
DeepRank: Test Case Prioritization for Deep Neural
Networks

Wei Li1, Zhiyi Zhang1,2,∗, Yifan Jian3, Chen Liu4,∗ and Zhiqiu Huang1,5
1Collage of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
3Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, China

43School of Marxism, Yangzhou University, Yangzhou, China
5Ministry Key Laboratory for Safety-Critical Software Development and Verification,

Nanjing University of Aeronautics and Astronautics, Nanjing, China
wei sz2116@nuaa.edu.cn, zyzhang10@nuaa.edu.cn, ncepujyf@163.com, lauchan@yzu.edu.cn, zqhuang@nuaa.edu.cn

Abstract—Deep neural networks (DNNs) have been widely used
in safety-critical fields such as autonomous driving and medical
diagnosis. However, DNNs are easily disturbed to make wrong
decisions, which may lead to loss of life or property. Therefore, it
is vital to test DNN adequately. In practice, to reveal the incorrect
behavior of DNN and improve its robustness, testers usually need
massive labeled data to test and optimize DNN. However, labeling
test inputs to detect the correctness of DNN predictions is an
expensive and time-consuming task that even affects the efficiency
of DNN testing.

To relieve the labeling-cost problem, we propose DeepRank, a
test case prioritization technique based on cross-entropy loss. The
key idea of DeepRank is that the higher the loss value of a test
case relative to the DNN, the more likely it is to be mispredicted
and the more conducive it is to improve the robustness of the DNN
through retraining. Therefore, the cross-entropy loss value can
be used for test case prioritization. We experimentally validate
our approach on two datasets and three DNNs models. The
experimental results demonstrate that DeepRank is significantly
better than existing test case prioritization methods regarding
fault-revealing capability and retraining effectiveness.

Index Terms—DNN Testing, Cross Entropy, Test Case Priori-
tization

I. INTRODUCTION

Deep neural networks (DNNs) have made breakthroughs in
many fields, such as image recognition, speech recognition,
and natural language processing. They have been widely inte-
grated into software systems to help solve various tasks, such
as autonomous driving systems, medical diagnostic systems,
etc. However, DNNs are susceptible to interference to make
bad decisions that can lead to loss of life or property, such
as the fatal crash of Google’s self-driving car [18]. Therefore,
it is vital to ensure the reliability and robustness of software
systems driven by DNN.

DNN testing is one of the most effective ways to guarantee
its quality [14], [17]. However, unlike traditional software
testing, DNN is based on a data-driven programming paradigm
that uses massive data to be trained to form internal logic
[7], which makes DNN models have the characteristics of

*corresponding author
DOI reference number: 10.18293/SEKE2023-188

poor interpretability and low generalization ability. As a result,
many traditional software testing methods cannot be directly
applied to DNN testing. To adequately test DNN models,
testers often require massive labeled data to test and optimize
DNN models. However, labeling test cases to verify the
correctness of DNN is costly. There are three main reasons:
first, the scale of test cases that need to be labeled is large;
Second, it mainly relies on manual labeling, and the labeling
efficiency is low; Finally, test case labeling usually requires
professional knowledge in specific fields [15].

To relieve the labeling-cost problem, a feasible solution is
to prioritize unlabeled test cases and give higher priority to
test cases that could lead DNN to make wrong decisions. In
this paper, we propose DeepRank, a test case prioritization
technique based on cross-entropy loss. The key idea of Deep-
Rank is that the higher the loss value of a test case relative
to the DNN, the more likely it is to be mispredicted and the
more conducive it is to improve the robustness of the DNN
through retraining. Therefore, the cross-entropy loss value can
be used for test case prioritization. We only label test cases
with high priority after prioritization, which can save labeling
costs and improve the efficiency of DNN testing. We designed
four sets of experiments for empirical research on two com-
monly used datasets in image recognition and three DNNs
with different structures. The experimental results demonstrate
that DeepRank is significantly better than existing test case
prioritization methods regarding fault-revealing capability and
retraining effectiveness.

The main contributions of this paper are as follows:

• We propose DeepRank, a test case prioritization tech-
nique, which can reduce labeling costs and improve the
efficiency of DNN testing.

• We use cross-entropy loss value for test case prioritiza-
tion and prove the effectiveness of our method through
experiments.

• The test cases with high priority after prioritization by
our method can be used to guide DNN retraining and
improve DNN robustness.



