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Abstract

With the increasing prevalence of web servers, pro-
tecting them from cyber attacks has become a crucial
task for online service providers. Webshells, which are
backdoors to websites, are commonly used by hackers
to gain unauthorized access to web servers. However,
traditional methods for detecting webshells often fail to
produce satisfactory results due to the use of obfuscation
or encryption to conceal their characteristics. In recent
years, webshell detection methods based on deep learning
(DL) have received significant attention, but they struggle
to preserve the syntax and semantic information contained
in the source code. In this paper, we propose a structural-
aware webshell detection system to address these prob-
lems, denoted as SAWD. Specifically, we first generate
the control flow graph (CFG) with syntax and semantic
information from the PHP source code. Then, we leverage
CFG to build our graph representation, which consists
of the adjacency matrix and keywords-based basic block
features. Finally, based on our graph representation, we
adopt convolutional neural networks (GCN) combined with
graph pooling to detect webshells more efficiently. Exper-
imental results demonstrate that our method outperforms
state-of-the-art webshell detection systems on the collected
dataset.

Index Terms—Webshell detection, deep learning, control
flow graph, graph neural networks.

I. Introduction

With the development of the internet, web servers have
become a prime target for hackers. Hackers often use web-
shell, a web script that contains a malicious code fragment,
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to launch web attacks for system intrusion. Once the web
server is compromised, a vast amount of sensitive user
information stored in it will be stolen, causing irreparable
damage to the service provider. Thus, it is critical to design
an effective webshell detection system to protect system
security.

Currently, webshell detection systems are divided into
three categories, namely traffic-based detection, log-based
detection, and file-based detection. Traffic-based detection
involves real-time monitoring of server communication
traffic and determining if it is a request communicating
with a webshell through pre-set rules [1]. Unfortunately, it
is inefficient to detect webshell behavior from large-scale
traffic. Log-based detection examines whether the HTTP
requests and responses recorded on the website contain
malicious behavior for webshell detection [2]. However,
this system can only audit the behavior during or after an
attack, which means the system has been hacked. Com-
pared with the above two solutions, File-based detection is
more efficient for finding potential threats before attackers
launch the attack. It analyzes the code within program
files to extract functional and logical characteristics for
detecting webshells.

Traditional file-based webshell detection methods
mainly rely on building feature libraries based on file
attributes (e.g., file name, file creation time, file modifi-
cation time, and high-risk functions), but they may not be
applicable to webshell files that have been encrypted or
obfuscated, which are beyond the scope of the established
feature libraries. Researchers then suggest using statisti-
cal features like information entropy, longest word, and
overlap index to identify obscured webshell files. However,
they have limited applicability as well as low detection per-
formance. Another mainstream webshell detection method
is to analyze the data dependencies between variables
through syntax and semantic analysis. Since it requires
manual setting of pollution sources, pollution recipients,



and pollution propagation rules, it may become difficult
to detect the webshell using new PHP features. Recently,
webshell detection methods based on deep learning (DL)
have received significant attention. They first convert the
source code to the opcode sequence, and then adopt
deep neural networks for feature extraction. However, this
method often disregards the operands within the opcode,
thereby overlooking critical information contained therein.
So this approach struggles to fully capture the syntax and
semantic information of PHP source code.

In this paper, to solve the above challenges, we propose
a Structural-Aware Webshell Detection system (SAWD),
which generates graph representation for modeling PHP
source code and leverages DL-based graph networks for
feature extraction. Specifically, we first generate the control
flow graph (CFG) that can preserve the syntax and seman-
tic information of PHP source code. Then, we convert the
CFG into the adjacency matrix and extract the feature of
the basic block by counting the most frequent keywords,
which plays a significant role in detecting obfuscation and
encryption behavior. At last, we use graph convolutional
neural networks (GCN) combined with MinCutPool as
our structural-aware model for webshell detection. GCN is
used to extract features from a topological graph, then we
utilize the graph pooling method to cluster the nodes based
on the similarity of the basic blocks that perform the same
function in the CFG, thus improving the generalization
ability. The major contributions of the proposed work are
three-fold:

• To generate the effective graph representation with
the syntax and semantic information, we first convert
the PHP source code to CFG. Then, we adopt the
keywords-based method to represent each basic block
and the adjacency matrix to capture the relationship
between basic blocks.

