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Abstract—The sampling method for real-time and high-speed 

changing streaming data is prone to lose the value and information 

of a large amount of discrete data, and it is not easy to make an 

efficient and accurate streaming data valuation. The SDSLA 

(Streaming Data Drilling Sampling Method Under Limited 

Access) sampling method based on mineral drilling exploration 

can streaming data valuation containing many discrete data in 

real-time, but when the range of discrete data in streaming data is 

irregular, it has low sampling accuracy for discrete data. Based on 

the SDSLA algorithm, we propose a dynamic drilling sampling 

method SDDS (Streaming Data Dynamic Drilling Sampling). This 

method takes well as the analysis unit dynamically changes the size 

and position of the well, and accurately predicts the position and 

range of discrete data. A new model SDVEM (Streaming Data 

Value Evaluation Model), is further proposed for data valuation, 

which evaluates the sample set from discrete, centralized, and 

overall dimensions. Experiments show that the method proposed 

in the paper uses neural network training and testing with a small 

sampling rate to obtain accuracy, recall, and F1 scores above 90%, 

which is higher than that of the SDSLA algorithm. In summary, 

the SDDS sampling method is beneficial to the training neural 

network models and evaluating the value characteristics of 

streaming data, which has essential research significance in big 

data valuation. 
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I.  INTRODUCTION  

In the era of big data, the data valuation is one of the most 
essential requirements of big data. C.R. Yin et al. [1] proposed 
data value can be considered a new form of value, and how to 
evaluate its value has become a new problem. For big data 
valuation, A.F. Haryadi et al. [2] proposed more than half of 
financial services organizations report that big data is not 
delivering the expected value. Big data usually exists in the 
form of streaming data, and it has the characteristics of high-
speed and real-time, which brings severe challenges to 
sampling high-value data. Therefore, methods for sampling and 
streaming data valuation are needed.  

Sampling is a required data analysis method in big data, and 
it plays an irreplaceable role in big data valuation. Currently, 
sampling methods for streaming data are mainly divided into 
two categories. The first category is unbiased sampling 
methods: stratified sampling [3], random sampling [4], 
reservoir sampling [5]. Unbiased sampling is random, and the 

streaming data obtained by sampling will lose some key 
information. The second category is biased sampling methods: 
probability density sampling[6]. Biased sampling can preserve 
many discrete data in streaming data but amplifies the impact 
of discrete data in the sample set.   

To sum up, there are still some difficulties: 1. How to 
accurately predict the position and range of discrete data in 
streaming data? 2. Too much discrete data in the sample is not 
easy to use to evaluate the overall characteristics of streaming 
data. Given the above problems, the contributions of the paper 
are summarized as follows: 

● We propose a dynamic sampling method SDDS, which 
takes well as the analysis unit dynamically changes the 

size and position of the well, and accurately predicts 

the position and range of discrete data. 

● We propose a new streaming data valuation model 
SDVEM which evaluates the sample set from discrete, 
centralized, and overall dimensions. 

Section II introduces related work. Section III depicts the 
SDDS method. Section IV depicts the streaming data valuation 
model. Section V describes the dataset and experimental 
analysis. Section VI summarizes the research results of the 
paper and expectations. 

II. RELATED WORK 

At this stage, some sampling methods can collect discrete 
data so that the sample set can be used as the training set of the 
neural network. T. Li et al. [7] proposed a new data 
transformation method, the KSB algorithm, that improved 
machine learning models' performance. 

Assessing the value of data, P. J [8] pointed out how we can 
objectively, systematically, and quantitatively assess the value 
of data. F.J. Xu et al. [9] proposed a streaming data drilling 
sampling method (SDLSA) and an overall feature evaluation 
model of streaming data sets. The main idea of the SDLSA 
method is to use the skewness coefficient to locate the following 
well-drilling position, to perform in-well sampling and inter-
well sampling respectively. The disadvantage is that when the 
range of discrete data in streaming data is irregular, the 
sampling accuracy of discrete data is low. Based on the SDLSA 
method, we propose a complete SDDS method which 
dynamically changes the size of the wells for predicting the 
range of discrete data and changes the size of the well-interval 



 

adaptively. Experiments show that the sampling accuracy of the 
SDDS method in discrete data is higher than that of SDLSA, 
the effect of evaluating the SDDS sample set from three 
dimensions of discrete, centralized, and overall is better than 
that of SDLSA, and the training effect of the sample set of 
SDDS for neural network models is better. 