The rest of the paper is organized as follows. Section II
introduces background on DNN and test case prioritization.
Section III describes the implementation of our method. Sec-
tion IV details the setup of the experiment. Section V analyzes
the experimental results and demonstrates the effectiveness of
our method. Section VI concludes this paper.

II. BACKGROUND

This section includes basic knowledge about deep neural
networks (DNNs), neuron coverage metrics, and test case
prioritization methods for DNNs.

Fig. 1: An example to illustrate the CNN structure

A. Convolutional Neural Network

Convolutional neural networks (CNNs) are the core of
image processing tasks. As shown in Fig. 1, a CNN consists of
multiple layers, i.e., convolution layer, pooling layer, and fully
connected layer. The convolution layer is used to extract the
features of the input data. The pooling layer is periodically
inserted between successive convolutional layers to reduce
the number of parameters in CNN and effectively prevent
overfitting. The fully connected layer is used to map the
learned feature representation to the label space of the input.

Generally speaking, CNN maps the input data x to the
output result y. For example, in an N classification task, given
an input, after processing by CNN internal neurons, an N -
dimensional vector out = {v1, v2, ..., vN} will be obtained in
the output layer and then normalized using the softmax func-
tion [2], a set of probability vectors p̂i = {p̂i,1, p̂i,2, ..., p̂i,N}
will be obtained, p̂i,j represents the probability that the neural
network predicts the test case xi as an j-th class, and the final
prediction result of CNN is the category corresponding to the
value with the highest probability in p̂i.

B. Neuron Coverage Metric

Inspired by code coverage in traditional software testing,
researchers have recently combined coverage with neurons to
propose a series of neuron coverage metrics for DNN testing.
This section briefly describes the DNN test method guided by
the neuron coverage under investigation.

Neuron Activation Coverage (NAC(k)) [12]. The metric
defines neuron coverage in DNN as: if the output value of a
neuron is greater than the threshold k, the neuron is considered
to be covered. The fundamental hypothesis of NAC(k) is that
the greater the number of neurons covered, the more DNN
states are explored. For a test case, NAC(k) is calculated as

the ratio of the number of neurons covered by that test case
to the total number of neurons in the DNN.

Neuron Boundary Coverage (NBC(k)) [9]. SBC(k) first
counts the upper boundary highn and lower boundary lown of
the output value of each neuron in the DNN on the training set.
They refer to (−∞, lown) ∪ (highn,+∞) as the corner-case
regions of a neuron n. This method focuses on measuring test
cases coverage in corner-case regions. Since each neuron has
one upper bound and one low bound, for a test case, SBC(k)
is calculated as a ratio of the number of neurons covered by
a corner-case region to twice the total number of neurons in
the DNN.

Strong Neuron Activation Coverage (SNAC(k)) [9]. It
can be seen as a special case of NBC(k) as it only considers
coverage of the upper boundary region (highn,+∞). For a
test case, SNA(k) is calculated as the ratio of the number of
neurons covered by the upper boundary to the total number of
neurons in the DNN.

Top-k Neuron Coverage (TKNC(k)) [9]. TKNC(k) focuses
on the k neurons that are the most active in each layer of the
DNN. It is defined as the ratio of the total number of top-k
neurons on each layer to the total number of neurons in the
DNN.

C. Test Case Prioritization

Test case prioritization refers to rearranging the execution
order of test cases in a test set according to predetermined
criteria so that high-priority test cases are executed earlier
in the test execution process than low-priority test cases.
Two main coverage-based test case prioritization techniques
are known as the Coverage-Total Method (CTM) and the
Coverage-Additional Method (CAM) [16].

Coverage-Total Method (CTM). The coverage of each test
case is calculated first, and then the individual test cases are
prioritized based on their total coverage. When multiple test
cases have the same coverage, the relative order of these test
cases is randomly determined. Assuming that there are n test
cases in the test set T and m coverage entities in program P ,
the time cost of CTM is O (mn).

Coverage-Additional Method (CAM). The idea of CAM
is that if a test case can cover as many entities as possible
that were not covered by previously executed test cases, the
higher the priority of that test case. Because such a test case
is most likely to expose errors not exposed by the previously
executed test case. Assuming that there are n test cases in the
test set T and m coverage entities in program P , the time cost
of CAM is O

(
mn2

)
.

III. OUR APPROACH

We propose a test case prioritization method DeepRank,
based on the cross-entropy loss value of test cases. First, we
introduce the motivation of DeepRank. Then, we introduce
the overall framework of DeepRank. After that, we introduce
the specific implementation steps of DeepRank. Finally, we
introduce how to use DeepRank to guide the retraining of
DNN models to improve their robustness.



