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Abstract—Knowledge graph (KG) as auxiliary information can
solve the cold-start and data sparsity problems of recommender
systems. However, most existing KG-based recommendation
methods focus on how to effectively encode items with that
users have interacted into entities and propagate them explicitly,
but neglect the relation-level and context-level modeling of
collaborative signals. Therefore, it is inevitable to incorporate
some unrelated entities while utilizing a propagation strategy,
which may weaken part of the recommendation performance.

To address this problem, we propose a novel method named
Collaborative Relation Context Consistency (CRCC). Compared
with other KG-based methods, we model the relation-level and
context-level of collaborative signals in a fine-grained manner.
Specifically, we segment the user’s collaborative knowledge graph
to learn related entity information separately to enrich the
embedding of users. Moreover, CRCC links the consistency score
between the items that users and neighbors have interacted with
as the fusion basis, and then we consider the inherent popularity
of items while incorporating consistent entities to enhance the
embedding representation of items. Extensive experiments on
three real-world datasets show that CRCC outperforms several
compelling baselines in both CTR prediction and top-K recom-
mendation.

Index Terms—recommender systems, knowledge graph, collab-
orative relation, contextual knowledge

I. INTRODUCTION

Recommender systems can help users find items of interest
among massive amounts of information when their demands
are uncertain. It builds a user preference model using machine
learning technology and makes tailored recommendations to
users [1].

Existing recommendation methods can be roughly catego-
rized into three types: collaborative filtering (CF) [2], content-
based [3], and hybrid [4]. Collaborative filtering has the
problems of data sparsity and cold-start, which are typically
resolved by introducing some auxiliary information, such as
social relations [5] or KG [6]. KG is chosen as auxiliary infor-
mation since it can improve recommendation interpretability.

KG is a directed heterogeneous graph in which nodes
represent entities and edges represent relationships between
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Fig. 1. A toy example reflecting the collaborative relation
context inconsistency.

entities. Extensive research shows that incorporating KGs into
recommendation tasks improves performance [7]–[9]. More-
over, RippleNet [10] explored the potential interests of users
along the entity-relation-entity link. CKAN [11] utilized the
user’s interactive items as propagation sources, obtaining the
user’s potential preference and the item’s latent embedding
by propagating multi-hop entities. Even though these models
can iteratively propagate entities to facilitate recommendation,
existing KG-based recommendation neglects the problem of
collaborative relation context inconsistency due to the lack of
comprehensive analysis of item type and fondness. Specifi-
cally, it can be divided into the two levels listed below:

• The first is the context level, which indicates that items’
context semantics among users in the user-item interac-
tion graph may be different. An example of the incon-
sistency at the context level of items is shown in Fig.
1. Different colors represent different types of items, we
can observe that u3 will be an inconsistent neighbor of
u1. Because u3 has interacted with item types other than
clothes, such as sports and books (which may reflect
greater interests), whereas u1 interests appear to be only
limited to clothes. As a result, they have quite a part of
different item contexts.

• The second is the relation level. Previous work has usu-
ally focused on interactive and non-interactive relation-
ships in user-item interaction scenarios. We make a more
fine-grained distinction between interaction intentions,
which are strong interactions with high rating values and



weak interactions with low rating values, to reveal how
much the user likes the item. As shown in Fig. 1, we
use the solid and dashed lines to indicate the strong and
weak interaction relationships, respectively. We can see
that users u1 and u2 are neighbors and that they are both
connected to the camera. However, u2 prefers the camera
(reflecting a strong interaction relationship), while u1 is
not as interested in it (a weak interaction relationship).
This leads to inconsistency at the relation level because
although they are neighbors and are connected to the
same item, their preferences for it are not consistent.

To address these above limitations, we propose an end-
to-end model named CRCC, short for Collaborative Rela-
tion Context Consistency. To enrich the user’s embedding,
we segment the user’s collaborative knowledge graph into
a series of sub-views and learn the related entity informa-
tion separately. Moreover, CRCC considers the relation-level
and context-level of user-item interaction by quantifying the
consistency between the items that users and neighbors have
interacted with as the fusion basis. Next, we enhance the item
embedding representation by considering the item’s inherent
popularity while diffusing entities with which the consistent
users interacted.

