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Abstract

Extract method is one of the most popular and versatile
refactoring. It is primarily applied to improve the design
of methods by mitigating code smells such as long method,
code clone, and feature envy. In recent past, various meth-
ods for identifying extract method refactoring have been
proposed. However, an established performance hierarchy
among them is lacking as the proposed approaches have
been evaluated on different benchmarks.

This paper evaluates the approaches in a common set-
ting to identify various parameters and their impact on per-
formance, with a goal to help users to identify a tool best
suited to their requirement and aid researchers to make an
informed decision while designing and evaluating a new ap-
proach. Existing approaches are evaluated over a common
benchmark consisting of five open-source software studies
with a focus on understanding the impact of evaluation
settings over performance of approaches. Our experiment
shows that standardization in value selection for evaluation
parameters is crucial. It is observed that most of the ap-
proaches are sensitive to top-n suggestions parameter. Fur-
ther, tolerance parameter used is not generalized. Our find-
ing in performance trend measured in precision, recall, and
F-measure deviate from the earlier results.

1. Introduction

Extract Method refactoring is applied to decompose a
long method in order to gain benefits such as improved read-
ability, reusability, ease of feature extension, and lower code
duplicability [1, 2]. Its application can be viewed as two
part process (i) identification of a task (a subset of state-
ments in the method), and (ii) extraction of the task or ex-
tract method opportunity (EMO) as a separate method. The
second part is automated and is supported in IDEs, Eclipse
for example. Hence, in the recent past, researchers have
proposed various techniques to automate the identification
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of tasks. However, little is known about practitioner’s or
standard approach to this problem, for example how a set
of statements is isolated as a task, what metrics are used as
indicators, is there a minimum or maximum size threshold
over newly extracted method, awareness and selection crite-
ria of existing tools etc. Moreover, there exists a knowledge
gap in state-of-the-art approaches.

Approaches proposed in the last decade vary in design
philosophy, underlying technique, benchmarks, and evalua-
tion criteria used. This makes it difficult for users to clearly
identify best tool/method in each aspect of performance.
Further, unavailability of a large benchmark makes it diffi-
cult for researchers to correctly measure the state-of-the-art.
Hence, we observe a requirement for establishing a standard
evaluation setup and an analysis of the recent approaches.

This study focuses over implementation (tool) and evalu-
ation setting of the proposed approaches; learn early lessons
and apply them to design benchmarks and obtain results
that can be used by both researchers and practitioners. In
this paper, we present an evaluation of state-of-the-art ap-
proaches over a common benchmark. Further, we discuss
a set of guidelines for configuration and metrics for evalu-
ation. Aim of the study is to bring forward standard prac-
tices which may lead to establish the merit of new research
methods over existing methods. Key aspects of focus for
our study are (i) benchmarks used in evaluation, and (ii)
configurations and metrics used in evaluation.

Since, earlier existing approaches used different bench-
marks and tool configurations for evaluation, an analysis
in common setup was required to understand ‘true’ perfor-
mance hierarchy, this paper makes the following contribu-
tions:

• A review of state-of-the-art approaches and evaluation
practices on a common benchmark

• Pluto: A new synthetic benchmark

• Guidelines for developing and evaluating new ap-
proaches

It can be noted that this is the first work aimed at study-
ing the diverse evaluation criteria, and attempts to bring



out standard practices along with a common benchmark to
help users to select a tool as per their requirements and re-
searchers to be better informed about the state-of-the-art.

Rest of the paper is organized as follows: Section 2 lists
a set of aspects of interest for researchers/developers/users
when developing/selecting an extract method refactoring
approach; also these aspects are the focus of this study.
Evaluation of existing approaches and experimental setup
is discussed in Section 3. Finally, conclusion and future
work is discussed.

