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Abstract—Quantum Tomography partially measures and then 
recovers the remaining density matrix quantum state, in order to 
verify that a certain device – processor or detector – indeed 
outputs the intended quantum state. However, single matrix 
element measurements rapidly increase in number with the 
density matrix dimension and are error-prone. This work 
proposes a novel quantum software viewpoint on quantum 
tomography. Instead of individual matrix elements, measurements 
and density matrix recovery are performed on higher-abstraction 
modules, i.e. semantically meaningful groups of matrix elements. 

Quantum Modules Tomography potentially reduce the necessary 
number of explicit measurements, while still allowing recovery of 
the whole density matrix. A Recovery Theorem is formulated and 
proved: density matrix diagonal measurements suffice to recover 
the whole system density matrix, in terms of modules. The 
recovery procedure is illustrated by a few case studies. 

Keywords-quantum software; quantum modules tomography; 
density matrix; software modules; density matrix recovery theorem 

I.  INTRODUCTION 

Quantum Software Models deal with quantum software 
systems represented by density matrices. In a previous paper of 
this series [7], it has been shown that software system modules 
span sub-spaces, obtained by projectors acting on the whole 
software system state. 1  

Quantum Tomography (QT) is a set of techniques to check 
behavior correctness of quantum devices, i.e. whether they 
output the intended quantum state, represented by a density 
matrix. QT measures some matrix elements, recovering the 
remaining density matrix elements, from the measured ones.  

This paper argues that quantum modules tomography may 
reduce the number of necessarily measured matrix elements, and 
enables recovery of the whole density matrix of quantum 
software systems, from the matrix diagonal. 

A. Quantum Software is Measurable  

Quantum software is represented by a Density Matrix, whose 
most important characteristic is to be modularizable, as  
described in the next section. Quantum Software is a generic 
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concept, that may refer to any of three types – quantum systems 
processing qubits, classical systems processing classical bits, or 
hybrid systems transitioning back and forth between quantum 
and classical  sub-systems, due to the representation similarity 
of these three kinds of systems. Quantum software systems will 
be shown to comply with quantum computing measurements 
(see e.g. Nielsen and Chuang [12]). They are measurable, which 
is essential for Quantum Tomography. 

B. Quantum Software Modules Tomography 

There are two kinds of Quantum Tomography: quantum 
state tomography (e.g. Gross et al. [10]) reconstructing quantum 
states, and quantum process tomography which reconstructs 
processes by physical systems ([4],[13]). 

Quantum Modules Tomography, proposed in this paper, is a 
novel kind of Quantum Tomography. Measurements and 
recovery of the whole software system density matrix are based 
upon system modules, instead of individual matrix elements. 
This is enabled by quantum software algebraic constraints. 

C. Paper Organization 

The rest of the paper is organized as follows. Section II 
characterizes Quantum Software. Section III deals with quantum 
software measurement. Section IV details Quantum Modules 
Tomography, then formulates and proves the Recovery Theorem 
for the whole density matrix. Section V illustrates the procedures 
with case studies and a simulation. Section VI concisely refers 
to related work. Section VII is a Conclusion of the paper. 

II. QUANTUM SOFTWARE MODELS 

This section introduces the reader to the main characteristics 
of Quantum Software Systems. It explains Density Matrix 
generation and modularization for these systems. 

A. Conceptual Semantics and Bipartite Graph  

Quantum Software systems display two main properties, 
structure and behavior, fitting two kinds of entities: Structors & 
Functionals. Structors generalize classes in Object Oriented 
Design (OOD). Functionals generalize OOD class methods.  



Structors & Functionals have a double role. They are the 
concepts conveying meaning of the Quantum Software system. 
In the other role, their associated indices stand for vertices of 
graphs, which generate density matrices – the underlying linear 
algebraic representation of quantum software theory. 

The Command Design Pattern ( [9], page 233)  is a running 
example in this paper, to explain basic ideas. Its goal is to 
abstract typical commands – copy, paste, delete, save – found in 
a variety of useful applications, into a reusable generic pattern. 
Behind every Structor Sj or Functional Fk indices there is a real 
meaningful concept understandable by software engineers. 

The Command Design Pattern conceptual semantics is 
collected in Fig. 1. The Command module contains the 
command abstraction. Its Structors are ICommand, a generic 
interface, and Concrete Command standing for any commonly 
used command. Their Functionals enable to specify or execute 
commands.  The Invoker module stands for menu-items or 
buttons used to invoke commands. The Receiver module refers 
to either a file or a formatted document receiving the outcome of 
a command execution. 