• We develop a structural-aware webshell detection
model using GCN combined with graph pooling,
which can leverage our graph representation for more
efficient code analysis. To our best knowledge, this is
the first investigation in this direction.

• We evaluate SAWD on our collected dataset with
three webshell types i.e., big trojan, small trojan, and
one-word trojan. Experimental results demonstrate
that our method outperforms state-of-the-art webshell
detection systems.

II. Related Work

To efficiently detect encrypted webshell, researchers
proposed to use file-based webshell detection systems.
Some work identifies obfuscated and encrypted content
in scripts (e.g., NeoPI [3]), but the design of statistic
features in their methods relies heavily on expert knowl-

edge. In recent work, more and more studies adopt deep
learning algorithms for webshell detection, which can be
categorized based on the features used as source code-level
methods, opcode-level methods, and AST-level methods.
Li et al. [4] utilized Word2Vec for the vectorization of
PHP source code and gated recurrent unit (GRU) for
effective detection. Zhao et al. [5] converted PHP code
into opcode sequences and incorporated TF-IDF-based
weighted processing techniques, utilizing an XGBoost
model for classification. Kang et al. [6] proposed an
RF-GBDT model that employed an improved TFIDF-chi
feature to extract webshell opcode features. Additionally,
they combined statistical features and opcode sequences of
PHP files to enhance detection efficiency. Although using
opcodes as features can reduce the impact of techniques
such as obfuscation on detection performance, they do not
preserve syntax and semantic information present in the
original code. Li et al. [7] presented Shellbreaker which
uses static analysis and machine learning techniques to
extract features from PHP scripts for detection. However,
this approach is vulnerable to failure when identifying
new webshells, especially when attackers use advanced
encoding strategy (e.g., letter slicing). Cheng et al. [8]
proposed MSDetector to parse PHP scripts into an AST
and extract lexical tokens. Although using AST as a feature
effectively preserves syntax and lexical information present
in source code, semantic information is challenging to
retain completely.

In the field of program analysis, graph-based methods
have become increasingly common. Reps [9] first proposes
to convert some program analysis problems into graph
reachability problems, and solve them using graph reach-
ability algorithms. Yamaguchi et al. [10] introduced the
code property graph, which combines the properties of
abstract syntax trees, control flow graphs, and program
dependence graphs to create a novel representation of
source code. Backes et al. [11] applied this approach to
PHP and used taint analysis to discover vulnerabilities
in PHP code. However, there is currently no work on
detecting webshells based on graphs. Additionally, graph
neural networks can utilize the information of nodes and
edges in a graph to learn representations of nodes, greatly
enhancing their ability to preserve the complete syntax and
semantic information of source code. All these methods
have inspired us to adopt graph-based methods and graph
neural network models to address the problem of incom-
plete preservation of syntax and semantic information in
previous work.

III. Method

We describe the detailed designs in this section. The
overview of our proposed method is illustrated in Fig. 1.
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Fig. 1. Overview of the proposed method for webshell detection.

A. Graph Representation of PHP Source Code

1) Graph Construction: We employ PHP-CFG, an
open-source project developed and maintained by Anthony
Ferrara, to establish the CFG from the PHP source code. It
first parses PHP code into an Abstract Syntax Tree (AST),
which contains all the syntax information in a program.
To further capture the semantic information, PHP-CFG
then iterates through the AST nodes to group adjacent
AST nodes in the same code branch into a basic block.
Finally, all the blocks are connected by directed edges
according to the execute sequence and conditional jumps,
and the directed CFG is established, which precisely
provides a clear representation of the syntax and semantic
information. The variables and function calls in the basic
code block represent the syntax information, while the
connection relationships between blocks, i.e., the execution
sequence and conditional jumps, represent the semantic
information.