2. Extract Method Refactoring: Aspects of
Concern

Multiple studies have been conducted to understand ap-
plication and benefits of refactoring in general but little
is known about extract method refactoring [1, 3]. Added
with subjective nature of this refactoring, its automation be-
comes a challenging task. We note that human feedbacks
are crucial for development of an effective and robust tool.
However, there are aspects of formulation and evaluation of
the refactoring approaches that are independent of expert’s
feedback. So, these two aspects can be explored indepen-
dently and later, findings related to the other aspect can be
augmented.

void FiboPrime() {
int i, n, a, b, t;

A. printf("Value of N:");
B. scanf("%d",&n); // Input [A,B]
C. a = 0;
D. if (n ==1)
E. printf("Nth Term:%d",a);
F. else {
G. b = 1;
H. for (i=3; i <=n; i++){
I. t = a + b;
J. a = b; // Compute Nth Term [C-K]
K. b = t;

}
}

L. printf("Nth Term:%d",b);//Show Nth Term [L]
M. for (i=2; i<=b/2;i++){
N. if (b%i == 0)
O. break; // Divisor Computation [M-O]

}
P. if (b<=1 || i <=b/2)
Q. printf("Not Prime");
R. else // Prime Checking [P-S]
S. printf("Prime");

}

Figure 1: A Program for Computing Fibonacci Prime

Now, we present aspects of extract method refactoring
that are central to the study. It includes recent approaches,
challenges in developing an automated solution, and evalu-
ation setup to establish the performance hierarchy of tools.

2.1 Recent Approaches/Tools

Various refactoring approaches for Long Method code
smell use techniques such as clustering [4] [5], control flow
graphs [6, 7, 8] and program slicing [9], [10]. However,
in this section and the paper, we restrict discussion around
a few recent approaches that have been accompanied with
their implementation (tool) and have evaluated their perfor-
mance over open-source software studies.

One of the early extract method refactoring approach
available as a tool is JDeodorant, proposed by Tsantalis and
Chatzgeorgious [11, 12]. It uses complete computational
slice to identify a task that can be extracted as a separate
method. The computed slice may result in duplicate state-
ments in extracted and base method. It is available as an
Eclipse plug-in and have been used for performance evalu-
ation in recent approaches.

Silva et al. [13] proposed, JExtract, a new block-based
method for generating an exhaustive list of suggestions that
are ranked before presenting to the user. The approach uses
a web-based system MyWebMarket to identify the satisfac-
tory configuration for the tool, which then is used in evaluat-
ing the approach via application over two open-source soft-
ware studies, JUnit and JHotDraw. Authors synthetically
created extract method opportunities(EMOs). The evalua-
tion shows that the approach can achieve a high recall at
low precision. Also, the results show the configuration that
produces high precision lowers the recall.

Charalampidou et al. [14] proposed, SEMI, a clustering
based approach for identifying extract method opportuni-
ties. The approach forms cluster of coherent statements
based on the presence of a common variable, object, method
name etc. This method lowers the final suggestions to
the developer/user by first grouping the identified extract
method opportunities and then ranking them. The approach
groups similar opportunities based on overlapping state-
ments, then finds one which offers most benefit in terms of
cohesion if refactored. Similar to JExtract, it also generates
an exhaustive list of suggestions.

Xu et al. [15] proposed, Gems, a machine-learning based
probabilistic model for predicting extract method opportu-
nities. Given the pair of the refactoring candidate and the
method the approach extracts informations such as loop,
size, invocation, type and variable access etc.

Tiwari and Joshi [16] proposed, Segmentation, a clus-
tering based approach that aims at maximizing the preci-
sion with a manageable recall. Further, the proposed ap-
proach restricts the number of suggestions generated by im-
plementing the policy of forming distinct clusters.

Shahidi et al. [17] proposed a method to identify, and
mitigate long method code smell by application of extract
method refactoring. Further, to ensure modularity the refac-
tored code is analyzed for feature envy. Their proposed



method relies on expert’s opinion to evaluate the perfor-
mance of the approach, in contrast to evaluation strategies
followed by recent approaches [12, 13, 14, 16] that use syn-
thetic benchmark.

Since, aforementioned approaches have followed vary-
ing benchmarks and evaluation criteria, a user may find it
difficult to select the most suitable tool as per the require-
ment.

