
An Efficient Design Smell Detection Approach with
Inter-class Relation

Hao Zhu, Yichen Li, Jie Li and Xiaofang Zhang∗

School of Computer Science and Technology
Soochow University, Suzhou, China

{hzhu721,ycli1024,2027407061}@stu.suda.edu.cn and xfzhang@suda.edu.cn

Abstract—Code smell indicates the potential designed problems
and quality of source code affecting the software maintenance
and readability. Hence, detecting code smells in a timely and
effective manner can provide guides for developers in refactoring.
Existing methods generally treat these code smells from differ-
ent granularities equally by merely extracting tokens-based or
abstract syntax tree(AST)-based code representation, which does
not take the diversity of code smells into account, especially when
fewer researches concern design smells. To tackle this challenge,
we propose Design Smell Detection through Inter-class Relation,
which leverages the corresponding design smells features for
code smell detection. More specifically, we employ AST-tokens
instead of traditional word-tokens or AST to obtain code syntax
information from the deep dimension. Meanwhile, we analyze the
common structural feature of design smells and propose the inter-
class relation among different class files contained in the same
package. Moreover, to verify the effectiveness of our proposed
method, we carry out extensive experiments with various settings
on our new dataset and the results demonstrate that our method
outperforms state-of-the-art methods by up to 31% in terms
of F1-measure of all code smells. The code is available at:
https://github.com/xzb777/designSmellUML

Index Terms—Code smell, code representation, inter-class
relation, deep learning

I. INTRODUCTION

Code smells are indicators of poor coding potentially af-
fecting software quality and maintenance [1]. Therefore, code
smell analysis, which is developed to assess and improve
software quality by detecting and removing code smells, is
of great importance in software design. Software engineer-
ing researchers have conducted extensive researches on code
smells, including their definition, causes, effects, detection and
refactoring [2].

Researchers have devised a variety of methods for detecting
code smells, including traditional metric-based methods [3],
[4] and heuristic-based methods [5]. As an example, Moha et
al. [6] devised DECOR to define code smell detection rules
with a specific language. Nevertheless, the majority of these
methods suffer from developer’s subjective illustration and
threshold set to identify smelly instances. To address this issue,
machine learning methods [7], [8] and deep learning methods
[9] have recently attracted increasing attention for their ef-
ficiency in extracting hidden patterns from large amounts of
data for prediction. Guggulothu et al. [10] apply Random-
Forest to code smell detection with tradition metrics. Xu et al.

DOI reference number: 10.18293/SEKE2023-208

[11] adopt the syntax information in AST to optimize the code
smell detection from different granularities. Li et.al [12] apply
a hybrid model with comprehensive code features to multi-
label code smell detection. Though remarkable performance
has been achieved, these methods all focus on implementation
code smells like Long Method, Missing default, ignoring de-
sign smells to some extent. For larger-granularity design smells
such as Broken Hierarchy and Insufficient Modularization,
they still require careful consideration which usually involve
the organization and relation between classes in a software
system.

In this paper, we seek to develop a simple and scalable
technique to detect design smells. Token-based methods [11]
and AST-based methods [13] have had outstanding perfor-
mance in implementation smells detection with tokens or AST.
The rendering of design smells is often accompanied by more
complex and longer code snippets, which makes the above
methods hard to precisely extract features in practice. A direct
idea to solve the problem is to optimize extracted features from
the deep dimension and make use of the relation between
classes in the same package. In addition, existing public
datasets on design smells [12] are split into method/class-level
code snippets, losing the relation between classes during data
preprocessing.

