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Abstract—Code summarization is a task that aims at auto-
matically producing descriptions of source code. Recently many
deep-learning-based approaches have been proposed to generate
accurate code summaries, among which pre-trained models for
programming languages have achieved promising results. It is
well-known that source code written in programming languages
is highly structured and unambiguous. Though previous work
pre-trained the model with well-design tasks to learn universal
representation from a large scale of data, they haven’t considered
structure information during the fine-tuning stage. To make
full use of both the pre-trained programming language model
and the structure information of source code, we utilize Flow-
Augmented Abstract Syntax Tree (FA-AST) of source code for
structure information and propose GraphPLBART – Graph-
augmented Programming Language and Bi-directional Auto-
Regressive Transformer, which can effectively introduce structure
information to a well pre-trained model through a cross attention
layer. Experimental results show that our approach outperforms
the baseline models in some metrics.

Index Terms—code summarization, pre-trained model, code
structure, deep learning

I. INTRODUCTION

Code summary refers to a natural language description of
a code segment which can facilitate code comprehension.
However, writing high-quality code summaries is a very time-
consuming activity, and due to the rapid update of software,
many human-written code summaries can be outdated fast.
Thus with the development of software engineering, the code
summarization task, which aims at automatically generating
natural language descriptions for code segments, has received
increasing interest in recent years.

Many approaches have been proposed to generate code
summaries automatically, among which the deep-learning-
based approaches have been proven to be the most effective.
For example, Iyer et al. [1] first utilized Long Short Term
Memory (LSTM) networks with attention mechanism to pro-
duce comments for C# and SQL, which outperformed the
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traditional retrieval-based method. Ahmad et al. also used a
transformer model [2] with copy mechanism [3] to capture
the long-range dependencies in source code [4], which proved
the transformer model better on the task.

However, in contrast to natural language, source codes are
unambiguous and structured [5]. From one aspect, program-
ming languages are formal languages so the structure informa-
tion is essentially important for deep learning models to learn
the representation of source code better. To take advantage of
rich and unambiguous structure information of source code,
Hu et al. [5] proposed a special structure-based traversal
technique to linearize the Abstract Syntax Tree (AST), the
linearized ASTs are then fed into an LSTM model to generate
summaries. From another aspect, though Transformer has been
proven better on code summarization task, it needs more
training data as its multi-head attention is purely data-driven
[6]. SG-Trans [7] and SiT [8] utilize structure information
such as AST and Data Flow Diagram(DFD) as inductive bias
to overcome attention collapse or attention redundancy in
the Transformer model, which is the main issue that hinders
the transformer model’s representation ability [9]. Another
solution to the attention collapse problem is pre-training. For
example, CodeBERT is a Roberta-based pre-trained model for
programming languages and natural language (PL-NL) [10].
The model is pre-trained with the task of masked language
modeling [11] and replaced token detection [12] on a large
scale of training data. Pre-trained PL-NL model can be easily
fine-tuned on a limited dataset for downstream tasks because
the pre-training procedure enables the model to capture impor-
tant dependencies from a large scale of data and thus overcome
the attention collapse problem.

Though pre-trained models learn representations from a
large scale of training data and have achieved great suc-
cess on code summarization tasks, they haven’t considered
structure information during the fine-tuning stage. To address
this limitation and take full advantage of both code structure
information and pre-trained models, in this paper, we propose
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GraphPLBART: a graph-augmented code summarization ap-
proach based on the PLBART pre-trained model [13]. We
first parse source codes into ASTs and then construct Flow-
Augmented Abstract Syntax Trees (FA-ASTs) [14] by adding
additional semantic edges to each AST. Then we use Gated
Graph Neural Network (GG-NN) [15] to learn the structure
information of source codes. The structure representations are
fused into the model with an additional cross-attention layer
added after every self-attention layer of the PLBART encoder.
The main contributions of this article are as follows:

• A novel graph-augmented code summarization approach
is proposed to explore the integration of structure in-
formation of source code and PL-NL pre-trained model
during the fine-tuning stage.

• Extensive experiments are conducted to prove the effec-
tiveness of introducing structure information during the
fine-tuning stage. The experiment results show that our
GraphPLBART outperforms the baseline models.

The rest of this paper is organized as follows. Section II
introduces the background and our motivation. Our approach
is introduced in Section III. The experimental setup and results
are presented in Section IV and V respectively. Section VI is
the conclusion and the future work.

