green)
containing quantum gates (orange), except for the typical “measurement”
that inputs qubits and outputs classical bits. Modules (blue) are Structors
grouped by some logical reason. For instance, the Grover Iteration is a single
cycle of a loop consisting of an Oracle and an Amplification Structor.

The Grover Search Modules, Structors & Functionals are

shown in Fig. 7.

Definition 1 – Standard Algebraic Features
 of software systems’ Laplacian

These features are:
 Sum-to-zero – Laplacian rows & columns sum to zero.
 Square-Quadrants – Adjacency Matrix quadrants

containing modules are square.
 Adjacency Matrix Linear Independence – Adjacency

Matrix rows are mutually linearly independent; Adjacency
matrix columns are also mutually linearly independent.

 Modules Orthogonality – A given Module rows and
columns are orthogonal to rows and columns of all other
modules of the same software system. Thus, modules are
block-diagonal.

Theorem 1 – Recovery of whole Density Matrix
 from its Diagonal

Assuming:
a- quantum software system – is describable by a
modular density matrix r obtained by normalizing a
Laplacian L as r = L / Trace(L), where L complies with
the Standard Laplacian algebraic features in Definition 1;
b- strictly necessary measurements – were performed to
obtain the Density Matrix diagonal;

Then:
The whole quantum software system Density Matrix is
completely recoverable by a finite small set of additions
to the off-diagonal density matrix elements.

Figure 7. Grover Search Modules, Sructors & Functionals – It has the same
color conventions as in Fig. 1. H stands for the Hadamard operator, here to
the nth tensor product power.

Once one has the Structors & Functionals for the
quantum software system – be it purely classical, strictly
quantum, or hybrid – from a bipartite graph one generates and
normalizes the Laplacian to a Density Matrix.

The Grover Search quantum software system Density
Matrix is in Fig. 8. It differs from purely classical systems, as
the Command Pattern, by the number of basis set qubits
needed to describe the system, and the module sizes.

Figure 8. Grover Search Density Matrix – This software system Density
Matrix has a 3 qubits basis set and 3 modules, only one with a 2-by-2 size.

The Grover Search case study illustrates that:

 The same algebraic techniques are applicable to all
quantum software systems – pure classical, strictly
quantum or hybrid (classical and quantum).

 Ignoring Structors & Functionals location and
semantics, a quantum Grover Search 2-by-2 module in
Fig. 8 or a classical Command design pattern 2-by-2
module in Fig. 3 are identical and measurable by an
observable comparable to that in Fig. 4.

B. Simulation of a Simple Classical System

The purpose of this simulation is to illustrate the idea that
Quantum Module Tomography indeed may recover the
whole Density Matrix of a Quantum Software system, while
reducing the number of needed matrix element
measurements. The simulation was done on the simplified
Software System, whose density matrix is seen in Fig. 9.

Figure 9. Simplified Quantum Software System Density Matrix – it is
obtained from Fig. 8 rows/columns {F2,F3,F4} and {S2,S3,S4} suitably
renumbered. It uses the same color conventions as in previous figures. It has
two modules.

The measurements projectors are in Fig. 10 with their
probabilities.

Figure 10. Projectors used for measurements of the Simplified Quantum
Software System seen in Fig. 9. – The respective probabilities are shown.

The overall simulation – implemented in qiskit, an IBM
quantum computing oriented language – performed
“projectors” sampling upon the Density Matrix in Fig. 9,
using the DensityMatrix.sample_memory function. Once
the sampling achieved a stable probability distribution, one
obtains the values of each of the diagonal matrix elements, as
specified in the Quantum Modules Tomography Procedure in
sub-section IV.D. These values confirmed the expectations of
Fig. 10.

When does the measured probability distribution reach
stability? The answer is given in Fig. 11.

Figure 11. Convergence of sampling percentages – one perceives that by
increasing measurement numbers, graphs converge to two values 12% and
24% already for 200 Measurements and is stable for 250 Measurements.
When samplings are stable, one may stop the simulation. These percentages
respectively fit the 1/8 and ¼ probabilities.

For instance, looking at the 250 measurements, since the
heights of the 12% results are twice those of 24% results, then
the total value for 12% is 12*4= 48% and the total value for
24% is 24*2=48%. This fits the facts that there are 4
projectors with probability 1/8, i.e. 4*(1/8)= ½ and only two
projectors with probability ¼, i.e. 2*(1/4)= ½. In other words,
the simulation results confirm the expectations of Fig. 10.

VI. RELATED WORK

Here are very concise references to topics relevant to this
paper.

Braunstein and co-authors [3] focus on mixed states
separability, represented by density matrices obtained from
Laplacians. They state that specific graph types originate
entangled or separable states independently of their labeling.
Chai Wah Wu [19], [20], also considers Laplacian and
density matrix separability.

The Quantum Tomography Measurements literature is
very extensive. We provide a few entry points. The
“Quantum State Estimation” book edited by Paris and
Rehacek [13] has chapters relevant to Tomography. For
instance, the D’Ariano et al. [4] chapter on “Quantum
Tomographic Methods”, and the chapter by Altpeter et al. on
“Quantum State Tomography” [1].