Considering these limitations, we in this paper propose
a novel approach Design Smell Detection via Inter-class
Relation (DSIR)– that can efficiently extract features in design
smells for detection. Specifically, we first parse the source code
into AST and obtain a sequence of node tokens by preorder
traversal. Then, we create a class-level semantic graph for each
target class based on the UML class diagram. To better extract
hidden patterns, we separately apply bidirectional long-short
term memory network with attention mechanism (BiLSTM)
and relational graph convolution network (R-GCN) and com-
bine the outputs of the two models by weight to obtain the
prediction. Besides, we split 500 Java projects on GitHub to
build a new dataset with class-relation information and conduct
our experiments on it. Experimental results illustrate that our
DSIR model outperforms the state-of-the-art methods by up
to 31% in terms of F1-measure on the three selected design
smells. The major contributions of this paper are summarized
as follows:

• We present the appropriate feature extraction for design
smells and innovatively apply the class-level semantic

graph based on UML class diagram to obtain inter-class
relation for design smell detection.

• We build a new dataset with design smells and preserve
class relation for further research at a large granularity.

• We conduct extensive experiments with various settings
and baselines. The results demonstrate the effectiveness
of the proposed method which improves the F1-measure
by up to 31% compared to state-of-the-art methods.

II. RELATED WORK

A. Code Smell

Fowler et al. initially introduced the concept of code
smell as structures with technical debt. Code smells serve
as indications of deteriorating software quality. Based on
granularity, scope, and impact, code smells can be classified
into implementation [1], design [14], and architecture smells
[15]. Previous research has primarily focused on detecting
implementation smells, with excellent results achieved in this
regard. However, design smells have a more extensive scope,
and identifying and refactoring them may require working with
a set of classes.

B. UML Diagram

UML (Unified Modeling Language) is a software engi-
neering modeling language used for describing and designing
software systems [16], [17]. Class diagrams, as one of the
UML diagrams, are particularly useful for describing the
attributes, methods, and relation among classes and interfaces
in a system. The relationships in a class diagram, such as
dependencies, inheritances, aggregations, and associations, can
assist software designers in identifying the structural compo-
sition and functionality of a system. However, how to apply
UML to code smell detection tasks remains a challenge.

C. Motivation

Design smell is usually expressed as more complex and
longer code snippets. Existing token-based methods simply
treat code snippets as a natural language to get the structural
information. Meanwhile, AST-based methods rely on travers-
ing the AST and analyze the nodes and edges to obtain the
syntactic information of the code. However, these approaches
are challenging as they require a deep and entire understanding
of the AST structure or code tokens which is difficult with
long code snippets. Intuitively, using AST tokens instead of
code tokens can provide a more expressive representation of
the source code and it can help to reduce the feature size
of the AST-based approach. Furthermore, We consider that
introducing the information from class diagrams can better
capture inter-class relation which can help the model learn
the hidden patterns of complex class snippets. An example
can be seen in Figure1. This is a class diagram provides the
relation between classes in a program, including inheritance
and dependencies. Each box in the diagram represents a class
in the program, and the name of the class is at the top of the
box. The properties and methods of the class are listed in the
second and third sections of the box respectively.

ServiceConfiguration
————————

————————
——————

«interface»
SuppressibleConfiguration

Inheritance

ServiceConfiguration

————————
——————

Suppressible<T>
————————

————————
——————

ServiceConfigurationImpl

————————
——————

InputClass

————————

————————
——————

neighbourClassA

————————

————————
——————

neighbourClassB

————————

————————
——————

«interface»
neighbourInterFace

Dependency

Association

Implementation

Fig. 1: Example of a class diagram with design smell.
We use the example of an abstract class ServiceConfigura-

tion in Figure 1 to illustrate how the class diagram can help us
detect design smells. ServiceConfiguration is labeled with Bro-
ken Hierarchy design smell in our dataset. Broken Hierarchy
refers to the presence of poor inheritance or nesting relation in
the code. Then we can see that class ServiceConfigurationImpl
inherits from ServiceConfiguration because they are connected
by a line of inheritance, and class Suppressible and class Ser-
viceConfiguration depend on ServiceConfiguration, indicating
that ServiceConfiguration plays an important role in the class
hierarchy and functionality. However, the class Suppressible
also depends on ServiceConfigurationImpl, which breaks the
functionality and inheritance of parent and child classes which
is consistent with the definition of Broken Hierarchy. There-
fore, to obtain inter-class relation to detect design smells, we
create a class-level semantic graph representation based on
class diagram information.

