
Automatic Diagnosis of Quantum Software Bug-Fix Motifs

Krishn V. Kher1, M. Bharat Chandra1, Ishan Joshi2, Lei Zhang2, and M. V. Panduranga Rao1

1Department of Computer Science and Engineering, IIT Hyderabad, India
2Department of Information Systems, University of Maryland, Baltimore County, USA

Abstract

Bug-fix pattern detection has been investigated in the
past in the context of classical software. However, while
quantum software is developing rapidly, the literature is still
lacking automated methods and tools to identify, analyze,
and detect bug-fix patterns. To the best of our knowledge,
our work is the first to leverage classical techniques to de-
tect bug-fix patterns in quantum code. In this paper, we pro-
pose an automated framework, called Q-Diff, for detecting
bug-fix patterns in IBM Qiskit quantum code. In the frame-
work, we develop a proof-of-concept tool based on Abstract
Syntax Trees. To validate our method, we test Q-Diff with
a variety of quantum bug-fix patterns using examples. We
hope our work will attract the attention of the quantum
software engineering community to improve the quality of
quantum software.

1 Introduction

With the increasing size and complexity of quantum pro-
grams being written, it is natural to expect an increased
number of bugs and more complicated bugs to creep into
quantum source code. Indeed, this phenomenon is folklore
in classical software [3]. Therefore, a significant body of
research, tools, and techniques exist in the detection and
elimination of bugs in classical software [8]. These tech-
niques range from static code analysis [2] to run-time de-
tection [28].

The effort to understand and classify commonly occur-
ring bugs yields rich dividends. Steps for this approach in-
clude the identification and classification of bug patterns,
the design of bug-fixes, and the detection of bug-fix pat-
terns. Correct identification of bug-fix patterns is of im-
mense use in statistical analysis of bugs, their prevalence,
and fixes. This helps in streamlining and developing tools
for automatic bug detection, fixing, and manpower training.

DOI: 10.18293/SEKE2023-196

In this paper, we are particularly interested in automated ap-
proaches to detect bug-fix patterns in quantum programs.

In classical software engineering, common bug-fix pat-
terns are well studied, and both manual and automated ap-
proaches have been proposed [4, 12, 18, 20]. In quantum
software engineering [19], preliminary studies exist in test-
ing of quantum programs [14, 15, 16], and bug patterns of
quantum programs [6, 29, 30].

In this paper, we propose a new framework, called Q-
Diff, for detecting quantum bug-fix patterns. We translate
the framework into a tool, as a proof-of-concept. The tool
uses Abstract Syntax Trees (AST) to compare the quantum
buggy code and patches by extracting required information
specific to bug-fix patterns (see Section 3). The detectors in
the tool then positively identify or reject the bug-fix pattern.
We validate this tool with three quantum bug-fix patterns in
Qiskit [23] (in Section 4). In accordance with the frame-
work, this in-house tool will be further developed, incorpo-
rating more quantum bug-fix patterns and supporting more
quantum programming frameworks.

Our contributions are: 1) we develop an AST-based tool
to detect bug-fix patterns in Qiskit,1 which is, to the best of
our knowledge, the first work in the literature, and 2) we
show that our tool can detect at least three bug-fix patterns.

2 Related Work

In the interest of space, we assume a working knowledge
of quantum computing [17]. We provide a brief review of
existing bugs, fixes, and bug-fix patterns in both classical
and quantum programs.

2.1 Classical Bug and Fix Patterns

Bug-fix patterns for classical programs are widely stud-
ied in the literature. Pan et al. [18] identify 27 bug-fix pat-
terns based on an analysis of historical bug-fix pairs. Cam-

1Our source code is publicly available at https://github.com/
KrishnKher/Q-AutoDiaBFM.

1

pos and Maia [4] conduct an empirical analysis to character-
ize bug-fix patterns in Java open-source repositories. Soto
et al. [21] leverage lessons learned in C projects and per-
form a large-scale study of bug-fix patterns of Java projects
on GitHub.

Automated approaches for detecting certain bug-fix pat-
terns are considered more efficient compared to manual ap-
proaches in general. Madeiral et al. [12] manually ana-
lyze hundreds of bug-fixes and propose an automated tool
based on AST to detect repair patterns in bug-fixes using the
GumTree algorithm. The AST method is an effective solu-
tion in terms of detecting code differences, other AST-based
auto detection tools include [7, 13].