III. DYNAMIC DRILLING SAMPLING METHOD 

Definition 1 (Streaming Data): The streaming data 𝑆  is 
represented as: 

𝑆 = {(𝑖𝑑𝑖 ,  𝑡𝑖𝑚𝑒𝑖,  𝑣𝑎𝑙𝑢𝑒𝑖)|1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 𝑖 𝜖 𝑁+ } (1) 

Where 𝑖𝑑𝑖 is the order of the 𝑖𝑡ℎ  data,  𝑡𝑖𝑚𝑒𝑖  is the arrival 

time of the 𝑖𝑡ℎ data,  𝑣𝑎𝑙𝑢𝑒𝑖 is the value of the 𝑖𝑡ℎ data, 𝑁 is the 
size of streaming data. An example of 𝑆 is shown in Figure 1. 

Definition 2 (Well): We use well as analysis units.The 𝑖𝑡ℎ 
well 𝑊𝑖 is expressed as: 

𝑊𝑖 = {(𝑖𝑑𝑗 , 𝑡𝑖𝑚𝑒𝑗, 𝑣𝑎𝑙𝑢𝑒𝑗)|1 ≤ 𝑗 ≤ 𝑊𝑆𝑖  𝑎𝑛𝑑 𝑗 𝜖 𝑁+ } (2) 

Where 𝑊𝑆𝑖  is the size of the 𝑖𝑡ℎ well. 

Definition 3 (Well-Interval): The 𝑖𝑡ℎ  well interval 𝑊𝐼𝑖  is 
expressed as: 

𝑊𝐼𝑖 = {(𝑖𝑑𝑗 , 𝑡𝑖𝑚𝑒𝑗 , 𝑣𝑎𝑙𝑢𝑒𝑗)|𝑖𝑑𝑤𝑖_𝑚𝑎𝑥 + 1 ≤ 𝑖𝑑𝑗

≤ 𝑖𝑑𝑤𝑖+1_𝑚𝑖𝑛 − 1}                                         (3) 

Where 𝑖𝑑𝑤𝑖_𝑚𝑎𝑥  is the largest id in the 𝑖𝑡ℎ well, 𝑖𝑑𝑤𝑖+1_𝑚𝑖𝑛 

is the smallest id in the 𝑖 + 1𝑡ℎ  well. 

 

Figure 1. Streaming data schematic diagram 

We propose the SDDS sampling method to obtain valuable 
discrete data in the streaming data. Firstly, setting the initial 
well and initial well-interval, k-means clustering [10] in the 
well. Secondly, calculating each class's sampling rate and well-
interval by deviation coefficient. Thirdly, using intra-class 
unbiased sampling and inter-class biased sampling in the well, 
sampling equidistant in the well-interval. Finally, predicting the 
size of the following well through the correlation coefficient 
and the coefficient of variation. The specific sampling method 
is shown in Figure 2. 

 

Figure 2. The large-scale streaming data sampling  

A. Dynamic Adjust Sampling Rate And Well-Position 

To accurately predict the position of discrete data in the 
streaming data. Firstly, we use the k-means clustering to divide 
well-data into three categories, then carry out intra-class 
unbiased and inter-class biased sampling, increasing the 
sampling rate of the minority class. Assuming that the current 

is the 𝑖𝑡ℎ   well, the initial sampling rate is 𝑝𝑖𝑛𝑖𝑡 , and the 
adjustment formula of the sampling rate is as follows: 

𝑝 = {

2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖| , 𝑆𝐾𝑖 𝜖 (-1,-0.5) or (0.5,1)

2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖| , 𝑆𝐾𝑖 𝜖 (-∞,-1) or (1,+∞)

𝑝𝑖𝑛𝑖𝑡  , 𝑆𝐾𝑖 𝜖 [−0.5,0.5]
(4) 

If 𝑆𝐾𝑖 𝜖 [−0.5,0.5] , the sampling rate for all classes 𝑝 =
𝑝𝑖𝑛𝑖𝑡   if 𝑆𝐾𝑖 𝜖 (-∞,-1) or (1,+∞) , increase the sampling rate of 
the two classes with fewer numbers p=2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖|   if 
𝑆𝐾𝑖 𝜖 (-1,-0.5) or (0.5,1), increase the sampling rate for the least 
number of classes p=2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖|. 