2.2 Subjectivity

Consider the Fibonacci Prime program shown in Fig-
ure 1. The program illustrates the subjective nature of this
refactoring, and also exhibits the challenges in coming up
with a solution. The program contains multiple subtasks
packed in one method to achieve the task of Fibonacci prime
computation. These subtasks are annotated on the right in
the figure.

One can decompose the given method into two meth-
ods (i) statement block A-L corresponding to Fibonacci
term computation, and (ii) remaining statements for Prime
checking. Such a decomposition of the program would re-
sult in a Fibonacci Method with restricted resuability as
it contains input-statement and display-statement within it.
Though, such a decomposition is functionally correct but
may not always be desirable.

Another strategy for decomposition could be to decom-
pose statement block A-L into three parts (i) Input, (ii) Fi-
bonacci term computation, and (iii) statement L for display.
This decomposition lead to extraction of a reusable method
implementing Fibonacci term computation that can be in-
voked with no modifications. Invocation of this method
would require input parameters and returns computed Fi-
bonacci term.

Subjectivity in decomposition adds to challenges in eval-
uating the performance of automated approaches. For this
reason, researchers use a parameter called tolerance when
matching the automatically identified task to ground truth.
We discuss more on tolerance in next section.

2.3 Benchmarks

A benchmark is crucial in evaluating external behavior
of the approach, its performance or usability. It also helps
in gaining an insight into the improvement made by earlier
approaches, and scope for future developments. Evaluation
of multiple approaches over a common benchmark enables
researchers to compare the approaches and rank their per-
formance. Further, public availability of the benchmarks al-
low others to replicate the results and also assess the merits
of their new approaches against the state-of-the-art.

Recent approaches have used three kind of benchmarks
(i) Open-source software along with feedbacks from the de-

veloper, (ii) Open-source software studies, where extract
method opportunities were introduced by inline refactoring,
and (iii) A software from Industry. Since, this paper is fo-
cused on the aspects where direct human intervention is not
present or it is restricted; the benchmark used for our study
is of second kind.

2.4 Tool Configurations and Performance Metrics

Tool’s configuration is crucial in their performance re-
port. Most of the approaches use precision, recall, and
F-measure for evaluating their performance. Given that
most of the approaches have shown excellent performance
over either recall or precision, a change in their default or
prescribed configuration would affect their ‘true’ perfor-
mance. Not only the configuration but also the performance
strength is crucial for a user while selecting tool for identi-
fying refactorings. A few parameters that are used in recent
approaches to tune their tools include top-n suggestions and
tolerance.

The parameter top-n suggestions restricts the count of
suggestions generated by a tool. This parameter directly af-
fects both the precision and the recall of an approach. Gen-
erally, tools provide ranked suggestions. So, for example, if
a tool’s first suggestion is always best match with existing
refactoring opportunity in a method then considering more
than one suggestions would decrease its precision. How-
ever, it can be noted that even for a method with exactly
one refactoring opportunity, there are two functionality that
may be extracted. For example, method shown in figure 1,
a tool may identify Fibonacci or Prime as an extract method
refactoring opportunity or both. Thus, it seem that value for
this parameter should be greater than two.

The other parameter of interest is tolerance, which sets
limit to maximum difference/mismatch between the extract
method refactoring opportunity present in a method and
suggested refactoring generated by the tool. If the differ-
ence between the two is within the threshold the suggestion
is considered valid and counted for precision with respec-
tive tolerance limit. Finding an appropriate threshold is cru-
cial. In literature absolute and relative threshold has been
used.

3. Evaluation

This section discuss evaluation setup and analyses vari-
ous configurations and their impact over performance.

3.1 Research Questions

The study is focused on quantitatively assessing the
sensitivity of the approaches to experimental setup, to
report findings that would be helpful for a user to make an



informed decision while selecting a tool for their source
code and performance criteria.
RQ1 Does different performance parameters (precision, re-
call, and f-measure) have a correlation between approach?
RQ2 How does the configuration affects the performance
and usage of an approach?