Fig. 2: Overview of DeepRank

A. Motivation

Unlike the DNN test case prioritization method based on
uncertainty [3] and neuron coverage [6], [9], [12], DeepRank
takes the cross-entropy loss value of a test case relative to
the DNN as the prioritize metric, and the greater the loss, the
greater the probability of DNN misprediction.

For a trained DNN, the higher the loss value of a test
case relative to the DNN, the more likely it is to be mis-
predicted. For example, as shown in Fig.1, we select two
test cases x1 and x2 with actual labels 2 from the MNIST
dataset, input them into the trained LeNet1 model and get
the prediction results p̂1 = {0.02, 0.03, 0.90, ..., 0.01}, p̂2 =
{0.01, 0.73, 0.20, ..., 0.02}, respectively. Therefore, LeNet1
predicts x1 as 2 but x2 as 1. It can be seen from the prediction
results that the x1 prediction is correct, but the x2 prediction
is wrong.

CEloss = −
∑N

n=1pi,n log p̂i,n (1)

According to the cross entropy loss function (CEloss) in (1),
where N is the number of output classes. It can be calculated
that the loss values of x1 and x2 relative to the LeNet1 model
are loss1=0.046 and loss2=0.699, respectively.

From this example, it can be found that the cross-entropy
loss value of x2 relative to the DNN is greater than x1, and
the probability that the DNN incorrectly predicts x2 is greater
than x1. The greater the loss value of a test case for the
DNN, the greater the probability of the model misprediction.
Therefore, the cross-entropy loss value can be used for test
case prioritization. The greater the loss, the higher the priority.

B. Overview of DeepRank

Fig. 2 shows the overall framework of DeepRank. In gen-
eral, the implementation of DeepRank can be divided into
three parts. First, train a model for quantifying the cross-
entropy loss value of test cases. Second, input the test cases
into the DNN, divided into N sets according to the prediction
class of DNN, and the features of the test cases in different sets
are extracted in turn. Then the extracted features are input into

the cross-entropy loss quantification model constructed in the
first step. The cross-entropy loss value of the test case relative
to the DNN can be obtained. Finally, prioritization according
to the cross-entropy loss value of the test cases. Test cases with
large cross-entropy loss values are given higher priority. Then
selects high-priority test cases from each category collection
to label.

C. Test Case Prioritization Process

• Step1. Build the dataset: We use the training set in
the original dataset as the initial data because the cross-
entropy loss value of each sample in the training set
relative to the DNN can be easily obtained, and the
training set and the test set are independent of each other.
To increase the generalization ability of the cross-entropy
loss quantification model, we add the adversarial samples
generated by FGSM [4] and PGD [10] into the training
set to form a new dataset X = {x1, x2, x3, ..., xm}.

• Step2. Feature extraction: Let L = {e1, e2, e3, ..., en}
represent the set of neurons in the last hidden layer in
the DNN, α (x) represents the output value of the neuron
e relative to x, and αL (x) represents the Activation
Trace (AT) [6] of neurons in L, that is, the set of
output values of all neurons in the L relative to x.
αL (X) = {αL (x) |x ∈ X} denote the AT of neurons
in L on X . Then count the range of output values of
each neuron ei in L on X: [lowi, highi], and divide it
into k equal intervals αe (X) = {u1, u2, u3, ..., uk}, in
this paper, k = 100, if αei (x) ∈ uj , let fx (ei) = j,
therefore, for each x in X can extract an n-dimensional
feature vector F (x) = {fx (e1) , fx (e2) , ..., fx (en)},
where fx (ei) ∈ [1, k].

• Step3. Extract the label: After input X to DNN, the
output value of neurons in the output layer of DNN is
processed by the softmax activation function to obtain the
set of predicted probabilities P (X) = {p (x) |x ∈ X},
where p (x) = {p1, p2, ..., pN}, N represents the number
of categories. Then the cross-entropy loss value of x is



calculated according to the actual label as the label of the
cross-entropy loss quantification model.

• Step4. Train model: Use the features extracted in step
2 and the labels calculated in step 3 as the training set
of the model to quantify the test case cross-entropy loss
value. Specifically, DeepRank uses XGBoost [1] to build
a cross-entropy loss quantification model, which is one
of the most popular algorithms in the field of machine
learning with massively parallel computing power and
sound portability and can effectively learn more complex
features from basic features, so XGBoost is very suitable
for solving our problem.