 
Figure 1. Command Design Pattern Modules, Structors & Functionals – It has 3 
modules, Command, Invoker, Receiver, with sizes 2-by-2, 1-by-1, 2-by-2. For 
instance, the Command Module Structors & Functionals set is {S1, S2, F1, F2}. 
(Figures in color online). 

A simple depiction of a quantum software system is a 
bipartite graph [15]. These graphs have two vertex sets, where a 
vertex is linked only to vertices in the other set. One set has 
Structor vertices {S1, S2, …, Sj} and another set has Functional 
vertices {F1, F2, …, Fk}. A Structor providing a Functional – 
say, a class providing a method definition, in OOD parlance – is 
linked to the Functional. 

The Command Design Pattern bipartite graph is seen in Fig. 
2. Algebraic manipulations for modularization of quantum 
software systems, are totally independent of the specific 
conceptual semantics of the system indices. 

 
Figure 2. Command Design Pattern Bipartite Graph– Its 10 vertices are: 5 (green) 
Structors {S1, S2, …, S5} and 5 (orange) Functionals {F1, F2, …, F5}. Also 
seen 3 (blue) background Modules. The middle module has {S3, F3} as vertices. 
Arrows link Structors to provided Functionals, e.g. S2 provides F1 & F2. 

B. From Bipartite Graph to Density Matrix 

A Laplacian matrix L [11], [18] is defined upon any graph, 
in particular a bipartite graph, according to equation (1). 

L = D - A (1) 

where D is the diagonal Degree matrix – showing the degree djj 
of vertex j – and A is the Adjacency matrix – showing the 
neighbors of each vertex with a 1-valued matrix element, with 
negative sign due to equation (1). 

It has been observed by Braunstein et al. [3] that a Density 
Matrix  can be obtained from a Laplacian L normalized by its 
Trace, the sum of the diagonal degrees, as in eq. (2). 

  = L / Trace(L) (2) 

A Density matrix generated from the bipartite graph in 
Fig. 2, by equation (1) and normalized as in eq. (2) can be seen 
in Fig. 3. 

 
Figure 3. Command Design Pattern Density Matrix – One can see the Laplacian 
matrix L within square brackets, normalized by the Trace = 14. Within the 
Laplacian, one perceives the Diagonal Degree matrix D (green) and the two 
quadrants of the Adjacency matrix A (blue), above the diagonal and reflected 
below the diagonal. Above the column indices one sees kets, and to the left of 
the row indices the bras of this software system basis set. 

Algebraic features of software systems represented by a 
Density Matrix derived from the Laplacian are essential for this 
paper’s goal, viz. to facilitate recovery of the quantum software 
system state. One can easily show, from eq. (1) that each of the 
Laplacian rows and columns sum to zero. This is preserved in 
the Density Matrix – and perceived e.g. in Fig. 3. 

The Adjacency matrix of a Quantum Software system, also 
appearing in eq. (1), has two quadrants, as seen in Fig. 3. The 
upper-right quadrant is above the diagonal and reflected into the 
lower-left quadrant below the diagonal. Further algebraic 
properties of relevance to Quantum Module Tomography are 
collected in Definition 1, in sub-section IV.B. 

C. Modules from the Density Matrix 

Modules of Quantum Software systems can be obtained 
directly from the Laplacian eigenvectors fitting zero-valued 
eigenvalues (see [6]). Modules can also be obtained by partition 
of the sum of projection operators fitting kets of the system basis 
set, into disjoint sets of projection operators, as explained in [7]. 
Modularized matrices of a Software system have mutually 
orthogonal modules. 



III. QUANTUM SOFTWARE MEASUREMENT 

This section shows that Quantum Software systems comply 
with quantum computing projective measurements [12] for 
modules, illustrated with the running example software system. 

A. Quantum Software Projective Measurement 

Module projectors span sub-spaces of a whole Quantum 
Software system. A natural choice for modules is projective 
measurement, defined by its observables and final state. 

An observable is a Hermitian operator Mm on the state space 
of the whole system Density Matrix Its properties are: 
mutually orthogonal observables and spectral decomposition as 
in eq. (3). 