3.2 Experimental Setup

To assess the performance sensitivity to different exper-
iment settings, we prepared a set of open-source software
studies with extract method refactoring candidates, a set
of values for tolerance threshold, downloaded and installed
tools of recent approaches, and fixed precision, recall, and
F-measure as parameters to measure performance.

• Tools In this study we use the implementation
(tools) provided by the authors of the respective ap-
proaches. Further, as part of this study, of five ap-
proaches discussed in Section 2.1, we include three ap-
proaches/tools namely, JExtract, SEMI, and Segmen-
tation. Since, this is an early phase of studying the
state-of-the-art of identifying extract method refactor-
ing, we excluded JDeodorant as it has been evaluated
in multiple studies and have been outperformed on dif-
ferent performance measures.

We note that exclusion of the two tools (based on slic-
ing and machine learning) lowers the diversity of the
study in terms of techniques. However, included tools
follow similar technique for clustering– functional-
blocks-based cluster–, which adds to uniformity in
evaluation. Further, included tools collectively are
among the leading performers in all three performance
metrics, precision, recall, and F-measure.

• Benchmark To analyze the aspects of the refactoring
least associated or dependent on expert feedback, we
use synthetic benchmark (type (ii) benchmarks dis-
cussed in Section 2.3) to evaluate the selected ap-
proaches. Moreover, synthetic benchmark is better
equipped for a controlled experiment. [13] created
two synthetic open-source software studies(OSS) JU-
nit and JHotDraw; both the OSSs were used for eval-
uation of multiple approaches [13, 14, 16]. We follow
the same procedure to extend the set of OSSs in used
in the evaluation by including Mockito, EventBus, and
Javapoet; collectively named as Pluto [18]. The OSS
studies used in the paper are listed in Table 1. All five
OSSs contain a total of 173 EMOs, which makes it one
of the largest benchmark in terms of EMO count. Fur-
ther, the table shows that individual software studies

https://doi.org/10.6084/m9.figshare.20206382.v1

Table 1: Synthetic Benchmark for Extract Method Refac-
toring

Name OSS studies #EMOs Mean Method
Size (LoC)

Mockito-3.3.8 46 12.85
Pluto-1.0 EventBus-3.2.0 25 20.48

JavaPoet-1.12.1 21 17.40
JExtract[13] JUnit-3.8 25 18.04

JHotDraw-5.2 56 14.98

contain methods with varying range mean-size, which
adds to the diversity of the benchmark.

• Tolerance As we discussed earlier, task of Fibonacci
term computation in Figure 1 is associated with input
and display subtasks. So during extraction of it, inclu-
sion of either or both subtasks results in lower reusabil-
ity as some developers may have a different source
for input or they may not be willing to display result
on console. In such cases, where inclusion or exclu-
sion result in valid functional-block but its desirability
is subjective, researchers use an evaluation parameter
called as tolerance.
In literature, two methods for selecting a value for
tolerance is proposed (i) absolute values in range 1-
3 [16] and (ii) values relative to method size in 1%-
3% [14]. Now, in case of absolute tolerance value, if
the statement difference between task marked desired
by expert/ground-truth and tool’s suggestion is one-
statement then the suggested task is classified as match
with tolerance 1. Similarly, difference of 2-statements
will be classified as a match with tolerance 2, and so
on. In this study, we use absolute tolerance values
as for the benchmark used the mean method size and
mean EMO size are 7.88 and 17.40 statements, respec-
tively.

• Tool Configuration Approaches offer various options
for fine tuning the analysis process. We use default
configuration except for top-n suggestions option. We
recorded output for top-3 and top-5 settings; these two
settings have been used in literature, so we aim to anal-
yse its impact on performance. A higher value for this
setting may increase recall but would lower the preci-
sion and F-measure. Whereas, a lower value such as
n=1 can be too restrictive.