2.2 Quantum Bug and Fix Patterns

The literature on testing and debugging quantum pro-
grams is growing. A quantum program is challenging to
test because of the underlying principles of quantum me-
chanics [14]. Software engineering principles are being ap-
plied to quantum program testing and debugging [14, 15];
see [29] for a comprehensive overview of quantum software
engineering research work.

The community takes multiple approaches to tackle the
challenge. Testing quantum programs may be simplified
by adding assertion checks to the code [1, 6, 9, 10] or, in
some cases, introducing debugging tricks, such as extract-
ing classical information [15]. We can also adapt classi-
cal fuzzy testing techniques [24] or perform property-based
testing [5]. The identification of bug patterns in quan-
tum programs can assist in defect analysis and categoriza-
tion [11, 30]. Zhao et al. [31] propose a benchmark to eval-
uate testing and debugging methods for Qiskit programs.
As the research of quantum software engineering is still in
its infancy, the literature lacks automated solutions to detect
bug-fix patterns in quantum programs.

3 Our Approach

Code-diffing is a technique used to compare two versions
of code to identify differences or changes. This is typically
done by comparing the ASTs of the buggy and the fixed
code, line-by-line, and identifying added, deleted, or mod-
ified lines. Figure 1 shows the architecture of our tool Q-
Diff. As can be seen, Q-Diff reads both buggy and fixed
code, then determines the bug-fix pattern based on a se-
quence of steps, including 1) obtaining the AST, which ab-
stracts the structured code information, 2) matching against
syntactic checks using regular expression (RegEx) formu-
las, which searches for the quantum-related syntax, and
3) performing semantic checks, to identify bug-fix patterns
based on quantum code semantics.

Figure 1: The architecture of Q-Diff. There is one detector
for each of the three bug-fix patterns. This structure can be
extended by adding more detectors with specific syntactic
and semantic checks.

As an initial study, Q-Diff can detect three bug-fix pat-
terns, i.e., incorrect initialization of qubits, incorrect gate
operations, and incorrect measurements, as can be seen in
Figure 1. Note that each bug-fix pattern has its own detector,
and each detector has its own logic that determines whether
a bug-fix code pair falls into this category or not. In other
words, three detectors, corresponding to the three bug-fix
patterns, have been implemented in Q-Diff at present. How-
ever, the sequence of logic in each detector is the same, as
depicted in Figure 1. This code structure can be extended to
add more detectors and to change or augment the logic of
various detectors if necessary.

There are two advantages of the current implementation
of multiple detectors. First, each detector can run in paral-
lel, in principle. If a large number of bug-fix code pairs are
waiting to be fed into Q-Diff, we do not need to input each
pair sequentially. Second, there may exist hybrid bug-fix
patterns where a bug-fix pair can be categorized into mul-
tiple patterns. In such a case, the detectors will not inter-
fere with each other. For future work, we propose to adopt
a hierarchical approach. Starting with a highly coarse-
grained categorization like Python-related bug-fix patterns
and Quantum-related bug-fix patterns in Qiskit, we descend
to finer grains of categorization, ending in detectors for spe-
cific bug-fix patterns at the “leaf” level. We believe that this
approach has the potential to improve search efficiency sub-
stantially whenever large categories can be pruned out.

We now discuss how our framework operates in detail.

3.1 Creation of Bug-Fix Pattern List

We identify bug-fix patterns from various sources, in-
cluding the studies of [11, 31], StackOverflow, and GitHub

2

repositories.2 Based on our initial study, we create repre-
sentative examples of commonly occurring buggy and fixed
code for each of the bug-fix patterns. These examples are
derived from real-world examples. We then patch them up
manually and pass the code pair to Q-Diff. For testing the
detector of each bug-fix pattern, we create a group of test
cases with an equal number of positive test cases (matching
the pattern) and negative test cases (not matching the pat-
tern). The detectors should correctly identify the positive
cases and reject the negative cases.

3.2 AST Extraction

We first extract the ASTs for the buggy and fixed code,
respectively. These ASTs will subsequently provide infor-
mation to the detectors for syntactic and semantic analysis.
Example information that ASTs provide includes identifiers
and a number of quantum circuit objects.

3.3 Bug-Fix Pattern Detectors

The implementation of a detector varies from one bug-fix
pattern to another. However, they all have an initial syntac-
tic filter and a semantic check module.