• Step5. Process unlabeled data: Input the unlabeled
test set T into the DNN, divide T into N sets C =
{C1, C2, ..., CN} according to the classification results
of the DNN, and then use the method in step 2 to extract
the features of Ci to obtain Fc = {FC1

, FC2
, ..., FCN

},
and then input the features into the model trained in
step3 to obtain the set of cross-entropy loss values
Loss = {L1, L2, ..., LN} of each test case relative to
the DNN.

• step6. Sorting and labeling:Use the quicksort algorithm
to sort Li in descending order to obtain the sorted
unlabeled test set R = {R1, R2, ..., RN}. Finally, To
evenly select data from each category, according to the
test budget, select the first n test cases from Ri (i=1,
2,...,N ) to label.

There are two reasons why features are extracted from AT in
L. First, the output of neurons in L is generally regarded as a
learned representation of the training data. When the operating
context changes, the representation is more stable than the
prediction, and this is supported by transfer learning practices,
where only the SoftMax layer is retrained for different tasks
[5]. Second, DNN prediction comes directly from the linear
combination of the output of this layer, so it must be highly
correlated with the prediction accuracy [8].

D. Enhancing DNN with DeepRank

Since DNN is a data-driven programming paradigm, we
cannot fix software bugs by directly modifying the code like
traditional software development. Still, we can add as much
data as possible to the DNN training set and retrain the DNN to
enhance its robustness. However, in the actual scenario, a large
amount of data collected is unlabeled and requires expensive
labeling for DNN retraining. The main idea of DeepRank is
that the greater the loss value of a test case relative to the DNN,
the greater the probability of DNN misprediction and the more
conducive it is to improve the robustness of the DNN through
retraining. Therefore, the cross-entropy loss value can be used
for test case prioritization. We only label test cases with high
priority after prioritization, which reveals more DNN defects
within a limited test budget.

In short, DeepRank can not only for test case prioritization
but also use test cases with high priority after prioritization by
DeepRank add into the training set to retrain DNN to improve
the robustness of DNN.

IV. EXPERIMENTS

This section describes the experimental setup, including
the datasets and DNN models used in the experiment, the
construction candidate dataset, and the research questions.

A. Datasets and Models

TABLE I: DATASETS AND DNN MODELS

Dataset DNN Model Layers Neurons Train set Test set

MNIST
LeNet-1 5 42 60000 10000

ResNet-20 20 698 60000 10000

SVHN
VGG-16 21 7274 73257 26032

ResNet-20 20 698 73257 26032

As shown in Table I, to evaluate our proposed method,
we selected two widely used public datasets in the field of
image recognition: MNIST and SVHN [11], and three DNN
models with different structures and scales: LeNet-1, ResNet-
20, and VGG-16 [13]. Among them, MNIST is a handwritten
digit recognition dataset containing 7,000 grayscale images
with a size of 28*28, of which 60,000 are training sets, and
10,000 are test sets, with a total of 10 categories. SVHN was
collected from house numbers in Google Street View imagery
and contained over 60,000 color images with a size of 32*32.
To increase the reliability of experimental results, we selected
two different DNN models for each dataset and designed four
sets of experiments.

B. Construction Candidate Dataset

Although DNNs are carefully trained to predict high accu-
racy on the original test set, they are highly inaccurate for some
corner test cases, so exploring the prioritization of these data
is necessary. We use two commonly used adversarial sample
generation methods, FGSM [4] and PGD [10], to generate
these corner test cases for each dataset. We generate data the
same size as the original test set for each adversarial sample
generation method and evenly partition the original test set and
the generated adversarial data into a new testing set T , and a
new validation set V . For the MNIST dataset, we have new
test and validation sets of size 15,000 each, where 5,000 are
original test sets and the other 10,000 are adversarial samples
generated by FGSM and PGD.

C. Research Questions

RQ1. Quantify: Can DeepRank accurately quantify the loss
value of a test case relative to the DNN?

We use the R2 Score and the Root-Mean-Square Error
(RMSE) to answer RQ1. The R2 Score is used to evaluate the
regression model’s fitting effect. The higher the coefficient of
the R2 Score, the closer it is to 1, and the better the fitting
effect of the model. The RMSE is used to assess the accuracy
of the regression model predictions.

RQ2. Effectiveness: Can DeepRank find a better permuta-
tion of tests than the baseline methods?