Our contributions in this paper are summarized as follows:
• We propose knowledge feature learning to explore how

users’ interests change with the attractiveness of inter-
entity relationships.

• To the best of our knowledge, we are the first work to
address the inconsistency of collaborative relation context
on KG-based recommendation.

• We consider the item’s inherent popularity while diffusing
entities with which the consistent users interacted.

• Extensive experiments on three public datasets show that
CRCC over several convincing baselines.

II. RELATED WORK
Existing KG-based recommendation methods can be classi-

fied into three categories:
• Embedding-based methods used knowledge graph em-

bedding (KGE) [12] to map entities and relations to a
low-dimensional vector space. CKE [13] adopted TransR
to consider the heterogeneity of nodes and relationships
to extract the structural representation of items. KTUP [8]
proposed a multi-task learning model that adopted TransH
for recommendation tasks and knowledge graph comple-
tion. However, these models learn entity embeddings are
insufficient, making them more suitable for intra-graph
tasks such as link prediction.

• Path-based methods enriched user-item interactions by
designing connection paths between entities. RuleRec
[14] utilized associations between items in KG for deliv-
ering an explainable recommendation. KPRN [7] gener-
ated path representations by integrating entity and relation
semantics. However, designing a meta path manually is
time-consuming and laborious, especially in extremely
complex knowledge graphs.

• Unified methods combined the embedding-based and
path-based methods to propagate embedding. KGCN [15]
and KGNN-LS [16] demonstrated that aggregating entity
neighbor information can improve recommendation per-
formance. KGAT [17] proposed a collaborative knowl-
edge graph that refines nodes’ embeddings by propagat-
ing neighbor embeddings. CKAN [11] used a heteroge-
neous propagation strategy to encode diverse information
for a better recommendation. However, existing unified
methods focus on propagating the embedding of entities,
ignoring the fine-grained analysis of the relational and
contextual semantics from collaborative signals.

III. PROBLEM FORMULATION
In this section, we formulate the KG-based recommendation

problem as follows. In a typical recommendation scenario,
we denote the sets of M users and N items by U =
{u1, u2, . . . , uM} and V = {v1, v2, . . . , vN}, respectively. The
user-item interaction matrix Y ∈ RM×N is determined based
on the user’s implicit feedback. yuv = 1 indicates that user
u has interacted with item v, otherwise yuv = 0. In addition,
G = {(h, r, t) | h, t ∈ E , r ∈ R} denotes the knowledge graph,
where h, t represent the head entity and the tail entity, respec-
tively. r represents the relationship between the head entity h
and the tail entity t; E and R represent the set of entities and
relations, respectively. A = {(v, e) | v ∈ V, e ∈ E}, where
(v, e) indicates that item v can be aligned with entity e.

Given the user-item interaction matrix Y and the knowledge
graph G, our goal is to learn a prediction function ŷuv =
F(u, v | Θ,G), where ŷuv denotes the probability that the user
u will interact with items he has not engaged with before, and
Θ denotes the model parameters.

IV. METHODOLOGY
The framework of CRCC is shown in Fig. 2, and then we

elaborate on each module individually.

A. Knowledge Feature Learning

We treat the user’s collaborative knowledge graph as a
global view, and knowledge feature learning enriches the user
preference representation by aggregating extended information
containing sub-views of user interaction, which consists of
knowledge feature segment and knowledge feature attentive.