3.3.1 Syntactic Checks with RegEx Formulations

For each bug-fix pattern, we formulate a RegEx. The RegEx
is used to identify the lines of code that are relevant to a
particular bug-fix pattern. If a match is found on a line of
code, then we move on to the semantic check phase. When
all lines of code are exhausted without finding a match, we
declare that the buggy-fix code pair under investigation does
not belong to the current pattern.

3.3.2 Semantic Checks

After RegEx matching, we perform semantic checks. These
checks would be specific to the bug-fix pattern detector. For
example, in the context of incorrect gates, we are still not
sure if a line of code matched by the RegEx contains an ob-
ject of quantum circuits. Thus, we analyze the information
extracted from the AST in the context of Qiskit semantics
to decide this.

4 Implementation of Q-Diff

In this section, we discuss examples of bug-fix patterns
and their detection. Note that the examples described here

2Some bug-fix patterns that we manually detect can be found
at https://github.com/KrishnKher/Q-AutoDiaBFM/
blob/main/QSEBugFindings.xlsx

are selected to illustrate the working of Q-diff. We provide
more examples on our GitHub repository.

As discussed in Section 3, the bug-fix patterns that we
describe here are 1) incorrect initialization, 2) incorrect
gates, and 3) incorrect measurements. These three patterns
correspond to the three key elements in quantum compu-
tation, i.e., qubits, operations, and measurements. We em-
phasize that we only consider single-line errors instead of
multi-line errors. For most simple code of this nature, multi-
line errors do not happen. However, Q-Diff can be extended
in the future to identify multiple independent single-line
bug-fix patterns in a buggy-fixed code pair. We now look
at detectors for the three bug-fix patterns with examples.

4.1 Incorrect Initialization

Q-Diff detects two cases of incorrect initialization:
1) A gate operation is applied on a wrong qubit,
i.e., it should be applied on a different qubit, as an
IncorrectInitialization error; 2) The number
of qubits that the QuantumCircuit works with is
different in the buggy and fixed code—the so-called
IncorrectQubitCount error.

4.1.1 Syntactic Checks

We use RegEx .+..* and .+QuantumCircuit.* to retrieve
the lines of the code where a Qiskit gate has been used.

4.1.2 Semantic Checks

We conduct a two-step semantic check. First, we identify
the lines where the same kind of gate is being used, to sepa-
rate a case from a IncorrectGate error (here, quantum
gates are used for qubit initialization). Next, we check each
of these valid gates if there is any difference in the qubit in-
dices in the bug-fix code pair. If there is any difference then
we flag it as an IncorrectInitialization error.

4.1.3 Examples

1 Buggy Code:
2 qc = QuantumCircuit(2)
3 - qc.h(0)
4 ...
5 Fixed Code:
6 qc = QuantumCircuit(2)
7 + qc.h(1)
8 ...

Listing 1: Incorrect initialization

Listing 1 simulates a scenario where an incorrect qubit
is initialized—the developer wants to initialize the second
qubit instead of the first one, which is semantically differ-
ent, although syntactically correct. The only error here is

3

in the argument to the Hadamard gate being applied. Our
semantic checks identify the bug-fix and correctly classify
it as an IncorrectInitialization error.

4.1.4 IncorrectQubitCount

The case for IncorrectQubitCount is very
similar—there is a mismatch in the argument for the
QuantumCircuit object, i.e. in the number of qubits
with which the QuantumCircuit object is instantiated.
This is dealt with in the same way as above; thus, we skip
the details.

4.2 Incorrect Gates

Here, we show instances where an incorrect gate is ap-
plied on a certain specified qubit of a QuantumCircuit.

4.2.1 Syntactic Checks

The RegEx for this type of bug is .+..* , which is the same
as the first one that we use for IncorrectInit. How-
ever, the semantic check will be different, and we will ex-
plain the details in Section 4.2.2. The RegEx abstracts lines
of code involving a quantum gate. After identifying the gate
operations, we will identify the name of the quantum cir-
cuits and gates for comparison.

4.2.2 Semantic Checks

After the syntax checks from RegEx, we perform additional
semantic checks in two steps. First, we check 1) if the
identifiers are not equal, and 2) if they both actually be-
long to the inbuilt gates available in Qiskit. If either of
these checks fails, we declare the bug-fix pair is not of an
IncorrectGate type. If both conditions are satisfied, Q-
Diff classifies the bug-fix pair in this category (as shown in
Listing 2). Next, we identify QuantumCircuit objects
independent of their actual name in the code and detect er-
rors, using the AST. Listing 3 illustrates this case.