We collect the cumulative sum of the errors found by
specific test case prioritization methods and calculate the
corresponding RAUC (ratio of area under the curve) between
the prioritization method and the theoretical curve.

RQ3. Enhancement: Can DeepRank guide the retraining
of a DNN to improve its accuracy?

We evenly divide the original test set and the generated
adversarial test cases into a test set T , and a validation set V ,
then prioritize T , and take the top 10% from the sorted T to
the initial training set for retraining. Finally, we observe the
accuracy of the DNN after retraining on the validation set V .

V. RESULT ANALYSIS
In this section, we present and analyze the results of our

method on the quantification of test case loss values (RQ1)
and the effectiveness of other baseline methods in test case
prioritization (RQ2), and the improvement of accuracy after
DNN retraining (RQ3).

TABLE II: R2 SCORE AND RMSE

Dataset DNN Model R2 Score RMSE

MNIST
LeNet-1 94.39% 2.33

ResNet-20 97.9% 2.86

SVHN
VGG-16 97.07% 3.49

ResNet-20 98.68% 1.39

A. RQ1. Quantify
As shown in Table II, for each dataset and model combina-

tion, the R2 Score of the test case cross-entropy quantization
model trained by us is above 94%, especially for the SVHN
and ResNet20 combination, the R2 Score is 98.68%, which
indicates that the model trained with the features we extracted
has an excellent fit to the cross-entropy loss of the test case.
In addition, we also provide the RMSE for each cross-entropy
quantization model, and the results show that the prediction
error of the quantization model remains within a low range.

To more intuitively show the effect of the test case cross-
entropy loss quantification model, we randomly select 200
test cases from the test set T for each dataset and model
combination. In Fig. 3, the x-axis represents the number of
test cases and y-axis represents the cross-entropy loss value
of the test case. The blue line represents the actual cross-
entropy loss, and the orange line represents the cross-entropy
loss values quantified by our method. The results show that
the cross-entropy loss value quantified by our method is
almost consistent with the actual value. It is worth noting
that although the cross-entropy loss quantification of some
test cases is not accurate enough, as long as it is the same
as the actual cross-entropy loss value change trend. Because
in practical applications, we only select a small number of
test cases with large cross-entropy loss values from massive
candidate sets for labeling to save labeling costs.

In summary, DeepRank can accurately quantify the cross-
entropy loss value of test cases relative to DNNs within a
small error range.

Fig. 3: Corss-entropy loss quantify effect

TABLE III: THE RAUC OF FAULT DETECTION

Metrices
MNIST

LeNet1

MNIST

ResNet20

SVHN

VGG16

SVHN

ResNet20

Neuron

Coverage

NAC(0.75) 0.583 0.854 0.603 0.994

NBC(0) 0.702 0.975 0.769 0.995

SNAC(0) 0.605 0.999 0.603 0.995

TKNC(1) 0.75 0.747 0.753 0.75

Uncertainty
MaxP 0.809 0.845 0.763 0.755

DeepGini 0.809 0.845 0.763 0.755

Our DeepRank 0.998 0.993 0.995 0.996

B. RQ2. Effectiveness

We compare fault detection rates between DeepRank and
other test case prioritization methods. For each dataset and
DNN model combination, we calculate the RAUC on the test
set T for each prioritization method. The closer the RAUC is
to 1, the better the corresponding prioritization method works.
As shown in Table III, DeepRank has achieved excellent
results on all datasets and model combinations, i.e., RAUC is
above 99%. In most cases, DeepRank is better than coverage-
based and uncertainty-based methods. Taking the MNIST and
LeNet1 combination as an example, DeepRank’s RAUC is
0.998, and the NAC(0.75) is only 0.583. The uncertainty-
based methods, such as MaxP and DeepGini, were close
in all experiments. Overall, the uncertainty-based methods
is superior to the coverage-based approachs but worse than
DeepRank. Although NBC(0) and SNAC(0) were similar to
DeepRank in the MNIST and ResNet20 combination and
SVHN and ResNet20 combination, they were far less effective
than DeepRank in the other two sets of experiments, indicating
that the prioritization effect of NBC(0) and SNAC(0) was
unstable. Conversely, the prioritization effect of Deeprank was
stable in all experiments.

In summary, DeepRank achieves excellent prioritization
effect in all combinations of datasets and models, and in
most cases, DeepRank is better than coverage-based and



uncertainty-based methods.

TABLE IV: THE DNNS’ ACCURACY VALUE AFTER RE-
TRAINING WITH FIRST 10% PRIORITIZED TESTS.