Mm  = ∑ 𝒏 ∗ 𝑷𝒏𝒏  (3) 

𝑷𝒏  is a projector onto the Mm eigenspace with eigenvalue n. 

The final state of the system 𝑺𝒎  after measurement is 
obtained by equation (4). 

𝑺𝒎  = (𝑴𝒎 𝝆𝑴𝒎 )/𝑻𝒓𝒂𝒄𝒆(𝑴𝒎 𝑴𝒎 𝝆) (4) 

where 𝑴𝒎  is the conjugate transpose of  𝑴𝒎 . 

B. Quantum Software Module Observables 

The upper module {S1, S2, F1, F2} in each quadrant of Fig. 
3 exemplifies eq. (3) by its observable as a projectors’ sum:  

 
𝑴𝟏  = |𝟎𝟎𝟎𝟎⟩⟨𝟎𝟎𝟎𝟎| +  |𝟎𝟎𝟎𝟏⟩⟨𝟎𝟎𝟎𝟏|  

          + |𝟎𝟏𝟎𝟏⟩⟨𝟎𝟏𝟎𝟏| + |𝟎𝟏𝟏𝟎⟩⟨𝟎𝟏𝟏𝟎|  

(5) 

This observable is seen as a full-matrix in Fig. 4. 

  
Figure 4. Observable Matrix of Upper Module of the Command Design Pattern 
in Fig. 3 – The only non-zero matrix elements in this observable are in the 
diagonal, fitting the eq. (5) projectors. Matrix element indices, kets and bras of 
this Module are seen. The module locations in are marked as blue background. 

B. Quantum Software Module Measurement Final State 

Now we insert the Observable M1 into eq. (4) to exemplify 
the final state after measurement of the Command Design 
Pattern. Equation (4) is simplified, as M1 is real, diagonal and 
has only 1-valued matrix elements. Also the normalizing factor 
(1/14) of in Fig. 3 cancels out, as it appears in both numerator 
and denominator of eq. (4). The resulting final state is in Fig. 5. 

 
 
Figure 5. Final state after measurement of the Command Design Pattern upper 
module in Fig. 3 – It is a decreased size Density Matrix of the Module itself, 
embedded in its exact location of the whole system density matrix. The 
normalizing factor 1/6 is adjusted to preserve Density Matrix properties. 

 
 

This final state is an interesting result, since the whole 
system Density Matrix can be obtained from a bidirectional 
direct sum of the modules reduced density matrices (see [8]). 

IV. QUANTUM MODULES TOMOGRAPHY 

This section states the idea of Quantum Modules 
Tomography and presents its overall procedure. The Recovery 
Theorem enabling a more efficient Quantum Software Density 
Matrix recovery is formulated and proved. 

A. Idea of Quantum Modules Tomography 

Abstraction is the basic idea behind software modules and 
any of their applications. Abstraction means reducing the 
number of concepts necessary to formulate the purpose and 
functionality of a system and its sub-systems. The benefits are 
deeper understanding and increased efficiency. 

Quantum Modules Tomography is based upon two 
assumptions: 

 Reduction of measurements number – to at most 
proportional to the size of the diagonal Degree matrix; 

 Constraining of Density Matrix completion – based 
upon the Laplacian standard algebraic features 
collected below in Definition 1, in the next sub-section.  

An important observation is that the number and sizes of 
Modules in a software system is finite and small. This is justified 
by dealing with software systems in a hierarchical way. The 
same is true concerning the numerical values of the diagonal 
Degree matrix elements which express the relative dimensions 
of the modules. 

B. Towards the Recovery Theorem: Density Matrix Algebraic 
Features 

The standard algebraic features of the Laplacian are 
preserved by Density Matrices. These features are collected in 
Definition 1, in the next text box.



 

C. The Recovery Theorem 

After the needed measurements are done for a quantum 
software system, the next theorem assures that one can 
recover lacking values to complete the system density matrix.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proof: 

The number of the off-diagonal density matrix additions 
is obviously finite. It is enough to complete the set of 
additions to the upper-right quadrant of the Adjacency 
matrix. The lower-left quadrant is the reflection of the upper-
right quadrant. The exact number of additions to the upper-
right quadrant of the Adjacency matrix is half of the Trace of 
the whole matrix. 

For each diagonal 1-valued matrix element one should 
add one negative 1-valued matrix element in the same row 
and/or column. For each diagonal 2-valued matrix element 
one should add two negative 1-valued matrix elements in the 
same row and/or column. And so on for higher valued 
diagonal matrix elements. All the remaining matrix elements 
above the whole matrix diagonal are zero-valued, and 
reflected below the diagonal. 