Secondly, we use the deviation coefficient [11] to adjust the 

well-interval size dynamically, and the size of 𝑖𝑡ℎ well-interval 
formula 𝑊𝐼𝑆𝑖  is as follows: 

𝑊𝐼𝑆𝑖 = {
⌈
𝑊𝐼𝑆𝑖𝑛𝑖𝑡

|𝑆𝐾𝑖|
⌉ , 𝑆𝐾𝑖 𝜖 (-∞,-1) or (1,+∞) or  (-1,-0.5) or (0.5,1)

2 × 𝑊𝐼𝑆𝑖𝑛𝑖𝑡  , 𝑆𝐾𝑖 𝜖 [−0.5,0.5]

(5) 

Where 𝑊𝐼𝑆𝑖  stands for the 𝑖𝑡ℎ well-interval size, 𝑆𝐾𝑖 stands 

for the deviation coefficient of the 𝑖𝑡ℎ well. 

Specifically divided into two situations, if 𝑆𝐾𝑖 𝜖 [−0.5,0.5], 
increase well-interval 𝑊𝐼𝑖 = 2 × 𝑊𝐼𝑖𝑛𝑖𝑡 ; if 
𝑆𝐾𝑖 𝜖 (-∞,-1) or (1,+∞) or  (-1,-0.5) or (0.5,1) , reduce well-
interval 𝑊𝐼𝑖 = ⌈𝑊𝐼𝑖𝑛𝑖𝑡 |𝑆𝐾𝑖|⁄ ⌉. 

B. Dynamic Adjust The Well Size 

To accurately predict the range of discrete data in the 
streaming data. Firstly, we define the peaks and troughs of 
streaming data through three features: 1.The slope changes very 
large  2.Periodic changes  3.The degree of dispersion is low. As 
shown in Figure 3(a), the peaks are divided into SP(Shock-
Peek), OP(Oscillation-Peek), and BP(Buffer-Peek). As shown 
in Figure 3(b), the troughs are divided into ST(Shock-Trough), 
OT(Oscillation-Trough), and BT(Buffer-Trough). Where the SP 
and ST have a huge slope and the degree of dispersion will be 
huge  the OP and OT have periodic changes and the degree of 
dispersion will be relatively large  BP and BT have the lowest 
degree of dispersion of the well. When two different wells 
contain the same kind of peak or trough, the two wells have a 
certain self-similarity, and the degree of dispersion of the two 
wells will be very close. 

 
(a)                                                          (b) 

Figure 3. Streaming data peak and trough classification diagram 



 

Secondly, we propose an AWS algorithm(Adaptive well 
sizing) to predict the range of discrete data in streaming data 
accurately, combining pearson correlation coefficient [12] and 
variation coefficient [13]. The AWS records the representative 
wells in the well-set, uses the sliding window to accept the 
newly arrived data, traverses the well-set, sets the sliding 
window size to the size of the different wells in the well-set, and 
set the size of the next well to the one with the highest 
correlation coefficient with the sliding window in the well-set. 
The specific algorithm is as follows: 

Algorithm AWS: Adaptive Well-Size 

Input: 𝑊𝑖𝑛𝑖𝑡 - Init Well; 𝛿 - Threshold Value of Correlation 

Coefficient; 𝑊𝐶 - Well Collection; 𝑆𝑊 - Sliding Window; 

𝑃𝐶𝐶 - Pearson Coefficient Collection. 