III. METHODOLOGY

A. Problem Formulation

In this section, we introduce our DSIR method to detect de-
sign smells. The overview framework is shown in Figure 2. We
are aimed to detect design smells including Broken Hierarchy,
Insufficient Modularization and Deficient Encapsulation. To
tackle this problem, we divide it into two sub-problems: The
first sub-problem involves extracting appropriate features of
the source code effectively and we apply the bidirectional long
short-term memory network. The second sub-problem involves
modeling the relation with relational graph convolutional net-
work between classes based on the class diagrams. Finally, we
identify smelly instances based on the fusion model.

B. LSTM Model

We first use Javalang1 to parse class-level code fragments
into their corresponding AST. Then, we obtain all the AST
node tokens by preorder traversal and use them as inputs
to be fed into an LSTM model. The BiLSTM captures both
forward and backward dependencies between tokens, while the
attention mechanism focuses on the most relevant parts of the
input during the encoding process. Specifically, we use global

1https://github.com/c2snet/javalang

Classifier
Code

snippets

R-GCN

Fusion model

LSTM

Class digram

Sparse

AST

AST tokens

Traversal
Token

Embedding

UML
dataset

Graph
Embedding

Fig. 2: Overview of our DSIR method.
attention to extract the source context vector cj by computing
the attention weights aij of hidden state hi.

cj =

|x|∑
i=1

aijhi (1)

where x refers to the AST token sequence. The attention
mechanism will assign more weight to the hidden state vectors
of important tokens.

rij = hi ∗ cj (2)
y = Sigmoid(Wsrij + bs) (3)

where rij represents the relevance score between the i-th
hidden state hi in the source sequence and the context vector
cj for the j-th target token. We then pass rij through a Sigmoid
layer with parameters Ws and bs to get the output of the model.

C. R-GCN Model

This section presents our approach to detecting design
smells using class diagram information to obtain the inter-class
relation. We select four common types of relation between
classes: dependency, inheritance, association, and implemen-
tation, as they are widely used to investigate the metric of
inter-class relation in [18]. First, we find the corresponding
class diagram for the input class in our dataset, and then we
select a set of classes adjacent to it. We then add four common
edges to the set of selected classes based on the class diagram.
Meanwhile, each class includes its type, name, attributes, and
methods in a class diagram. Thus, we extract these information
for the selected classes and organize them into an input tuple:

input = ⟨class type, attributes,methods⟩
attributes = ⟨attribute1, attributei, . . . attributen⟩
methods = ⟨method1,methodi, . . .methodn⟩

(4)

Here, class type represents the type of the class includ-
ing concrete classes, interfaces and abstract classes. The
class’s attributes include different constants or variables, while
the class’s methods are input in the form of “method type
method name (method return type)”, where i represents the
i − th attribute or method information of the class and n
represents the number of attributes or methods. We input the
tuple into a Transformer-based sentence embedding model to

obtain the class semantic embedding and use the embedding
vectors corresponding to the classes in the set as the node
feature matrix. Finally, we use the Python package PyG to
convert these information into a graph, which serves as the
input to the R-GCN. Relational Graph Convolutional Networks
(R-GCN) is designed to process graph-structured data with
complex relationships, allowing us to better capture the inter-
class relation. The propagation rule for R-GCN is given by:

H
(l+1)
i = σ

(∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r H
(l)
j

)
, (5)

where Nr
i denotes the set of neighbors of node i via edge type

r, ci,r is a normalization constant that scales the contribution
of each neighbor according to its degree, and σ(.) is an
activation function. We can stack multiple R-GCN layers by
repeating this propagation rule. Our forward model for R-GCN
then takes the form:

Zr = Ãr ReLU(ÃrXW (0)
r)W (1)

r , ∀r ∈ R (6)

Z =
∑
r∈R

Zr (7)

y = Sigmoid(WsZ + bs) (8)

where Zr represents the feature vector associated with relation
r, Ãr represents the adjacency matrix of relation r plus a self-
connection adjacency matrix, X represents the input feature
matrix, W (0)

r and W
(1)
r represent the weight matrices of the

input and output layers of relation r, respectively. ReLU is
the rectified linear unit function, Z is the vector obtained by
summing up all the relation feature vectors, Ws and bs are the
weight and bias of the output layer, respectively, and y is the
corresponding binary classification prediction result, which is
mapped to the range of [0, 1] by the Sigmoid function.