The above unequivocally determines all the density 
matrix element numerical values to be added. The exact 
addition locations are constrained by the standard Laplacian 
algebraic features.    ⧠ 

    

We emphasize an essential aspect of the above theorem:  

 the number of additions is small as module sizes are 
limited by collecting only related concepts in each 
module, to facilitate human understanding. 

 

D. Quantum Modules Tomography Procedure 

The Quantum Modules Tomography Procedure is: 

1) Measure whole matrix degree diagonal elements; 
2) Fill the Adjacency matrix diagonal of the upper-

right quadrant with negative 1-valued elements; 
3) Add other non-zero elements in the Adjacency 

matrix upper-right quadrant according to the 
Density Matrix degree diagonal; 

4) Complete with zero-valued elements above the 
Density Matrix degree diagonal;  

5) Reflect the upper-right quadrant to elements below 
the Density Matrix degree diagonal. 

 

V. CASE STUDIES 

This section illustrates the Quantum Modules 
Tomography procedure by means of two Quantum Software 
systems: the Grover Search design, a strictly quantum system, 
and a simulation of a simplified classical system. 
 

A. Quantum Grover Search 

Grover Search (see e.g. [2] page 166) is a well-known 
quantum algorithm which performs search of unstructured 
(unsorted) N data items with a reduced complexity of 
O( 𝑵), instead of the classical complexity of O(N). 

Modules, Structors and Functionals of strictly quantum 
systems (processing only qubits) are obtained from quantum 
circuits, as in Fig. 6. 
 

 
 
Figure 6. Grover Search quantum circuit - Structors are “boxes” (green) 
containing quantum gates (orange), except for the typical “measurement” 
that inputs qubits and outputs classical bits. Modules (blue) are Structors 
grouped by some logical reason. For instance, the Grover Iteration is a single 
cycle of a loop consisting of an Oracle and an Amplification Structor. 
 

 
The Grover Search Modules, Structors & Functionals are 

shown in Fig. 7. 
 
 
 

Definition 1 – Standard Algebraic Features  
        of software systems’ Laplacian 

These features are: 
 Sum-to-zero – Laplacian rows & columns sum to zero. 
 Square-Quadrants – Adjacency Matrix quadrants 

containing modules are square. 
 Adjacency Matrix Linear Independence – Adjacency 

Matrix rows are mutually linearly independent; Adjacency 
matrix columns are also mutually linearly independent. 

 Modules Orthogonality – A given Module rows and 
columns are orthogonal to rows and columns of all other 
modules of the same software system. Thus, modules are 
block-diagonal. 

Theorem 1 – Recovery of whole Density Matrix 
      from its Diagonal 

Assuming: 
a- quantum software system – is describable by a 
modular density matrix r obtained by normalizing a 
Laplacian L as r = L / Trace(L), where L complies with 
the Standard Laplacian algebraic features in Definition 1; 
b- strictly necessary measurements – were performed to 
obtain the Density Matrix diagonal; 
 
Then: 
The whole quantum software system Density Matrix is 
completely recoverable by a finite small set of additions 
to the off-diagonal density matrix elements. 



  
 

Figure 7. Grover Search Modules, Sructors & Functionals – It has the same 
color conventions as in Fig. 1. H stands for the Hadamard operator, here to 
the nth tensor product power. 
 

Once one has the Structors & Functionals for the 
quantum software system – be it purely classical, strictly 
quantum, or hybrid – from a bipartite graph one generates and 
normalizes the Laplacian to a Density Matrix. 

The Grover Search quantum software system Density 
Matrix is in Fig. 8. It differs from purely classical systems, as 
the Command Pattern, by the number of basis set qubits 
needed to describe the system, and the module sizes. 
 

 
 
Figure 8. Grover Search Density Matrix – This software system Density 
Matrix has a 3 qubits basis set and 3 modules, only one with a 2-by-2 size. 
 

The Grover Search case study illustrates  that:  

 The same algebraic techniques are applicable to all 
quantum software systems – pure classical, strictly 
quantum or hybrid (classical and quantum). 

 Ignoring Structors & Functionals location and 
semantics, a quantum Grover Search 2-by-2 module in 
Fig. 8 or a classical Command design pattern 2-by-2 
module in Fig. 3 are identical and measurable by an 
observable comparable to that in Fig. 4. 