Output: 𝑊𝑆 

1. 𝑊𝐶.add (𝑊𝑖𝑛𝑖𝑡) 

2. for data in 𝑊𝐶: 

3.    𝑆𝑊.clear () 

4.    𝑆𝑊.size = data.size 

5.    𝑆𝑊.add (𝑆𝑊.size data after well interval) 

6.    PC = Pearson correlation coefficient of data and 𝑆𝑊 

7.    𝑃𝐶𝐶.add (PC) 

8. PC_MAX = max(PCC) 

9. if PC_MAX ≥ 𝛿: 

10.   index = PCC.index(PC_MAX) 

11.   𝑊𝑆 = 𝑊𝐶[𝑖𝑛𝑑𝑒𝑥].length 

12.   𝑊𝐶.add(Latest well-data) 

13. else: 

14.   𝑆𝑊.clear() 

15.   𝑆𝑊.size = data.size 

16.   𝑆𝑊.add(𝑆𝑊.size data after well interval) 

17.   𝑆𝑊_𝐶𝑂𝑉 = Variation coefficient of 𝑆𝑊 

18.   𝐴𝑊𝐶 = Covariance of all wells 

19.   if 𝑆𝑊𝐶𝑂𝑉 ≥ 75% 𝐴𝑊𝐶: 

20.     𝑊𝑆 = 2 × 𝑊𝑖𝑛𝑖𝑡.size  

21.   elif 𝑆𝑊𝐶𝑂𝑉 ≥ 50% 𝐴𝑊𝐶: 

22.     𝑊𝑆 = 1.5 × 𝑊𝑖𝑛𝑖𝑡.size 

23.   elif 𝑆𝑊𝐶𝑂𝑉 ≥ 25% 𝐴𝑊𝐶: 

24.     𝑊𝑆 = 𝑊𝑖𝑛𝑖𝑡.size 

25.   else: 

26.     𝑊𝑆 = 𝑊𝑖𝑛𝑖𝑡.size / 2 

27.   𝑊𝐶.add(Latest well-data) 

28. return 𝑊𝑆 

C. Dynamic Sampling Algorithm 

We propose a SDDS algorithm to accurately predicts the 
position and range of discrete data. Firstly, setting the initial 
well and initial well-interval, k-means clustering in the well. 
Secondly, calculating each class's sampling rate and well-
interval by deviation coefficient. Thirdly, using intra-class 
unbiased sampling and inter-class biased sampling in the well, 
sampling equidistant in the well-interval. Finally, predicting the 
size of the following well through the AWS algorithm. 

Algorithm SDDS: Streaming Data Dynamic Sampling 

Input: 𝑊𝑆𝑖𝑛𝑖𝑡 - Init Well-Size; 𝑆 - Streaming Data; 𝑊𝐼𝑆𝑖𝑛𝑖𝑡 

– Init Well Interval; 𝑝𝑖𝑛𝑖𝑡 – Init Sampling Rate 

Output: 𝑆𝑆 – Sample Set 

1. Set  𝑊𝑖𝑛𝑖𝑡.length = 𝑊𝑆𝑖𝑛𝑖𝑡 

2. Set 𝑊𝐼𝑖𝑛𝑖𝑡.length = 𝑊𝐼𝑆𝑖𝑛𝑖𝑡 

3. K-means clustering for 𝑊𝑖𝑛𝑖𝑡, get three classes of data 

4. Calculate the p for each class in 𝑊𝑖𝑛𝑖𝑡 according to formula (4) 

5. Sample by steps 13-23 of this algorithm and add to SS 

6. Equidistant sampling of well interval data 

7. while S is generating: 

8.    Get the size of the next well by AWS algorithm: 𝑊𝑆𝑛𝑒𝑥𝑡  

9.    Set 𝑊𝑖 .length = 𝑊𝑆𝑛𝑒𝑥𝑡  

10.    K-means clustering for 𝑊𝑖 , get three classes of data 

11.    Calculate the 𝑆𝐾𝑖 of 𝑊𝑖  

12.    Calculate the p of three classes in 𝑊𝑖  by formula (4) 

13.    if 𝑆𝐾𝑖 𝜖 [−0.5,0.5]: 
14.      Sampling rate for all classes is 𝑝𝑖𝑛𝑖𝑡 

15.      𝑆𝑆.add(Data obtained from 𝑊𝑖  by reservoir sampling) 

16.    elif 𝑆𝐾𝑖 𝜖 (-∞, -1) or (1, +∞): 