D. Fusion of Model
Assume the outputs of the model are o1 and o2 and the

hyperparameter k, then the final probability distribution is
computed as follows:

output = k ⊗ o1 + (1− k)⊗ o2 (9)
where k is normally equal to 0.5. For both models, we all use
binary cross-entropy loss to optimize.

Loss(xi, yi) = −wi[xilogyi + (1− xi)log(1− yi)] (10)

L = 0.0005 L = 0.001 L = 0.002
0.66

0.68

0.70

0.72

0.74

0.76
Av

er
ag

e
F1

Learning rate L

(a) Box plot of learning rate

B = 16 B = 32 B = 64
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Av
er

ag
e

F1

Batch size B

(b) Box plot of batch size

Insufficient
Modularization

Broken
Hierarchy

Deficient
Encapsulation

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Av
er

ag
e

F1

Different configuration

(c) Box plot of model parameters

Fig. 3: Performance of DSIR under different configurations (a) training learning rate L, (b) batch size B, (c) model parameters

where wi is the parameter for loss, xi is the ith prediction
of the label and yi is the ith ground truth.

IV. EXPERIMENTS

A. Dataset Preparation

First, We utilize the same dataset of 500 high-quality Java
projects from GitHub as used in [9], covering a variety of
functions and diverse application areas. Then we construct
a dataset of UML class diagrams for the packages in each
project by UMLGraph2. Designite [19] is used to detect code
smells in our dataset and generate corresponding smell reports.
Finally, we select three types of design smells based on their
high frequency of occurrence in the 500 high-quality Java
projects and label the corresponding class-level code fragments
accordingly. We divide projects into three parts, 70% as the
training set, 10% as the validation set, and 20% as the test
set. Moreover, we carefully balance the dataset to ensure that
samples from the same package are not split into different sets
and reduce the number of negative samples to the balanced
distribution of samples. Table I presents the number of samples
used in our DSIR method, as well as the baselines.

TABLE I: Sample distribution of our DSIR dataset

DSIR dataset

Training set Validating set Testing set

Code smells P N P N P N

Broken Hierarchy 5000 5000 369 2518 1628 4145

Insufficient Modularization 1500 1500 137 2750 420 5353

Deficient Encapsulation 5000 5000 881 2006 1899 3874

B. Baselines

In this paper, we select the following three comparative
methods as our baseline here:

1) ASTNN Model: The ASTNN model was adopted by [11]
to detect multi-granularity and achieved better performance
than CNN and RNN in detecting design smells such as
Insufficient Modularization and Deficient Encapsulation.

2) Random Forest Model: This model was used by [10] and
performed well in detecting design smells such as Feature
envy.

2https://github.com/dspinellis/UMLGraph

3) LSTM Model: The LSTM model was used in a fusion
model by [12] and [20] to extract semantic information from
tokens, and achieved great results in detecting implementation
smells and God Class. In contrast to our approach, we will
use the token sequence of code snippets as the input.