1) Knowledge feature segment: We segment the global
view formed by user u and his interactive entity set i into a
series of sub-views based on the user preference profiles. The
user’s initial entity set is derived from item-entity alignment:

εu = {e | (v, e) ∈ A and v ∈ {v | yuv = 1}} (1)

When combined with the segmented view, Eq.(1) can also
be defined as follows:

εku = {t | (h, r, t) ∈ G and h ∈ εk−1
u

}
, k = 1, 2, . . . ,K (2)

where k indicates the k-th sub-view being segment, we then
define the k-th sub-view triple set for user u as follows:

Sk
u = {(h, r, t) | (h, r, t) ∈ G and h ∈ εk−1

u

}
, k = 1, 2, . . . ,K

(3)
iIt consists of entities that the user interacted with and neighboring entities.
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Fig. 2. Illustration of the proposed CRCC model, which consists of four modules: knowledge feature learning, collaborative
relation context consistency, knowledge structure-aware, and prediction. Best view in color.

2) Knowledge feature attentive: We analyze the user’s
relation type preference for entities in the interaction set more
thoroughly, and then try to incorporate more related entities
for the relation type the user prefers:

piur = dynamic−fun
(
eu, e

i
r

)
(4)

z0 = LeakyReLU
(
W0

(
piur + eih

)
+ b0

)
(5)

π
(
piur, e

i
h

)
= σ (W2 LeakyReLU (W1z0 + b1) + b2) (6)

where eu is the embedding of user u, eir and eih are the
embedding of relation r and head entity h for the i-th triple,
respectively. W∗ ∈ R2d×d is the trainable weight matrices, b∗
is the biase terms of the neural network. dynamic−fun( , ) is
a inner product function. piur characterizes the influence degree
of the relation r between entities on the user u. Hereafter, we
use the softmax function to normalize the coefficients across
the whole triples in the triple set:

π
(
piur, e

i
h

)
=

exp
(
π
(
piur, e

i
h

))∑
(h′,r′,t′)∈Sk

u
exp

(
π
(
piur′ , e

i
h′
)) (7)

where π
(
piur, e

i
h

)
controls the attentive weight generated from

the user’s relation preferences and the head entity. On the
user side, we build the tail entity attentive embedding ai(u)
as follows:

ai
(u) = π

(
piur, e

i
h

)
eit (8)

where eit is the embedding of tail entity t for the i-th triple.
Finally, we obtain a representation of the k-th sub-view

triple set for the user:

ek(u) =

|Sk
u|∑

i=1

ai
(u), k = 1, 2, . . . ,K (9)

where
∣∣Sk

u

∣∣ is the number of triples in set Sk
u .

B. Collaborative Relation Context Consistency
Distinct from previous methods that propagated users’ in-

teractive data layer by layer to obtain latent preferences. We
consider both the relation of items that users have interacted

with and the consistency of their contextual semantics. Taking
user u as an example, neighbors with whom user u has
interacted with item v are denoted as S(u), all items that
user u has interacted with are defined as R(u). For user
u and his interactive item v, it generates a semantic query
embedding αuv by mapping the concatenation of user u and
item v embeddings:

quv = σ (Wa (eu∥ev)) (10)

where eu and ev are the embedding of user u and item v,
respectively. ∥ denotes concatenation. Furthermore, we use the
self-attention mechanism to calculate the user u’s degree of
preference αuv for the interactive item as follows:

αuv =
exp (Wb (quv∥eruv ))∑

j∈R(u) exp
(
Wb

(
quj∥eruj

)) (11)

where eruv is the relation embedding for user u interactive
item v. Analogously, for neighbor user p and his interactive
items, we obtain a degree of preference βpv for user p in the
same way. Next, we consider the consistency between the user
and his neighbors and the items with that they have interacted.
The final consistency score γup is defined as follows:

γup = Wd · σ
(
Wc · fusion

(
αuveruv , βpverpv

)
+ bc

)
+ bd (12)

γup =
exp (γup)∑

p′∈S(u) exp (γup′)
(13)

where fusion( , ) is a inner product function. Normalizing
Eq.(12) by the softmax function yields the consistency score
between the two users. We carefully tune this consistency
score γup at a reasonable threshold and find that a threshold
higher than about 0.6 is better for filtering out users with high
consistency scores, which also means that some of the noise
caused by aggregating entities to multiple orders is diminished.
Uconsis will be denoted as the set of consistent users.