17.      The two smaller classes’ sampling rate is 2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖| 
18.      The largest class’s sampling rate is 𝑝𝑖𝑛𝑖𝑡 

19.      𝑆𝑆.add(Data obtained from 𝑊𝑖  by reservoir sampling) 

20.    elif 𝑆𝐾𝑖 𝜖 (-1, -0.5) or (0.5,1): 

21.      The smallest class’s sampling rate is 2 × 𝑝𝑖𝑛𝑖𝑡 × |𝑆𝐾𝑖| 
22.      The other two classes’ sampling rate is 𝑝𝑖𝑛𝑖𝑡 

23.      𝑆𝑆.add(Data obtained from 𝑊𝑖  by reservoir sampling) 

24.    Calculate the 𝑊𝐼𝑆𝑖  of 𝑊𝐼𝑖 by formula (5) 

25.    Set 𝑊𝐼𝑖 .length = 𝑊𝐼𝑆𝑖  

26.    𝑆𝑆.add(Data obtained from 𝑊𝐼𝑖  by equidistant sampling) 

27.    𝑆𝑆.sort() 

28. return SS 

IV. SDVEM EVALUATION MODEL 

We propose SDVEM evaluation model to streaming data 
valuation. The specific model is shown in Figure 4. 

 

Figure 4. SDVEM Evaluation Model 

A. Discrete Dimension Evaluation Sample Set 

The discrete data of the raw streaming dataset 𝐷𝐷𝑅𝐷 and 
the discrete data of the sample set 𝐷𝐷𝑆𝑆 are as follows: 

𝐷𝐷𝑅𝐷 = {𝑅𝐷𝑖|𝑅𝐷𝑖 ≥ 𝑅𝐷̅̅ ̅̅ × 𝛿𝑢𝑝𝑝𝑒𝑟  𝑜𝑟 𝑅𝐷𝑖 ≤ 𝑅𝐷̅̅ ̅̅ × 𝛿𝑑𝑜𝑤𝑛}(6) 

𝐷𝐷𝑆𝑆 = {𝑆𝑆𝑖|𝑆𝑆𝑖 ≥ 𝑆𝑆̅̅ ̅ × 𝛿𝑢𝑝𝑝𝑒𝑟  𝑜𝑟 𝑆𝑆𝑖 ≤ 𝑆𝑆̅̅ ̅ × 𝛿𝑑𝑜𝑤𝑛} (7) 

Where 𝑅𝐷𝑖 is the 𝑖𝑡ℎ data of raw streaming data, 𝛿𝑢𝑝𝑝𝑒𝑟 and  

𝛿𝑑𝑜𝑤𝑛 are the threshold to decide whether it is discrete data, 𝑅𝐷̅̅ ̅̅  

is the mean of raw streaming data, 𝑆𝑆𝑖  is the 𝑖𝑡ℎ of the sample 

set, and 𝑆𝑆̅̅ ̅ is the mean of the sample set. 

Definition 4 DMA(Discrete Mean Accuracy): refers to the 
accuracy rate of estimating the mean value of the 𝐷𝐷𝑅𝐷 
attribute value with the mean value of the 𝐷𝐷𝑆𝑆 attribute value. 
The formula of 𝐷𝑀𝐴 is as follows: 



 

𝐷𝑀𝐴 = 1 − (
|𝐷𝐷𝑅𝐷̅̅ ̅̅ ̅̅ ̅̅ − 𝐷𝐷𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅ |

𝐷𝐷𝑅𝐷̅̅ ̅̅ ̅̅ ̅̅ ) × 100% (8) 

Definition 5 ADCV(Accuracy of Discrete Coefficient of 
Variation): refers to the accuracy rate of estimating the 
coefficient of variation of the 𝐷𝐷𝑅𝐷 attribute value by using 
the coefficient of variation of the 𝐷𝐷𝑆𝑆  attribute value. The 
formula of 𝐴𝐷𝐶𝑉 is as follows: 

𝐴𝐷𝐶𝑉 = 1 − (
|𝐶𝑉𝐷𝐷𝑅𝐷 − 𝐶𝑉𝐷𝐷𝑆𝑆|

𝐶𝑉𝐷𝐷𝑅𝐷

) × 100% (9) 