4.2.3 Examples

1 Buggy Code:
2 qc = QuantumCircuit(2)
3 circuit.h(0)
4 - qc.h(1)
5 ...
6 Fixed Code:
7 qc = QuantumCircuit(2)
8 circuit.h(0)
9 + qc.x(1)

10 ...

Listing 2: First example of incorrect gate

Listing 2 (derived from Stack Overflow [22]) illus-
trates a scenario where the gate operation is incorrect in
QuantumCircuit. The identifiers are h and x in this
example, both of which correspond to valid inbuilt gates in
Qiskit, namely, the Hadamard gate and the X-gate. Obvi-
ously, the identifier names, h and x are not equal. Hence, it
is classified as an IncorrectGate kind of bug.

1 Buggy Code:
2 - a = QuantumCircuit(2)
3 - a.sdg(1)
4 ...
5 Fixed Code:
6 + qc = QuantumCircuit(2)
7 + qc.tdg(1)
8 ...

Listing 3: Second example of incorrect gate

Listing 3 is very similar to the first example, except that
now the QuantumCircuit object has different names,
i.e., a and qc. In the second example, we first check if the
underlying gate is being accessed by a QuantumCircuit
object. We do this using the data extracted from the AST of
the buggy and the fixed code. This removes the dependency
on the identifier name to determine if a bug-fix pair is in the
IncorrectGate or not.

4.3 Incorrect Measurements

Here, we describe the bug-fix pattern of incorrect mea-
surements of qubits, i.e., IncorrectMeasurement in
Q-Diff.

4.3.1 Syntactic Checks

We use a different RegEx expression compared with the first
two patterns, i.e., .+.measure.* This RegEx helps us to
retrieve the code where a Qiskit measure() function is
used for further semantic checks.

4.3.2 Semantic Checks

We categorize a bug-fix pair in this class as follows.
First, we check if there are any measure functions in the

bug-fix pair. If not, we declare that the bug is not of an
IncorrectMeasurement type; otherwise, Q-Diff goes
to the next step.

Second, there are three commonly used measure func-
tions in Qiskit, namely, measure(), measure all(),
and measure inactive(). The Q-Diff first computes
the numbers of all variants of measure functions used in
the buggy and fixed code, respectively. If the numbers are
different, the bug-fix pair then falls into this category; oth-
erwise, Q-Diff will go to the next step. Note that we assume
multiple measure functions are in one-to-one correspon-
dence in the buggy and fixed code.

4

Third, if measure functions are different in the buggy
and fixed code, this bug-fix pair falls into this category; oth-
erwise, Q-Diff will go to the next step.

Fourth, if the measure functions are the same, we
check if the arguments passed to the measure functions
are the same in a bug-fix code pair. Since arguments are
usually qubit lists, we use Python numpy arrays to check
the difference. If the arguments are different, then it is in
the category of IncorrectMeasurement; otherwise,
Q-Diff will go to the last step of the semantic check.

Finally, if both the measure functions and the ar-
guments are the same, we check the positions of the
measurements. If the positions are different in the
buggy and fixed codes, this code pair also falls into the
IncorrectMeasurement category.

4.3.3 Examples

1 Buggy Code:
2 qr = QuantumRegister(2, name=’qreg’)
3 cr = ClassicalRegister(2, name=’creg’)
4 qc = QuantumCircuit(qr,cr)
5 qc.h(qr)
6 - qc.measure_all()
7 Fixed Code:
8 qr = QuantumRegister(2, name=’qreg’)
9 cr = ClassicalRegister(2, name=’creg’)

10 qc = QuantumCircuit(qr,cr)
11 qc.h(qr)
12 + qc.measure(qc.qubits, qc.clbits)

Listing 4: First example of incorrect measurement

We show two examples here. In Listing 4 (de-
rived from qiskit-terra issue report #6751), though
valid measure functions are used in both bug and
fix, measure all() function shows in “bug” while
measure() function is its replacement in “fix”. The
outputs of the measure all() function and the
measure() function are not expected to be the same,
hence an IncorrectMeasurement error.

1 Buggy Code:
2 qc = QuantumCircuit(3,3)
3 qc.x(0)
4 qc.barrier()
5 - qc.measure([0,1,2],[0,1,2])
6 Fixed Code:
7 qc = QuantumCircuit(3,3)
8 qc.x(0)
9 qc.barrier()

10 + qc.measure([1,0,2],[1,0,2])

Listing 5: Second example of incorrect measurement

Similar to Listing 4, although valid measure func-
tions are being used in Listing 5 (issue report #664 in
qiskit-aer), the outputs written to the classical bits are
in a wrong order in the buggy code. Hence, this is an
IncorrectMeasurement error, and Q-Diff identifies it
successfully.