C. Evaluation

As the distribution of positive and negative samples in
real projects is highly unbalanced, we avoid comparing the
accuracy of each model because a model that predicts all
samples as negative can still have high accuracy. There-
fore, we choose precision(P), recall(R) and F1-measure(F1)
as evaluation metrics to account for the imbalanced data.
Additionally, we also include the Area Under the Receiver
Operating Characteristic Curve (AUC) to evaluate the perfor-
mance of our models. The AUC value ranges from 0 to 1,
with 1 indicating perfect prediction, 0.5 representing random
chance, and values below 0.5 signifying worse-than-random
performance. Generally, a higher AUC value corresponds to
better classification performance. They are defined as follows:

Precision =
True Positive

True Positive+ False Positive
(11)

Recall =
True Positive

True Positive+ False Negative
(12)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(13)

D. Configurations

Fig 3 presents the performance of the DSIR method un-
der different configurations, including learning rates, batch
sizes, and model settings. Based on different performance,
we seek the best configuration. Our DSIR model consists
of two components: R-GCN and LSTM. For R-GCN, we
set the embedding dimensions to be 512 and the number of
hidden units to be 300 for Insufficient Modularization and
Deficient Encapsulation and 250 for Broken Hierarchy. For
LSTM, we set the embedding dimensions to be 200, the
hidden dimensions to be 200 for Broken Hierarchy and 150
for Insufficient Modularization and Deficient Encapsulation.
For the first sub-model, we apply dropout with a rate of
0.4 to prevent overfitting. For ASTNN, we set two layers
and 128 dimensions in the hidden dimension layer and 256

TABLE II: Performance of DSIR and other baselines.

Broken Hierarchy Insufficient Modularization Deficient Encapsulation Avg-F1 ∆(↑)
P R F1 AUC P R F1 AUC P R F1 AUC F1 F1

Random Forest 0.36 0.63 0.46 0.59 0.22 0.23 0.22 0.58 0.38 0.63 0.48 0.58 0.39 0.32↑
LSTM 0.17 0.74 0.27 0.66 0.18 0.34 0.23 0.64 0.36 0.45 0.40 0.70 0.30 0.41↑

ASTNN 0.52 0.48 0.50 0.69 0.64 0.56 0.60 0.79 0.47 0.57 0.52 0.63 0.54 0.17↑
DISR -w/oR-GCN 0.59 0.58 0.58 0.73 0.86 0.65 0.75 0.82 0.75 0.62 0.68 0.72 0.67 0.04↑
DISR -w/oLSTM 0.78 0.60 0.68 0.75 0.47 0.52 0.49 0.71 0.68 0.43 0.53 0.56 0.57 0.14↑

R-GCN -w/oClass-relation 0.49 0.49 0.49 0.65 0.40 0.19 0.26 0.57 0.66 0.38 0.48 0.56 0.41 0.30↑
R-GCN -w/oClass-info 0.42 0.62 0.50 0.65 0.17 0.24 0.20 0.57 0.38 0.44 0.41 0.54 0.37 0.34↑

DISR 0.76 0.63 0.69 0.76 0.87 0.70 0.77 0.84 0.79 0.60 0.68 0.72 0.71 /

encode dimensions. Then we choose 80 features and 50 trees
in the random forest. Additionally, we use the Adam optimizer
algorithm with a 0.002 initial learning rate and the batch size
is set to be 16.

V. PERFORMANCE OVERVIEW

A. RQ1:How does our method perform compared to other
baselines?

We conduct experiments on our datasets and other baselines.
As shown in Table II, DSIR outperforms other baselines,
including the state-of-the-art ASTNN, and achieves a 31% im-
provement in F1-measure, which confirms our initial intuition
and demonstrates the effectiveness of our method. Lack of
inter-class relation and AST node tokens, other baselines fail
to give full play to the same excellent performance as im-
plementation smells in the face of design smells. Specifically,
design smells with more complex and longer code snippets
will lead to the loss of features for the entire sub-tree if we
truncate long traversal sequences of AST. Furthermore, we
apply 80 metrics [10] to Random Forest and low AUC values
can be observed for all three design smells. We believe that
the reason for this is that the complex information of design
smells makes it difficult for algorithms to construct rules for
detection.
TABLE III: Mappings between Cliff’s Delta values and their
effective levels.

Cliff’s delta Effective levels

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

0.474 < |δ| Large

TABLE IV: Win/Tie/Loss indicators on F1 values of Random
Forest, ASTNN, LSTM and DSIR.