II. BACKGROUND

A. Pre-trained Programming Language Model

Pre-trained programming language models, which are
trained on large scale of data in a self-supervised manner
to learn universal programming language representations, can
avoid training a new model from scratch and have shown
advantages on various downstream tasks. For example, Code
T5 [16] makes use of both PL-only and NL-PL bimodal data
to pre-train the model, which yields better results on five
downstream tasks. Other pre-trained programming language
models e.g., CodeBERT [10] and GraphCodeBERT [17] also
demonstrate their promise on program understanding and
generation. Besides, PLBART [13] is a sequence-to-sequence
model capable of performing various programming and lan-
guage understanding and generation tasks. It has undergone
pre-training of denoising autoencoders on a large number of
Java and Python functions, as well as related natural language
texts.

B. Abstract Syntax Tree

Abstract Syntax Tree (AST) is a tree representation of
the abstract syntactic structure of source code written in a
programming language [18]. Every node of the tree represents
a structure of source code. Developers can get the declara-
tion statements, assignment statements, operation statements
and realize operations by analyzing the tree structures [19].
Nowadays, AST has been widely used for various program
understanding and generation tasks [7] [8] since it contains
unambiguous structure information of source code which is
essentially important to program understanding.

C. Motivation

Pre-trained language models for programming have shown
impressive results in several programming understanding
tasks, including code summarization. GraphCodeBERT has
implemented an edge prediction pre-training task to learn rep-
resentations from Data Flow Diagrams, which contain seman-
tic structural information about source code. Although these
models learn universal representations from well-designed pre-
training tasks on large-scale data, it is essential to include
structural information as an inductive bias during the fine-
tuning stage. SG-Trans [7] and SiT [8] have attempted to
introduce structural information into their approach, but their
models are trained from scratch, which can be very time-
consuming due to the purely data-driven nature of multi-head
attention [6].

To address these limitations, we propose GraphPLBART,
a model that effectively incorporates structure information
extracted from FA-AST into pre-trained PLBART. During
the fine-tuning stage, we add an additional cross-attention
layer to our model to incorporate the structural information.
This approach allows us to leverage the benefits of pre-
training while also accounting for the structural properties
of the input code. By doing so, we expect to achieve better
performance in programming understanding tasks such as code
summarization.

III. APPROACH

GraphPLBART contains a graph reader, an encoder, and a
decoder. The graph reader reads grammatical information from
the FA-AST and passes it on to the encoder via the attention
mechanism. In response, we add another cross-attention layer
to the encoder after the original self-attention layer to receive
grammatical information. Besides, the weights of the encoder
embedding layer, as well as the decoder, are derived from the
pre-trained PLBART. The framework of the model is shown
in Figure 1.

A. Graph Reader

We first parse the code into an abstract syntax tree(AST)
and add data flow and control flow to extend AST into FA-
AST(Flow-Augmented Abstract Syntax Tree). Then Graph-
PLBART extracts information using GG-NN. As with the
Transformer, we perform a non-linear transformation of the
graph reader with a Feed Forward layer at the end of the
graph reader.

1) Flow-Augmented Abstract Syntax Tree: We build the
graph representation for programs as follows. To parse ASTs
from Java programs, we use a python package javalang1. On
the other hand, we use a built-in Python package ast2 to parse
from Python programs. It is important to note that although
both tools can extract ASTs, they differ in naming the nodes.
Therefore, we need to find the corresponding relationship
between these two naming methods, such as WhileStatement

1https://github.com/c2nes/javalang
2https://github.com/att/ast
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Fig. 1: Details of Model. We use a graph reader to extract grammar information from flow-augment AST, then deliver the
grammatical message to the encoder by attention mechanism.

in javalang, which becomes While in ast, and there is no
direct corresponding naming for BlockStatement in ast. During
the code augmentation process, in terms of data flow, we
connect non-leaf nodes with their sibling nodes, nodes with
their next usage, and leaf nodes with their next nodes. In
terms of control flow, we connect the body and condition of
while and for statements, and for if statements, we connect the
condition to both the true and false branches. Following [14],
we add an additional backward edge for each edge that does
not have one to increase the frequency of message passing.
Figure 2 is an example of extracting AST from Java code and
transforming it into FA-AST. The code provided is used to
calculate the absolute value of an integer, including function
definition, variable calculation, and if conditional statement.
The black-directed edges in the figure are edges in the AST,
and the other colored edges are edges generated during the
flow augmentation process. The meaning of each edge is
shown in the legend.

2) Gated Graph Neural Network: We use GG-NN only to
learn embeddings of each node in FA-AST, so we do not need
a readout function to read the information of the entire graph.
The calculation formulas of GG-NN are as follows:

mj→i = MLP(h
(t)
i , h

(t)
j , ej,i), ∀(j, i) ∈ E

mi =
∑
j

mj→i

h
(t+1)
i = GRU(mi,h

(t)
i )

(1)

where mj→i represents passing message from nodej to nodei,
ej,i represents weight of the edge connecting nodej and nodei,
E is the set of edges, h(t)

i represents hidden state of nodei at
time t, and mi represents message of nodei. MLP and GRU
represents multilayer preceptron [20] and gated recurrent unit
[21] respectively. To keep more of the original information in
the embeddings, we only use one layer of graph network to
avoid interference from the embeddings of other nodes [22].
Since there is only one layer of graph network, we do not
need to apply residual connections but only normalize the
embeddings.