Fig. 2 illustrates an example of a webshell and its
corresponding CFG, where the CFG consists of four nodes
and three edges. Each node corresponds to a basic code
block, and each edge represents a conditional or loop
relationship in the PHP code. For the PHP source code,
PHP-CFG first groups the conditional AST node and its
preceding nodes in the same code branch into a basic
block. In addition to normal basic blocks, a main code
block is automatically created as the entry point during the
initial phase. Starting from the main code block, PHP-CFG
traverses all blocks and establishes ”if-else” relationships
as edges for connecting these code blocks.

We then convert the directed CFG into the digitized
adjacency matrix, which enables us to quickly identify
the entry and exit points of a CFG, as well as its loops
and branches. Moreover, the symbolic adjacency matrix
can be used to perform various graph-based algorithms.
Specifically, we first generate an N×N zero matrix, where
N is the total number of blocks in a CFG. This matrix
serves as a template for capturing the relationship between

(a) Source code of the webshell case.

n1

n2

n3 n4

n5

(b) CFG of the wbeshell case.

Fig. 2. Example of a PHP webshell source
code and its corresponding CFG.

basic blocks. If there is a directed edge between any two
basic blocks, for example from block m to block n, we
set the corresponding entry in the matrix to 1. To illustrate
this, let us continue to consider the CFG in Fig. 2, which
consists of five block nodes labeled n1, n2, n3, n4, and n5.
Note that n2 has three adjacent blocks: n1, n3, and n4. The
control flow goes from n1 to n2, then from n2 to either n3
or n4. To represent these connections, we set entries (1,
2), (2, 3), and (2, 4) in the adjacency matrix to 1, while
(2, 1) remains 0. Similarly, we apply the same procedure
to all other basic blocks in the CFG. The conversion result



is shown in Fig. 1 Step 1. By doing so, we obtain an
adjacency matrix to visualize the control flow relationships
among the basic blocks. We denote the N × N adjacent
matrix as AN×N .

2) Syntax Feature Extraction: The syntax feature of
a basic code block (i.e., a node in CFG) is extracted
according to AST node types, variables, and function calls.
In CFG, each basic block consists of one or more AST
nodes combined together. There are approximately 140
distinct nodes in PHP syntax, which can be categorized
into three main groups:

• The statement node, a language structure that does
not produce a value and is not capable of occurring
within an expression, such as a class definition;

• The expression node, a language structure that gener-
ates a value and can therefore be utilized within other
expressions;

• The scalar node, which represents scalar values, like
’string’ or magic constants, like ’ FILE ’

• In addition to these three groups there exists nodes
that do not belong to either of these categories, such
as names and call arguments.

Some special node types, parameters, and global vari-
ables appear frequently in webshells, which is an impor-
tant symbol to identify these web scripts. Therefore, we
extract basic features for each code block by counting the
occurrences of some key events, including:

1) The number of some AST node types in the block,
such as Expr FuncCall.

2) The number of parameters in some AST nodes in the
block, such as var, dim, and result.

3) The number of global variables in the block, such as
$ GET, $ POST, $ REQUEST, which is particularly
crucial for webshells.

4) The number of some common literal types of key-
words in the block. Literal is a type that represents
a literal value, such as a string (”mjdu” in Fig. 2), a
number, a Boolean value, or null.

By computing these key events, we can capture im-
portant characteristics of a code block and leverage them
for various tasks such as code classification, similarity
analysis, or anomaly detection. The syntax feature of the
k-th basic code block (i.e., the k-th node feature in CFG)
is denoted as Fk.

B. Structural-Aware Model

We use a GCN [12] combined with MinCutPool [13]
pooling as our structural-aware model for webshell detec-
tion. Let the CFG be represented by a tuple G = {V, E},
|V| = N , where V represents the block set and E repre-
sents the connections in the CFG. Each node is associated
with a vector attribute Fk, i.e., the syntax feature of a

basic code block. A graph is characterized by its adjacency
matrix A ∈ RN×N and the node features F ∈ RN×D.