The maximum-likelihood (MaxLik) algorithm, and its
variants, e.g. the Diluted Maximum-Likelihood algorithm by
Rehacek et al. [14] offer alternative ways to reconstruct a
quantum state from tomographic measurements.

VII. CONCLUSION

A. Theory and Potential Applications

The potential applications refer to eventually reducing
the number of measurements, and faster recovery of quantum
software systems’ density matrix, according to the Recovery
Theorem enabling density matrix reconstruction from
measurement of the density matrix diagonal only.

Two caveats are in place here. This paper theory focused
on density matrices derived from Laplacians. Elsewhere, we
discussed transformations of any density matrices to quantum
software density matrices as derived from Laplacians.

Second, the ultimate testing of the ideas of the “Quantum
Modules Tomography” theory will be in actual tomography
measurements in a laboratory. This is an invitation for
experimental researchers.

B. Future Work

Open issues to be dealt with in future work include
different formulations of Recovery Theorems, solving
particularly difficult modularizations of quantum software
systems, and concurrent use of alternative reconstruction
density matrix algorithms, such as maximum-likelihood,
together with the Recovery Theorem of this paper.

C. Main Contribution

The main contribution of this paper is the Modules
abstraction for Quantum Software Systems, resulting in the
Recovery Theorem, with potential applications to Quantum
Modules Tomography.

REFERENCES
[1] J. B. Altpeter, D.F.V. James and P.G. Kwiat. 2004. Quantum State Tomography.

In Lect. Notes Phys. 649. (Ref. [13]).
[2] Adriano Barenco. 1998. Quantum Computation: An Introduction. pp. 143-183.

in Hoi-Kwong Lo, Sandu Popescu and Tim Spiller (eds.) Introduction to
Quantum Computation and Information, World Scientific, Singapore

[3] Samuel L. Braunstein, Sibasish Ghosh and Simone Severini. 2006. The Laplacian
of a graph as a density matrix: a basic combinatorial approach to separability of
mixed states. arXiv:quant-ph/0406165.

[4] Giacomo M. D’Ariano, Matteo G.A. Paris and Massimiliano F. Sacchi. 2004.
Quantum Tomographic Methods. In Lect. Notes Phys. 649, pp. 7-58. (Ref. [13]).

[5] Iaakov Exman. 2014. Linear Software Models: Standard Modularity Highlights
Residual Coupling. Int. Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210. DOI: 10.1142/S0218194014500089.

[6] Iaakov Exman and Rawi Sakhnini. 2018. Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors. Int. Journal on Software Engineering and Knowledge Engineering,
vol. 28, pp. 897-935. DOI: 10.1142/S0218194018400107

[7] Iaakov Exman and Alon Tsalik Shmilovich. 2021. Quantum Software Models:
The Density Matrix for Classical and Quantum Software Systems Design, in
Proc. (Q-SE) IEEE/ACM 2nd International Workshop on Quantum Software
Engineering, pp. 1-6. DOI: 10.1109/Q-SE52541.2021.00008

[8] Iaakov Exman and Alexey Nechaev. 2022. Quantum Software Models: Software
Density Matrix is a Perfect Direct Sum of Module Matrices. In Proc. SEKE’2022
Int. Conference on Software Engineering and Knowledge Engineering, pp. 434-
439. DOI: 10.18293/SEKE2022-158.

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. 1995. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, MA, USA.

[10] David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker and Jens Eisert.
2010. Quantum state tomography via compressed sensing. Phys. Rev. Letters,
226-236. Also arXiv:0909.3304 [quant-ph].

[11] R. Merris. 1994. Laplacian matrices of graphs: A Survey. Linear Algebr. Appl.,
197-198, pp. 143-176.

[12] Michael A. Nielsen and Isaac L. Chuang. 2000. Quantum Computation and
Quantum Information. Cambridge University Press, Cambridge, UK.

[13] Matteo Paris and Jaroslav Rehacek (eds.). 2004. Quantum State Estimation. In
Lecture Notes in Physics, Vol. 649. Springer, Heidelberg, Germany. DOI:
10.1007/b986673.

[14] Jaroslav Rehacek, Zdenek Hradil, E. Knill and A.I. Lvovsky. 2007. Diluted
maximum-likelihood algorithm for quantum tomography. arXiv:quant-
ph/0611244.

[15] Eric W. Weisstein, Bipartite graph. 2022.
[16] http://mathworld.wolfram.com/Bipartite-Graph.html
[17] Eric W. Weisstein, Laplacian, 2022.
[18] http://mathworld.wolfram.com/LaplacianMatrix.html
[19] Chai Wah Wu. 2009. Multipartite Separability of Laplacian Matrices of graphs.

Electronic J. of Combinatorics, 16, #R61.
[20] Chai Wah Wu. 2016. Graphs whose normalized Laplacian matrices are separable

as density matrices in quantum mechanics. J. Discrete Mathematics, 339, pp.
1377-1381. DOI: 10.1016/j.disc.2015.12.001