It should be noted that since the tokenizer used by PLBART
is sentencepiece [23], it may break down the original words
and thereby damage the graph structure. Therefore, the graph
reader uses a separate vocabulary instead of sharing the same
vocabulary with the pre-trained PLBART. The embedding size
of the graph reader is the same as that of PLBART.

B. Encoder

Our encoder has a structure similar to that of Transformer’s
encoder, except that we added another cross-attention layer
after the existing self-attention layer to read grammatical
information from the graph reader. This makes the structure of
the GraphPLBART encoder and decoder very similar, except
that the first multi-head attention layer in the encoder does
not use the masking mechanism. The output of the encoder
is a code embedding that has been augmented with syntactic
information.
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Fig. 2: Extract FA-AST from a sample Java code, only some of the added edges are shown in the graph.

C. Decoder

Our decoder is fully based on the pre-trained PLBART
decoder. Moreover, because PLBART shares the same vo-
cabulary for encoder and decoder, we do not need to use
a separate copy mechanism [3] to solve the OOV (Out Of
Vocabulary) problem, which simplifies the architecture and
reduces computational overhead.

IV. EXPERIMENTAL SETTINGS

A. Datasets and Evaluation Metrics

In our experiments, we utilized two public datasets that
are commonly used. The first dataset is the Java dataset [5],
which contains 87,136 Java code snippets with accompanying
comments written by developers. The second dataset is the
Python dataset [24], which encompasses 87,226 Python code
snippets along with comments. To ensure fairness during
comparison, we employed the same pre-divided datasets as
[4]. We utilize three commonly used metrics to evaluate our
model: BLEU [25], METEOR [26], and ROUGE-L [27].

B. Baseline

We compared the commonly used model and the proposed
GraphPLBART model in this paper using data from [28].

• Hybrid2Seq [24] is a deep reinforcement learning frame-
work that utilizes an LSTM-based encoder to learn from
code snippets and binary trees generated from ASTs.

• DeepCom [5] uses an LSTM-based architecture to en-
hance the quality of comments by analyzing their struc-
ture and converting ASTs into token sequences.

• API+Code [29] learns API knowledge from source code
API sequences and applies the learned features to enhance
code summarization performance.

• Dual Model [30] uses a dual training framework to train
code generation and code summarization tasks together.
It employs two sequence-to-sequence networks with at-
tention to improve the performance of both tasks.

• Transformer [4] utilizes relative positional encoding to
capture pairwise relationships between tokens in the
source code text.

• mAST+GCN [31] combines sequential and structural
features of code using AST, graph convolution, and
Transformer layers for code summarization.

• SiT [8] utilizes a structure-induced Transformer that
preserves the structural relationships and self-attention
mechanism for encoding.

• CodeT5 [16] is a pre-trained encoder-decoder model
based on T5 [32] for programming and natural language,
directly tuned with summarization datasets.

• CodeBERT [10] is a pre-trained encoder model for pro-
gramming and natural language based on Roberta [33].

• M2TS [17] uses a multi-scale approach to extract features
from ASTs, enabling more comprehensive extraction of
structural information at local and global levels.

C. Hyper-parameter Setting

We build our model based on the Hugging Face transform-
ers module3, with the number of layers for GG-NN in the
graph reader set to 4 while the other parameters of the model
were the same as PLBART-base. During training, we set the
batch size to 32, use the AdamW optimizer with an initial
learning rate of 0.00005, and set the dropout to 0.1. While
generating, we set the parameter num beams to 6.

V. EXPERIMENTAL RESULTS

This section will focus on the following questions:
RQ1: How does GraphPLBART perform compared to other

baselines?
RQ2: What impact does FA-AST have on the performance

of GraphPLBART?
RQ3: How does GraphPLBART perform in specific exam-

ples?