4.4 A “Counter Example” Epilogue

How would Q-Diff behave if there is a syntactic (or tex-
tual) difference between the buggy and the fixed code, but
the difference has no semantic consequence?

1 Buggy Code:
2 qc = QuantumCircuit(2)
3 - qc.h(0+1)
4 ...
5 Fixed Code:
6 qc = QuantumCircuit(2)
7 + qc.h(1)
8 ...

Listing 6: Code identified as a correct implementation

In Listing 6, we notice that the underlying logic in both
the code is exactly the same, but for the representation,
wherein the buggy code, qubit 0 is denoted by qubit 0 + 1.
A manual check determines this is not a bug-fix pattern and
our tool does the same—it is capable of recognizing the se-
mantics as opposed to just reporting text differences.

5 Threats to Validity

Validity threats are classified according to [26, 27]. In-
ternal and construct validity: In this initial study, we test
Q-Diff with bug-fix patterns where only one line of code is
modified. We develop both positive and negative test cases
to verify our implementation as proof-of-concept and will
test our framework with real bug-fix code. External and
conclusion validity: Software engineering studies suffer
from the generalization problem, which can only be solved
partially [25]. Although we cover the three most signif-
icant bug-fix patterns of Qiskit in quantum computations,
our findings may not generalize to other projects. As a pilot
study of quantum bug-fix patterns, we plan to extend our re-
search with more bug-fix patterns and quantum frameworks.
We also hope the quantum software engineering commu-
nity will expand methods and tools to improve the quality
of quantum software.

6 Conclusions and Future Work

In this paper, we conduct the first analysis of bug-fix
patterns in quantum programs. We propose an AST-based
framework called Q-Diff to automatically detect Qiskit bug-
fix patterns and prove the concept with various examples.
An obvious future direction is to enhance the tool with de-
tectors for an exhaustive list of bug-fix patterns. Other bug-
fix patterns that can be potentially detected by Q-Diff in-
clude but are not limited to 1) incorrect definition or appli-
cation of custom gates in Qiskit and 2) unhandled excep-
tions in Qiskit. A second direction to pursue is the detec-
tion of more complex bugs and fixes, especially compos-
ite ones, which involve multiple bug-fix patterns and fixes

5

that involve multiple lines of code that are not necessarily
co-located in the code. An example is the “computation
in the wrong basis” bug-fix pattern. Several quantum al-
gorithms first change the basis (say, from computational to
Fourier), apply unitary gates Ui and measurements Mi, and
revert (to computational basis) for further computation—
the buggy code could then be U1M1 . . . and the fixed code
is HU1M1 . . . H

−1, where H is the Fourier transform. Fi-
nally, a multi-pronged approach that uses ASTs, parse trees,
and lexical analysis to analyze bug-fix patterns semanti-
cally, would be a promising direction to pursue.

References

[1] S. Ali, P. Arcaini, X. Wang, and T. Yue. Assessing the effectiveness
of input and output coverage criteria for testing quantum programs.
In 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), pages 13–23. IEEE, 2021.

[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and
J. Penix. Using static analysis to find bugs. IEEE Software, 25(5):22–
29, 2008.

[3] A. Barr. Find the Bug: A Book of Incorrect Programs. Addison-
Wesley Professional, 2004.

[4] E. C. Campos and M. de Almeida Maia. Common bug-fix patterns:
A large-scale observational study. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 404–413. IEEE, 2017.

[5] S. Honarvar, M. R. Mousavi, and R. Nagarajan. Property-based test-
ing of quantum programs in q#. In Proc. of the IEEE/ACM 42nd In-
ternational Conference on Software Engineering Workshops, pages
430–435, 2020.

[6] Y. Huang and M. Martonosi. Statistical assertions for validating pat-
terns and finding bugs in quantum programs. In Proc. of the 46th
International Symposium on Computer Architecture, ISCA’19, page
541–553. Association for Computing Machinery, 2019.

[7] M. R. Islam and M. F. Zibran. How bugs are fixed: Exposing bug-fix
patterns with edits and nesting levels. In Proc. of the 35th annual
ACM symposium on applied computing, pages 1523–1531, 2020.