3.3 Results and Discussion

This section presents and discusses results obtained by
application of the considered tools over five OSS studies.
Table 2 and 3 show performance of the approaches in terms
of precision, recall and F-measure for top-n suggestions set



Table 2: Performance for Top 5 suggestions

Tools Tolerance Precision Recall F measure
1 18.91 86.13 31.00

JExtract 2 19.42 88.44 31.84
(794) 3 19.67 89.60 32.26

1 13.62 38.73 20.15
SEMI 2 18.29 52.02 27.07
(492) 3 19.92 56.65 29.47

1 10.88 12.14 11.48
Segmentation 2 23.83 26.59 25.14
(194) 3 35.23 39.31 37.15

Table 3: Performance for Top 3 suggestions

Tools (Sugges-
tions)

Tolerance Precision Recall F measure

1 28.06 80.92 41.67
JExtract 2 30.06 86.71 44.64
(502) 3 30.46 87.86 45.24

1 16.44 34.68 22.30
SEMI 2 22.47 47.40 30.48
(365) 3 24.93 52.60 33.83

1 10.99 12.07 11.51
Segmentation 2 24.08 26.44 25.21
(192) 3 35.60 39.08 37.26

to 3 and 5. Best performance entry is highlighted by un-
derlining for each configuration setting (that is each row).
Now, we analyze the results and answer the research ques-
tions formulated before.

3.3.1 Performance hierarchy (RQ1)

• Suggestions Segmentation is most conservative ap-
proach for generating refactoring suggestions. It pro-
vides 1.10 suggestions per EMO (top-3 suggestions).
The same for JExtract and SEMI is 2.88 and 2.09, re-
spectively. Thus, strategy used by Segmentation can
be applied by existing/new approaches to restrict the
suggestions generation.

• Precision and Recall JExtract remains top-performer
for recall, whereas top performer for Precision vary
between JExtract and Segmentation. For tolerance
1, JExtract is top performer in both configurations,
whereas for tolerance 3, Segmentation provides best
precision.

• F-measure A high recall with comparable precision
JExtract provides high F-measure except in case of
top-5 suggestion configuration at tolerance 3.

3.3.2 Impact of configuration (RQ2)

• Top-n Suggestions We observe that a preferable value
for this configuration parameter is 3 (between 3 and 5).
Table 2 and 3 shows that gain in recall is 2-5% but loss

in precision and F-measure is 5-10% for SEMI JEx-
tract. JExtract exhibits most and Segmentation least
sensitivity.

• Tolerance We note that both the absolute and relative
(percentage based) criteria for tolerance are not gener-
alizable. Absolute tolerance allows greater flexibility
when EMO sizes are smaller (which is often the case)
and it is too strict for large EMOs (such as 30+ lines).
On the other hand, relative tolerance based on method
size is not appropriate for large methods; as large
methods does not guarantee relatively larger EMOs.
Thus, for same sized EMO in different methods the
tolerance would vary greatly (for example, tolerance
for a method with 100 and 500 statements will be 1-
3 and 5-15 statements respectively). For the bench-
mark studied, we computed median EMO and median
method size for methods with 50 or more statements
and found that median EMO size is 26.5 and median
method size is 78.

• Default Configuration We observe that facilitating a
user to set a default configuration settings for a ses-
sion would make the process faster. For example, in
this study, we needed to execute identify EMOs opera-
tion for different methods in same class. In such cases,
resetting configuration for each method consumes ad-
ditional time. Minimizing the number of clicks could
be used as an indicator to design user configuration set-
ting interface.

3.4 Threats to validity

One of the main threats to validity to our study is bench-
mark. It is comparatively smaller in size that is number of
OSS studies included. Inclusion of additional studies would
provide necessary diversity in EMOs and methods in terms
of size and structure. Further, association between the in-
dividual OSSs and approaches is not evaluated, which may
differ from overall performance. Finally, inclusion of addi-
tional approaches would enrich the performance hierarchy.

4. Conclusion

We presented an analysis of state-of-the-art approaches
over an extended benchmark. The study shows that evalu-
ation parameters such as benchmark and configuration set-
tings are crucial in establishing true performance compari-
son of multiple approaches. Further, we show and discuss
how values chosen for top-n and tolerance parameters can
result in biased performance. Some results, such as best ap-
proach for recall or conservative suggestion generator, reaf-
firm the earlier findings. However, some other results, spe-



cially for tolerance, need to be reproduced for larger bench-
mark.
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