Metrices
MNIST

LeNet1

MNIST

ResNet20

SVHN

VGG16

SVHN

ResNet20

Neuron

Coverage

NAC(0.75) 11.81 57.31 6.69 30.19

NBC(0) 51.71 55.25 36.89 30.79

SNAC(0) 25.83 55.39 12.39 30.72

TKNC(1) 51.3 60.86 32.837 30.8

Uncertainty
MaxP 38.17 60.61 20.14 12.04

DeepGini 39.3 60.68 14.13 11.78

Our DeepRank 51.9 61.22 34.41 31.22

C. RQ3. Enhancement
For each dataset and model combination, we select the

top 10% of the test cases prioritization by each test case
prioritization method, add them to the initial training set for
retraining the DNN, and then evaluate the effect of retraining
by observing the improvement of the accuracy of the model on
the validation set V . The results are shown in Table IV, and
the accuracy of DNN models can be significantly improved
by using DeepRank to guide retraining. For the MNIST and
ResNet20 combination, DeepRank can improve the accuracy
of DNNs on validation sets by 61.22%. In most cases, Deep-
Rank is more effective at improving the model’s accuracy than
coverage-based and uncertainty-based methods. For example,
combined with MNIST and LeNet1, DeepRank can improve
model accuracy by 51.9%, but NAC(0) improves by 11.81%
and MaxP by 38.17%. To some extent, this shows that the
greater the loss value of the test case relative to the DNN, the
more conducive it is to guide the retraining of the model.

In summary, DeepRank can effectively guide model retrain-
ing and improve model accuracy.

VI. CONCLUSION

In this paper, we propose Deeprank, a test case prioriti-
zation method based on cross-entropy loss. The key idea of
DeepRank is that the higher the loss value of a test case
relative to the DNN, the more likely it is to be mispredicted
and the more conducive it is to improve the robustness of
the DNN through retraining. Therefore, the cross-entropy loss
value can be used for test case prioritization. We only label the
test cases with higher priority, which can alleviate the cost of
test case labeling and improve the efficiency of DNN testing.
The experimental results show that DeepRank can effectively
quantify the cross-entropy loss of test cases relative to DNN,
has an excellent prioritization effect, and can guide DNN
retraining, significantly improving the robustness of DNN.

ACKNOWLEDGMENT

This research is supported, in part, by National Natural
Science Foundation of China (Grant No.62002162), and Nat-
ural Science Foundation of Jiangsu Province, China (Grant

No.BK20200442), and Humanities and Social Sciences Fund
of Yangzhou University (Grant No. xj2019-07), and Double-
Innovation Doctor Program of Jiangsu Province, China (Grant
No. (2019) 30755), and ”Green Yang Jinfeng Project” Excel-
lent Doctoral Program of Yangzhou, China (Grant No. (2019)
32).

REFERENCES

[1] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, pages 785–794, 2016.

[2] John Denker and Yann LeCun. Transforming neural-net output levels
to probability distributions. Advances in neural information processing
systems, 3, 1990.

[3] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and
Zhenyu Chen. Deepgini: prioritizing massive tests to enhance the
robustness of deep neural networks. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 177–188, 2020.

[4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[5] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-
language knowledge transfer using multilingual deep neural network
with shared hidden layers. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 7304–7308. IEEE, 2013.

[6] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1039–1049. IEEE,
2019.

[7] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lam-
blin. Exploring strategies for training deep neural networks. Journal of
machine learning research, 10(1), 2009.

[8] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian
Lü. Boosting operational dnn testing efficiency through conditioning. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 499–509, 2019.

[9] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li,
Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-
granularity testing criteria for deep learning systems. In Proceedings
of the 33rd ACM/IEEE international conference on automated software
engineering, pages 120–131, 2018.

[10] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng. Reading digits in natural images with unsupervised
feature learning. 2011.

[12] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In proceedings
of the 26th Symposium on Operating Systems Principles, pages 1–18,
2017.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[14] Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and
Chao Zhang. Bet: black-box efficient testing for convolutional neural
networks. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 164–175, 2022.

[15] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and
Wenbin Zhang. Prioritizing test inputs for deep neural networks via
mutation analysis. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pages 397–409. IEEE, 2021.

[16] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability,
22(2):67–120, 2012.

[17] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 48(1):1–36, 2020.

[18] Chris Ziegler. A google self-driving car caused a crash for the first time.
The Verge, 198, 2016.