C. Knowledge Structure-aware

Different users express various degrees of fondness for an
item based on its inherent popularity. Knowledge structure-



aware enhances item embedding by accounting for the item’s
inherent popularity while also improving the representation
of consistent users’ interactive entities, which consists of
knowledge structure diffusion and knowledge-aware attentive.

1) Knowledge structure diffusion: It considers the inherent
popularity of an item while iteratively diffusing user interactive
entities. On the item side, the mapping of items interacted by
Uconsis with a high consistency score into entities is defined
as follows:

Vu = {vu | u ∈ {u | yuv = 1} and u ∈ Uconsis} (14)
εv = {e | (vu, e) ∈ A and vu ∈ Vu} (15)

When combined with the diffusion order, the above Eq.(15)
can also be defined equally as follows:

εkv = {t | (h, r, t) ∈ G and h ∈ εk−1
v

}
, k = 1, 2, . . . ,K (16)

where k indicates the distance from the initial entity set. Given
the definition of entity set, we then define the k-th order triple
set for item v as follows:

Sk
v = {(h, r, t) | (h, r, t) ∈ G and h ∈ εk−1

v

}
, k = 1, 2, . . . ,K

(17)
2) Knowledge-aware attentive: Given an entity set for

consistent users interaction, we consider the role of the item’s
inherent popularity while maintaining the connection between
the head entity and the relation, which is formulated as
follows:

z1 = LeakyReLU
(
W0

(
eih∥eir

)
+ b0

)
(18)

π
(
pihr, ev

)
= WT

2 · σ (W1 · pop−fun (z1, ev) + b1) + b2 (19)

where z1 denotes the semantics representation of the head
entity and relation aggregation. pop−fun( , ) is a function,
and the addition is found with the best performance in the
experiments. Hereafter, we normalize the coefficients across
the whole triples in the triple set by adopting the softmax
function:

π
(
pihr, ev

)
=

exp
(
π
(
pihr, ev

))∑
(h′,r′,t′)∈Sk

v
exp

(
π
(
pih′r′ , ev

)) (20)

where π
(
pihr, ev

)
controls the attentive weight generated from

aggregated semantics of head entity and relation and item’s
inherent popularity. On the item side, we build the tail entity
attentive embedding bi(v) as follows:

bi(v) = π
(
pihr, ev

)
eit (21)

Finally, we obtain a representation of the k-th order triple
set for item:

ek(v) =

|Sk
v |∑

i=1

bi(v), k = 1, 2, . . . ,K (22)

where
∣∣Sk

v

∣∣ is the number of triples in set Sk
v .

D. Model Prediction and Loss Function
After segmenting into K sub-views and iterating the K-

order aware process, we obtain the embedding set of user
and item with ek(u) and ek(v) for k = [1, 2, . . . ,K]. And
then for each user u, his final embedding is denoted as:
e∗(u) =

[
e1(u)∥e

2
(u)∥ . . . ∥e

K
(u)

]
that concatenates his embedding

at each sub-view. Similarly, each item v final embedding is:
e∗(v) =

[
e1(v)∥e

2
(v)∥ . . . ∥e

K
(v)

]
. Finally, the predicted rating is

represented by the inner product of the final user and item
embeddings:

ŷuv = e∗(u) · e∗(v) (23)

For each user, we extract the same number of negative
samples as positive samples. Afterward, we have the following
loss function for CRCC:

L =
∑

(u,v,j)∈Y

− lnσ (ŷuv − ŷuj) + λ∥Θ∥22 (24)

where Y = {(u, v, j) | (u, v) ∈ Y +, (u, j) ∈ Y −}, σ(x) is the
sigmoid function, Θ is the model parameters set, and ∥Θ∥22 is
the L2-regularizer that parameterized by λ.

V. EXPERIMENT

A. Experiment Settings

1) Datasets and Evaluation Metrics: We adopt three bench-
mark datasets related to Microsoft KG Satori. The detailed
statistics are summarized in Table I. We employ two widely
used metrics AUC and F1 to evaluate the performance of CTR
prediction, and then choose Recall@K to evaluate the effec-
tiveness of top-K recommendation. Note that higher values of
the three metrics indicate better performance.