The structure-aware model is stacked by GCN layers
with MinCutPool layers. Let Â = D̃− 1

2 ÃD̃
1
2 be the sym-

metrically normalized adjacency matrix, where Ã = A+I
means modifying the graph by adding self-loops and D̃ is
the degree matrix of Ã. Assuming that the input of the l-th
GCN layer is H l ∈ RN×D, the output is computed as:

H l+1 = σ(ÂH lW l), (1)

where σ is the activation function and W l is a learnable
parameter. Note that we direct use the syntax feature F ∈
RN×D as the input of the first GCN layer.

The essence of the GCN layer is to allow adjacent
nodes to propagate information, which is very effective
for extracting graph representations. However, due to the
high sensitivity of GCN to graph structure, different graph
structures may lead to problems of over-smoothing or
over-fitting. In webshell, the CFG graph features vary
significantly between large, small, and one-word trojans,
thus requiring improved model generalization ability.

MinCutPool is a graph clustering approach by solv-
ing a continuous relaxation of the normalized minCUT
problem.The K-way normalized minCUT problem is the
task of partitioning nodes V in K disjoint subsets (i.e.,
clusters) by removing the minimum volume of edges.
In PHP source codes, the functions and parameters used
to implement the same functionality exhibit continuity,
making the corresponding block features similar in the
CFG. These blocks will be called as functional clusters in
the following text. We can aggregate them by optimizing
this problem, which is equivalent to maximizing:

1

K

K∑
k=1

∑
i,j∈Vk

Ei,j∑
i∈Vk,j∈V\Vk

Ei,j
, (2)

where the numerator counts the number of edges in the
same functional cluster and the denominator counts the
number of edges between different functional cluster. Let
C ∈ {0, 1}N×K be a functional cluster assignment matrix,
s.t. Ci,j = 1 if node i belongs to functional cluster j. Then
the minCUT problem can be expressed as:

maximize
1

K

K∑
k=1

CT
kACk

CT
kDCk

, (3)

where Ck is the k-th column of C and D is the degree ma-
trix of A. For a given input H l, the MinCutPool layer uses
a multi-layer perceptron (MLP) with the softmax activation
function to predict the functional cluster assignments:

C = MLP (H l, θMLP ), (4)

where θMLP is the parameters of MLP and optimized
using the minCUT problem loss. According to the func-
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Fig. 3. The experimental results of different
syntax extraction methods.

tional cluster assignment matrix C, we perform pooling
aggregation for the blocks in the same functional cluster.

IV. Experiments

A. Experimental Setup

In this section, we present and discuss our experimental
results. Especially, we answer the following three research
questions:
• RQ1: How effective is our graph representation for

modeling PHP source code? (Section IV-B)
• RQ2: How well does our structural-aware model detect

webshells? (Section IV-C)
• RQ3: If SAWD achieves better performance than state-

of-the-art webshell detection systems? (Section IV-D)
1) Data Preparation: Currently, there is no standard-

ized dataset available to evaluate the effectiveness of
webshell detection systems. Thus, we manually collect
webshells from 46 Github repositories and obtain normal
samples from popular PHP projects with large user bases,
such as Thinkphp and WordPress. We first remove dupli-
cates from the collected webshells and normal samples via
the md5 hash. Then, we classify the webshells according
to our standards into three categories: big trojan (length
greater than 2000 bytes), small trojan (length between 200
bytes and 2000 bytes), and one-word trojan (length less
than 200 bytes). We obtain 911 big trojans, 1433 small
trojans, and 407 one-word trojans. Finally, this collected
webshell dataset is divided into a training dataset and a
test dataset according to the proportion of 50% and 50%.

2) Experimental Settings: We train SAWD with an
SGD optimizer for 200 epochs, and the learning rate is
set to 5 × e−4. The proposed approach is implemented
using Python 3.8.0 and PyTorch 1.7.1.