A. RQ1: How does GraphPLBART perform compared to other
baselines?

We present the results of our experiments, including BLEU,
METEOR, and ROUGE-L scores, in Table I, where Graph-
PLBART and other baselines are evaluated on the testing
set. The results indicate that GraphPLBART outperforms non-
pre-trained models by a significant margin. In comparison to
other pre-trained methods such as CodeBERT and CodeT5,
GraphPLBART demonstrates superior performance in gen-
erating code summaries. For example, on the Java dataset,
GraphPLBART achieves a top BLEU score of 47.56, while

3https://huggingface.co/docs/transformers/index
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TABLE I: Results on code summarization

Methods Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

RL+HybridSeq (2018) [24] 38.22 22.75 51.91 19.28 9.75 39.24
DeepCom (2018) [5] 39.75 23.06 52.67 20.78 9.98 37.35

API+CODE (2018) [29] 41.31 23.73 52.25 15.36 8.57 33.65
Dual (2019) [30] 42.39 25.77 53.61 21.80 11.14 39.45

Transformer (2020) [4] 44.58 26.43 54.76 32.52 19.77 46.73
mAST+GCN (2021) [31] 45.49 27.17 54.82 32.82 20.12 46.81

SiT (2021) [8] 45.19 27.52 55.87 34.31 22.09 49.71
CodeT5 (2021) [16] 46.01 28.55 56.49 34.31 22.09 49.25

CodeBERT (2020) [10] 46.64 28.84 56.23 34.34 21.99 49.73
M2TS (2022) [17] 46.84 28.93 57.87 - - -

GraphPLBART w/o graph 47.26 30.71 56.91 34.94 23.29 50.55
GraphPLBART 47.56 30.95 57.57 33.81 21.56 46.26

M2TS and CodeBERT achieve slightly lower scores at 46.84
and 46.64, respectively. Additionally, GraphPLBART outper-
forms other baseline models in the Meteor metric. However,
its Rouge-L score is slightly lower than M2TS, which may be
attributed to the fact that the graph network ignores the order
of nodes and thus has a certain impact on the summary’s order.

It is worth noting that the performance of GraphPLBART
differs significantly from other baseline models on the Python
dataset. This discrepancy can be attributed to the small size of
the dataset, which hinders GraphPLBART’s ability to fully
converge on the pre-trained parameters. Nonetheless, these
findings confirm the effectiveness of GraphPLBART in code
summarization tasks and highlight the importance of pre-
training for optimal performance.

B. RQ2: What impact does FA-AST have on the performance
of GraphPLBART?

To investigate the role of graphs in code summarization,
we conducted an experiment where we removed the graph
reader from GraphPLBART as well as the multi-head self-
attention layer that was added in the encoder. This effectively
restored GraphPLBART to its original form, PLBART. The
results of this experiment are shown in Table I. We found that
GraphPLBART outperformed PLBART (GraphPLBART w/o
graph) in all three metrics for Java datasets. This suggests that
the fine-grained structure and semantic information provided
by FA-AST is crucial during the inference process. However,
for Python datasets, we observed that the non-graph network
performed significantly better than GraphPLBART and other
baselines. We suspect that this is because all parameters in
PLBART without a graph were pre-trained, which greatly
reduced the requirement for additional training data. On the
other hand, the Python dataset was too small for the graph
reader to fully converge. This finding confirms the impor-
tance of pre-training in code summarization. In summary, our
experiment highlights the important role of graphs in code
summarization, particularly for Java datasets.

C. RQ3: How does GraphPLBART perform in specific exam-
ples?

To further investigate the performance of GraphPLBART,
we examine the summaries generated by it for some given

codes, as shown in Fig 3. As we can see, the model without
a graph is unable to pay attention to the IF control statement,
resulting in the lack of premise conditions in the generated
summary. However, GraphPLBART can notice it. In the
Python example, isdigit is a method of the str class in Python.
GraphPLBART successfully captures this syntax information
and provides the string in the summary, while PLBART can
only provide the variable name text while inferencing.

 to a number .stringconvert a  :TGraphPLBAR
 to a number .text convert a  w/o graph: TGraphPLBAR

 to a number .stringconvert a  ound truth:Gr

 return text               
alueError:V except        

 return float(text)               
 try:       

 return int(text)               
():isdigit if text.       

def _number(text):
Python

 .if it matchesremove the last element,  :TGraphPLBAR
 .at the end remove the last element  w/o graph: TGraphPLBAR

 .if it matchesremove the last element ,  ound truth:Gr

}
  ; return _BOOL       

, array . length - _NUM );Arrays.copyOf ( array array =        
  { return _BOOL; }if ( peekLast ( ) != obj )        

 {
 public synchronized boolean removeLast ( K obj )

Java

Fig. 3: The output summary of GraphPLBART in a specific
input code.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel graph augmentation
approach for code summarization, which effectively lever-
ages structural information in a pre-trained model. We con-
ducted experiments to evaluate the effectiveness of our Graph-
PLBART model and found that it outperforms baseline models
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in certain metrics. Our work highlights the potential of pre-
trained models for programming languages in code sum-
marization tasks. In future work, we aim to explore more
advanced pre-training tasks to capitalize on the large-scale
training data, particularly for pre-training graph models.
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