Code smell DSIR vs Random Forest DSIR vs ASTNN DSIR vs LSTM

Broken Hierarchy <0.05(+Large) <0.05(+Large) <0.05(+Large)

Insufficient Modularization <0.05(+Large) <0.05(+Large) <0.05(+Large)

Deficient Encapsulation <0.05(+Large) 0.05(+Large) <0.05(+Large)

Win/Tie/Loss 3/0/0 3/0/0 3/0/0

Finally we apply the Win/Tie/Loss indicator as a common
approach in prior works for performance comparison [11],

[12]. We also conduct Wilcoxon signed-rank test and Cliff’s
delta test to further analyze the performance of our model
and baselines. Table III shows Cliff’s delta values(|δ|) and the
corresponding effective levels. We use a comparison method
to determine the Win/Tie/Loss indicator as follows: First, we
select a baseline method M. If our model outperforms M with a
Wilcoxon signed-rank test p-value < 0.05 and a Cliff’s delta ≥
0.147, we mark our model as a “Win” indicating a statistically
significant difference. Conversely, if the baseline method M
outperforms our model with a p-value < 0.05 and a Cliff’s
delta ≥ 0.147, our model is marked as a “Loss”. Otherwise,
we mark it as a “Tie”.

According to the results shown in Table IV, our model
performs significantly better than all the compared models in
detecting design smells, demonstrating excellent effectiveness.

B. RQ2: What impact does each of our main components have
in our model?

To evaluate the impact of each main component in our
model, we conduct an ablation study by comparing the perfor-
mance of two individual models and their final fusion model.
The results of the two models in Table II show that the
R-GCN model performs better on code smells like Broken
Hierarchy and Insufficient Modularization, while the LSTM
model performs better on code smells like Deficient Encapsu-
lation and Insufficient Modularization. However, each model
has its own limitations and neither of them can effectively
capture all the features of comprehensive features of code
smells. Meanwhile, R-GCN does not work well for Deficient
Encapsulation because Deficient Encapsulation focuses more
on the encapsulated information inside class members, so the
LSTM using AST tokens can better extract the details of the
class members, but this still requires information from the
class relation to determine if these class members should be
encapsulated through inter-class relation.

C. RQ3:How does the class-diagram contribute to our pro-
posed model?

In Section III, we introduce the class diagram consisting
of two parts: extracting complex relation between classes and
extracting internal information of each class. To investigate
their impact on our DSIR method, we conduct the following
experiments. First, we evaluate the impact of different types

of relation between classes by comparing the performance
of a Graph Convolutional Network model trained on the
same dataset but not distinguishing between edge types. Then,
we evaluate the impact of class information in the class
diagram by removing method and attribute information from
the previously mentioned tuples and only using the class name
as a feature.

As shown in Table II, different types of relation between
classes can effectively help the model learn the external
hierarchy of classes and the interactions between modules. The
experiment without relation types results in a 28% decrease in
F1 score for Broken Hierarchy and a 47% decrease in F1 score
for Insufficient Modularization. However, for Deficient Encap-
sulation, the relation types do not have a significant effect, as
this smell focuses more on the encapsulation information of
class members. In this case, class methods and attributes are
more useful for understanding the internal features of classes
in complex relations, providing encapsulation information and
improving efficiency. Moreover, the information of methods
and attributes as class internal features can also help the
model better understand issues such as function confusion or
complex responsibilities within classes, which are associated
with Broken Hierarchy and Insufficient Modularization.

In summary, the inclusion of different types of class relation
and internal information of each class in class diagrams en-
hances the model’s discriminative and expressive capabilities,
thus improving the performance of code smell detection.

VI. THREATS TO VALIDITY

A. Internal validity
We utilize the UMLGraph tool to construct a class diagram

dataset and remove projects where class diagrams could not
be automatically generated due to tooling issues. This may
introduce bias if these projects have different characteristics
than those in our dataset. Meanwhile, we use the Designite
tool to label our training data as ground truth. Although the
tools are widely used, their reliability still needs to be verified.