 

B. Simulation of a Simple Classical System 

The purpose of this simulation is to illustrate the idea that 
Quantum Module Tomography indeed may recover the 
whole Density Matrix of a Quantum Software system, while 
reducing the number of needed matrix element 
measurements. The simulation was done on the simplified 
Software System, whose density matrix is seen in Fig. 9. 

 
 

Figure 9. Simplified Quantum Software System Density Matrix – it is 
obtained from Fig. 8 rows/columns {F2,F3,F4} and {S2,S3,S4} suitably 
renumbered. It uses the same color conventions as in previous figures. It has 
two modules. 
 

The measurements projectors are in Fig. 10 with their 
probabilities. 

 
Figure 10. Projectors used for measurements of the Simplified Quantum 
Software System seen in Fig. 9. – The respective probabilities are shown. 
 

The overall simulation – implemented in qiskit, an IBM 
quantum computing oriented language – performed 
“projectors” sampling upon the Density Matrix in Fig. 9, 
using the DensityMatrix.sample_memory function. Once 
the sampling achieved a stable probability distribution, one 
obtains the values of each of the diagonal matrix elements, as 
specified in the Quantum Modules Tomography Procedure in 
sub-section IV.D. These values confirmed the expectations of 
Fig. 10. 

When does the measured probability distribution reach 
stability? The answer is given in Fig. 11. 
 

 
 

Figure 11. Convergence of sampling percentages – one perceives that by 
increasing measurement numbers, graphs converge to two values 12% and 
24% already for 200 Measurements and is stable for 250 Measurements. 
When samplings are stable, one may stop the simulation. These percentages 
respectively fit the 1/8 and ¼ probabilities.  
 



For instance, looking at the 250 measurements, since the 
heights of the 12% results are twice those of 24% results, then 
the total value for 12% is 12*4= 48% and the total value for 
24% is 24*2=48%. This fits the facts that there are 4 
projectors with probability 1/8, i.e. 4*(1/8)= ½ and only two 
projectors with probability ¼, i.e. 2*(1/4)= ½. In other words, 
the simulation results confirm the expectations of Fig. 10. 
 
 

VI. RELATED WORK 

Here are very concise references to topics relevant to this 
paper. 

Braunstein and co-authors [3] focus on mixed states 
separability, represented by density matrices obtained from 
Laplacians. They state that specific graph types originate 
entangled or separable states independently of their labeling. 
Chai Wah Wu [19], [20], also considers Laplacian and 
density matrix separability. 

The Quantum Tomography Measurements literature is 
very extensive. We provide a few entry points. The 
“Quantum State Estimation” book edited by Paris and 
Rehacek [13] has chapters relevant to Tomography. For 
instance, the D’Ariano et al. [4] chapter on “Quantum 
Tomographic Methods”, and the chapter by Altpeter et al. on 
“Quantum State Tomography” [1]. 

The maximum-likelihood (MaxLik) algorithm, and its 
variants, e.g. the Diluted Maximum-Likelihood  algorithm by 
Rehacek et al. [14] offer alternative ways to reconstruct a 
quantum state from tomographic measurements. 
 

VII. CONCLUSION 

A. Theory and Potential Applications 

The potential applications refer to eventually reducing 
the number of measurements, and faster recovery of quantum 
software systems’ density matrix, according to the Recovery 
Theorem enabling density matrix reconstruction from 
measurement of the density matrix diagonal only. 

Two caveats are in place here. This paper theory focused 
on density matrices derived from Laplacians. Elsewhere, we 
discussed transformations of any density matrices to quantum 
software density matrices as derived from Laplacians. 

Second, the ultimate testing of the ideas of the “Quantum 
Modules Tomography” theory will be in actual tomography 
measurements in a laboratory. This is an invitation for 
experimental researchers. 

B. Future Work 

Open issues to be dealt with in future work include 
different formulations of Recovery Theorems, solving 
particularly difficult modularizations of quantum software 
systems, and concurrent use of alternative reconstruction 
density matrix algorithms, such as maximum-likelihood, 
together with the Recovery Theorem of this paper. 

C. Main Contribution 

The main contribution of this paper is the Modules 
abstraction for Quantum Software Systems, resulting in the 
Recovery Theorem,  with potential applications to Quantum 
Modules Tomography. 
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