2) Baselines: We compare CRCC with the following base-
lines. BPRMF [18] is a CF-based method that optimizes im-
plicit feedback using pairwise matrix factorization. CKE [13]
combines the CF module with textual, structural, and visual
knowledge embeddings in a unified framework. PER [19] is
a path-based method that treats the KG as a heterogeneous
information network and extracts meta-path based on features.
RippleNet [10] propagates users’ potential preferences in the
KG to enrich user representations. KGCN [15] is the first
work to integrate GCN to KG-based recommendation, which
iteratively aggregates information about neighboring entities.
KGNN-LS [16] transforms a heterogeneous knowledge graph
into a user-specific weighted graph. KGAT [17] uses an
attention mechanism to prioritize neighbors in collaborative
knowledge graphs. CKAN [11] propagates user interactive
data layer by layer to high-order entities to learn user pref-
erences and item embedding. KGIN [20] decouples user-item
interactions at the granularity of user intents and implements
GNN to the proposed user-intent-item-entity graph.

3) Parameter Settings: In CRCC, we divide each dataset
into training, validation, and test sets with the proportion of
6:2:2. The embedding size is fixed at 64, the learning rate is
set as 0.002, and the coefficient of L2 normalization is tuned
as 0.00001. The size of the user’s triple set is set to 8 or 16,
and then the size of the item’s triple set is fixed at 64. The
batch size is fixed at 2048. We set the epoch on all three real-
world datasets to 20, each experiment is repeated five times,
and the average performance is reported.

B. Overall Comparison

Table II and Fig. 3 show that CRCC has obvious advan-
tages over existing state-of-the-art baselines. Analyzing such
performance comparison, we have the following observations:



Table I. Statistics of the three real-world datasets.

Last.FM Book-Crossing MovieLens-1M

# users 1872 17 860 6036
# items 3846 14 967 2445

# interactions 42 346 139 746 753 772

# entities 9366 77 903 182 011
# relations 60 25 12
# triples 15 518 151 500 1 241 996

Table II. The result of AUC and F1 in CTR prediction.

Model Last.FM Book-Crossing MovieLens-1M
AUC F1 AUC F1 AUC F1

BPRMF 0.756 0.701 0.658 0.611 0.892 0.792
PER 0.641 0.603 0.605 0.572 0.712 0.667
CKE 0.747 0.674 0.676 0.623 0.907 0.802
RippleNet 0.776 0.702 0.721 0.647 0.918 0.842
KGCN 0.796 0.721 0.684 0.631 0.909 0.837
KGNN-LS 0.805 0.722 0.676 0.631 0.914 0.841
KGAT 0.829 0.742 0.731 0.654 0.914 0.844
CKAN 0.842 0.769 0.753 0.673 0.915 0.845
KGIN 0.849 0.760 0.727 0.661 0.919 0.844
CRCC 0.859 0.778 0.766 0.681 0.931 0.862

• CRCC consistently outperforms all baselines in all
metrics across three datasets. Specifically, CRCC im-
proves over the state-of-the-art baselines w.r.t. AUC by
1.2%, 1.7% and 1.3% in Last.FM, Book-Crossing and
MovieLens-1M, respectively.

• Compared with CKAN and KGIN, the performance of
CRCC justifies the effectiveness of the consistency of
collaborative relation context. The results compared with
KGCN and KGNN-LS show the significance of explicitly
encoding collaborative signals.

• Comparing BPRMF with CKE, using KG significantly
improves the performance of matrix factorization. This
finding is also reflected in KTUP.

• The efficiency of a model is dependent on how it uses
the KG information. The CF-based matrix factorization
method BPRMF outperforms the path-based model PER,
perhaps since it’s not always possible to find the optimal
meta-path. The unified approach outperforms embedding-
based and path-based baselines.

C. Ablation Study

To evaluate the efficacy of each component in our proposal,
we compare CRCC with three variants and Table III shows
the experimental results.