B. External validity
We only use Java projects from GitHub, which may limit our

ability to extend our findings to other programming languages
or domains. Additionally, the limited number of positive
and negative samples and the random reduction of negative
samples to match the positive samples may introduce sampling
bias if the sampled projects have different characteristics than
the population of Java projects.

VII. CONCLUSION

In this paper, we propose a new approach for detecting
design smells, namely Design Smell Detection through Inter-
class Relation. We apply the AST node tokens instead of
code tokens or AST, and inter-class relation to design smell
detection, which are separately fed to BiLSTM and R-GCN
networks to extract the comprehensive features. Extensive
experiments are conducted on a new dataset, and the results
demonstrate that the proposed method outperforms state-of-
the-art methods in terms of F1-measure of all code smells.

A CKNOWLEDGMENT

This work is partially supported by the National Natu-
ral Science Foundation of China (62172202), Collaborative
Innovation Center of Novel Software Technology and In-
dustrialization, the Major Program of the Natural Science
Foundation of Jiangsu Higher Education Institutions of China
under Grant Nos. 22KJA520008, the Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions,
and the Undergraduate Training Program for Innovation and
Entrepreneurship, Soochow University(202210285193H).

REFERENCES

[1] M. Fowler, Refactoring - Improving the Design of Existing Code,
ser. Addison Wesley object technology series. Addison-Wesley, 1999.
[Online]. Available: http://martinfowler.com/books/refactoring.html

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[3] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code smells,”
in 2013 IEEE 13th International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2013, pp. 116–125.

[4] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classifi-
cation: an overview,” arXiv preprint arXiv:2008.05756, 2020.

[5] K. Gupta, D. Song, and K. Sen, “Neural-based heuristic search for
program synthesis,” in EECS-2020-135, 2020.

[6] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[7] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone smells in software evolu-
tion,” in 2007 IEEE International Conference on Software Maintenance,
2007, pp. 24–33.

[8] A. Kaur and S. Singh, “Detecting software bad smells from software
design patterns using machine learning algorithms,” 2018.

[9] T. Sharma, F. Palomba, and D. Spinellis, “On the feasibility of
transfer-learning code smells using deep learning,” arXiv preprint
arXiv:1904.03031, 2019.

[10] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label
classification approach,” Software Quality Journal, vol. 28, no. 3, pp.
1063–1086, 2020.

[11] W. Xu and X. Zhang, “Multi-granularity code smell detection using deep
learning method based on abstract syntax tree,” in Proceedings of the
33rd International Conference on Software Engineering and Knowledge
Engineering (SEKE), 07 2021, pp. 503–509.

[12] Y. Li, A. Liu, L. Zhao, and X. Zhang, “Hybrid model with multi-level
code representation for multi-label code smell detection (077),” Inter-
national Journal of Software Engineering and Knowledge Engineering,
pp. 1–24, 2022.

[13] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering, pp.
1811–1837, 2019.

[14] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[15] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[16] P. Chen and W.-T. Zhang, “Uml-based design and analysis of web
applications,” Journal of Systems and Software, vol. 66, no. 3, pp. 189–
200, 2003.

[17] G. Booch, J. Rumbaugh, and I. Jacobson, “The unified modeling
language user guide,” in Addison-Wesley Professional, 2005.

[18] D. Kang, B. Xu, J. Lu, and W. Chu, “A complexity measure for ontology
based on uml,” in Proceedings. 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems, 2004. FTDCS 2004.,
2004, pp. 222–228.

[19] T. Sharma, P. Mishra, and R. Tiwari, “Designite: a software design
quality assessment tool,” in Bridge, 2016.

[20] A. Hamdy and M. Tazy, “Deep hybrid features for code smells de-
tection,” Journal of Theoretical and Applied Information Technology,
vol. 98, pp. 2684–2696, 07 2020.