B. Efficacy of Graph Representation (to RQ1)

To evaluate the efficacy of the graph representation for
modeling PHP source code, we compare the performance
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Fig. 4. Ablation study.

of our keyword-based method with other syntax feature
extraction methods. To implement the Word2Vec approach,
we limit the feature extraction process to the first 40
tokens of each basic block. Besides, we assign a 150-
dimensional vector for each token, resulting in a 6000-
dimensional representation for each basic block. In the
case of the Doc2Vec method, we extract features with
a dimension of 1200 for each basic block, which is the
same dimension as our keywords-based method. As Fig. 3
shows, the keywords-based method achieves an accuracy
of 94.50% and outperforms Word2Vec and Doc2Vec. This
benefits from its ability to selectively consider only the
most informative words, thus retaining the original infor-
mation of basic blocks to the maximum extent. In contrast,
the Word2Vec method consumes excessive resources by
storing all the features of each word in a block and must
truncate the words, resulting in the loss of some key
semantics. As for the Doc2Vec method, it considers the
text of each block as a whole, which leads to the influence
of many low-information words on feature extraction.

C. Detection Performance of Our Model (to RQ2)

To evaluate the detection performance of our structural-
aware model, we generate AST from PHP source code
and adopt CNN as the classifier. Note that we use the
same top 1200 most frequent keywords as block features
to ensure fairness. As shown in Fig. 4, we can observe that
our method performs better than the CNN-based model.
The reason is that our model can leverage GCN to combine
graph representation for more efficient feature extraction.
In addition, we can observe that the accuracy drops by
about 0.5% after removing graph pooling, indicating that
graph pooling indeed improves the generalization ability.

D. Comparison with Other Methods (to RQ3)

To demonstrate the effectiveness of our approach, we
compare SAWD with a range of state-of-the-art web-
shell detection systems on our collected dataset. We use
NeoPI [14] to extract multiple statistical features from the



Method Accuracy F1 Score Miss Rate

Statics+SVM 61.5% 69.4% 8.7%
Statics+RF 90.9% 90.0% 14.2%
Statics+MLP 87.3% 87.2% 11.8%

Opcode+SVM 92.0% 91.4% 10.2%
Opcode+RF 92.3% 91.8% 9.7%
Opcode+MLP 92.5% 91.9% 10.8%

SC+W2V+GRU 93.8% 93.2% 4.7%
MSDetector 93.3% 92.7% 6.3%

SAWD (Ours) 94.5% 94.1% 3.4%

TABLE I. Comparision of metrics with other
methods.

source code files and use support vector machines (SVM),
random forests (RF), and multi-layer perception (MLP)
as the classifier. The opcode-based methods [15] adopt
FastText to obtain the vectorized features of the opcode
sequence, which is input into three machine learning
algorithms for webshell detection. In addition, two DL-
based methods proposed in [4] and [8] are also introduced
for comparison.

We can observe from TABLE I that DL-based de-
tection methods generally outperform traditional machine
learning methods. This is because DL-based methods
can automatically extract higher-level features from the
data. Moreover, benefiting from SAWD preserving more
complete syntax and semantic information, our method
achieves better performance than other DL-based methods
with an accuracy of 94.5%. Thus, it can be concluded
that SAWD can effectively analyze PHP source code for
webshell detection.

V. Conclusion

In this paper, we propose SAWD, a structural-aware
webshell detection system, for PHP source code analysis.
SAWD introduces an effective graph representation to pre-
serve the syntax and semantic information in PHP source
code. Based on the graph representation, SAWD leverages
GCN combined with graph pooling for more efficient code
analysis. To evaluate the performance of our proposed
method, we conduct extensive experiments on the collected
webshell dataset. The results demonstrate that our method
outperforms state-of-the-art webshell detection systems. In
future work, we will explore graph construction methods
to replace CFG to further improve detection performance.
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