• CRCC w/o K&F : This variant is CRCC without the
knowledge feature learning component.

• CRCC w/o R&C : This variant is CRCC without the
collaborative relation context consistency component.

• CRCC w/o K&S : This variant is CRCC without the
knowledge structure-aware component.

The following conclusions can be drawn from an analysis of
the data in Table III: (1) CRCC w/o K&F can impair part of
the performance, which demonstrates the utility of segmenting
a user’s collaborative knowledge graph into a series of sub-
views and learning related entity information separately. (2)
The performance of recommendations is significantly reduced
by CRCC w/o R&C , which emphasizes the importance of

Table III. The result of AUC w.r.t effects different of compo-
nents.

Category Last.FM Book-Crossing MovieLens-1M

CRCC w/o K&F 0.844 0.740 0.920
CRCC w/o R&C 0.825 0.733 0.913
CRCC w/o K&S 0.838 0.744 0.919

CRCC 0.859 0.766 0.931

Table IV. The result of AUC w.r.t different dimension of
embedding.

d 4 8 16 32 64 128

Last.FM 0.798 0.823 0.837 0.843 0.859 0.833
Book-Crossing 0.689 0.734 0.735 0.739 0.743 0.766
MovieLens-1M 0.884 0.887 0.902 0.907 0.931 0.913

Table V. The result of AUC w.r.t different numbers of sub-
view and order (k).

k Last.FM Book-Crossing MovieLens-1M

1 0.838 0.736 0.913
2 0.845 0.746 0.931
3 0.859 0.766 0.920
4 0.849 0.753 0.919

Table VI. The result of AUC on MovieLens-1M w.r.t different
sizes of triple set.

user
item 4 8 16 32 64

4 0.901 0.901 0.900 0.901 0.901
8 0.908 0.908 0.908 0.908 0.904
16 0.914 0.914 0.914 0.914 0.931
32 0.918 0.918 0.917 0.917 0.918
64 0.920 0.919 0.919 0.919 0.919

sampling high consistency score data between the user and
his neighbors and their interacted items. (3) CRCC w/o K&S

can substantially worsen recommendation performance, which
is especially apparent on Last.FM and Book-Crossing. This
demonstrates the benefits of considering the item’s inherent
popularity while maintaining consistency in the diffusion en-
tities with which users have interacted. Overall, it is clear that
CRCC consistently achieves the best results.

D. Sensitivity Analysis

1) Impact of Dimension of Embedding: Table IV shows
that increasing the embedding dimension improves the per-
formance of CRCC within a certain range. But CRCC per-
formance would decline with excessive dimension. This is
due to the fact that when the embedding dimension increases,
more information is encoded into it, but it also causes a little
overfitting problem.

2) Impact of Numbers of Sub-view and Order: As shown
in Table V, the best performance is achieved when k is
3, 3 and 2 in Last.FM, Book-Crossing and MovieLens-1M,
respectively. This may be due to a trade-off between the
number of segmented views and the order of knowledge
diffusion. Too few segmented views and knowledge diffusion
order are insufficient to capture entity relationships, but too
large numbers may contain irrelevant noise information.

3) Impact of Size of Triple Set: Table VI demonstrates
that the optimal size of the item triple set for MovieLens-
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Fig. 3. The result of Recall@K in top-K recommendation.

1M is 64, which confirms that increasing the size can include
more related entity sets and improve the recommendation
performance. The best performance is achieved when the user
triple set is set to 16. When it surpasses a reasonable threshold,
the recommendation result decreases, thus we need a suitable
size of user triple set.

VI. CONCLUSION

In this paper, we focus on the CRCC, which links the
consistency score between the items that users and neighbors
have interacted with as the fusion basis. This is the first work
to address the inconsistency of collaborative relation context
on KG-based recommendation. Extensive experiments on three
real-world datasets demonstrate the effectiveness of CRCC. In
the future, we will emphasize the effective utilization of multi-
modal learning on collaborative knowledge graphs for better
recommendation performance.
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