[8] Y. Lee and J. Yang. Analysis of bug types of textbook code with
open-source software. In H. R. Arabnia, L. Deligiannidis, F. G.
Tinetti, and Q.-N. Tran, editors, Advances in Software Engineering,
Education, and e-Learning, pages 629–639, Cham, 2021. Springer
International Publishing.

[9] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie.
Projection-based runtime assertions for testing and debugging quan-
tum programs. Proc. of the ACM on Programming Languages,
4(OOPSLA):150:1–150:29, 2020.

[10] J. Liu, G. T. Byrd, and H. Zhou. Quantum circuits for dynamic run-
time assertions in quantum computation. In Proc. of the 25th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’20, page 1017–1030.
Association for Computing Machinery, 2020.

[11] J. Luo, P. Zhao, Z. Miao, S. Lan, and J. Zhao. A comprehensive
study of bug fixes in quantum programs. In 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 1239–1246. IEEE, 2022.

[12] F. Madeiral, T. Durieux, V. Sobreira, and M. Maia. Towards an auto-
mated approach for bug fix pattern detection. In Proc. of the VI Work-
shop on Software Visualization, Evolution and Maintenance (VEM),
2018.

[13] M. Martinez, L. Duchien, and M. Monperrus. Automatically extract-
ing instances of code change patterns with ast analysis. In 2013 IEEE
international conference on software maintenance, pages 388–391.
IEEE, 2013.

[14] A. Miranskyy and L. Zhang. On testing quantum programs. In Proc.
of the 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pages
57–60. IEEE, 2019.

[15] A. Miranskyy, L. Zhang, and J. Doliskani. Is your quantum program
bug-free? In Proc. of the ACM/IEEE 42nd International Conference
on Software Engineering: New Ideas and Emerging Results, ICSE-
NIER ’20, page 29–32. ACM, 2020.

[16] A. Miranskyy, L. Zhang, and J. Doliskani. On testing and debugging
quantum software. arXiv preprint arXiv:2103.09172, 2021.

[17] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge Univ. Press,
2010.

[18] K. Pan, S. Kim, and E. J. Whitehead. Toward an understanding of bug
fix patterns. Empirical Software Engineering, 14:286–315, 2009.

[19] M. Piattini et al. The talavera manifesto for quantum software engi-
neering and programming. In Proc. of the 1st International Workshop
on the QuANtum SoftWare Engineering & pRogramming, Talavera
de la Reina, Spain, 2020, volume 2561 of CEUR Workshop Proceed-
ings, pages 1–5. CEUR-WS.org, 2020.

[20] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. Maia.
Dissection of a bug dataset: Anatomy of 395 patches from defects4j.
In SANER 2018, 03 2018.

[21] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo. A deeper
look into bug fixes: patterns, replacements, deletions, and additions.
In Proc. of the 13th International Conference on Mining Software
Repositories, pages 512–515, 2016.

[22] Stack Overflow. 2 entangled qubit gives all states with 25 %.
https://stackoverflow.com/questions/62661255/
2-entangled-qubit-gives-all-states-with-25,
2022.

[23] M. Treinish, J. Gambetta, et al. Qiskit/qiskit: Qiskit 0.39.5, Jan.
2023.

[24] J. Wang, M. Gao, Y. Jiang, J. Lou, Y. Gao, D. Zhang, and J. Sun.
Quanfuzz: Fuzz testing of quantum program. arXiv preprint
arXiv:1810.10310, 2018.

[25] R. J. Wieringa and M. Daneva. Six strategies for generalizing
software engineering theories. Science of computer programming,
101:136–152, 4 2015.

[26] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering. Computer
Science. Springer Berlin Heidelberg, 2012.

[27] R. Yin. Case Study Research: Design and Methods. Applied Social
Research Methods. SAGE Publications, 2009.

[28] M. Young and M. Pezze. Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2005.

[29] J. Zhao. Quantum software engineering: Landscapes and horizons.
arXiv preprint arXiv:2007.07047, 2020.

[30] P. Zhao, J. Zhao, and L. Ma. Identifying bug patterns in quantum
programs. In Proc. of the 2021 IEEE/ACM 2nd International Work-
shop on Quantum Software Engineering (Q-SE), pages 16–21. IEEE,
2021.

[31] P. Zhao, J. Zhao, Z. Miao, and S. Lan. Bugs4q: A benchmark of real
bugs for quantum programs. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1373–
1376. IEEE, 2021.

6