Definition 6 DSA(Discrete Sampling Accuracy): refers to 
the ratio of the intersection number of the 𝐷𝐷𝑆𝑆 attribute value 
and the 𝐷𝐷𝑅𝐷 attribute value to the 𝐷𝐷𝑆𝑆 length. The formula 
of 𝐷𝑆𝐴 is as follows: 

𝐷𝑆𝐴 =
𝑙𝑒𝑛(𝐷𝐷𝑆𝑆 ∩ 𝐷𝐷𝑅𝐷)

𝑙𝑒𝑛(𝐷𝐷𝑆𝑆)
× 100% (10) 

B. Centralized Dimension Evaluation Sample Set 

The centralized data of the raw streaming dataset 𝐶𝐷𝑅𝐷 and 
the centralized data of sample set 𝐶𝐷𝑆𝑆 are as follows: 

𝐶𝐷𝑅𝐷 = {𝑅𝐷𝑖|𝑅𝐷̅̅ ̅̅ × 𝛿𝑑𝑜𝑤𝑛 ≤ 𝑅𝐷𝑖 ≤ 𝑅𝐷̅̅ ̅̅ × 𝛿𝑢𝑝𝑝𝑒𝑟} (11) 

𝐶𝐷𝑆𝑆 = {𝑆𝑆𝑖|𝑆𝑆̅̅ ̅ × 𝛿𝑑𝑜𝑤𝑛 ≤ 𝑆𝑆𝑖 ≤ 𝑆𝑆̅̅ ̅ × 𝛿𝑢𝑝𝑝𝑒𝑟} (12) 

Definition 7 CMA(Centralized Mean Accuracy): refers to 
the accuracy of estimating the mean value of the 𝐶𝐷𝑅𝐷 with 
the mean value of the 𝐶𝐷𝑆𝑆. The calculation formula of 𝐶𝑀𝐴 
is as follows: 

𝐶𝑀𝐴 = 1 − (
|𝐶𝐷𝑅𝐷̅̅ ̅̅ ̅̅ ̅̅ − 𝐶𝐷𝑆𝑆̅̅ ̅̅ ̅̅ ̅|

𝐶𝐷𝑅𝐷̅̅ ̅̅ ̅̅ ̅̅ ) × 100% (13) 

Definition 8 ACCV(Accuracy of the Centralized Coefficient 
of Variation): refers to the accuracy of estimating the coefficient 
of variation of the 𝐶𝐷𝑅𝐷 with the coefficient of variation of the 
𝐶𝐷𝑆𝑆. The calculation formula of 𝐴𝐶𝐶𝑉 is as follows: 

𝐴𝐶𝐶𝑉 = 1 − (
|𝐶𝑉𝐶𝐷𝑅𝐷 − 𝐶𝑉𝐶𝐷𝑆𝑆|

𝐶𝑉𝐶𝐷𝑅𝐷

) × 100% (14) 

C. Overall Dimension Evaluation Sample Set 

Definition 9 OMA(Overall Mean Accuracy): refers to the 
accuracy of estimating the original streaming data mean by 
using the sample set mean. The calculation formula of OMA is 
as follows: 

𝑂𝑀𝐴 = 1 − (
|𝑅𝐷̅̅ ̅̅ − 𝑆𝑆̅̅ ̅|

𝑅𝐷̅̅ ̅̅ ) × 100% (15) 

Where 𝑅𝐷̅̅ ̅̅  is the mean of the raw streaming data, 𝑆𝑆̅̅ ̅ is the 
mean of the sample set. 

Definition 10 AOCV(Accuracy of the Overall Coefficient of 
Variation): refers to the accuracy of estimating the coefficient 
of variation of raw streaming data with the coefficient of 
variation of sample set. The calculation formula of 𝐴𝑂𝐶𝑉 is as 
follows: 

𝐴𝑂𝐶𝑉 = 1 − (
|𝐶𝑉𝑅𝐷 − 𝐶𝑉𝑆𝑆|

𝐶𝑉𝐷𝐷𝑅𝐷

) × 100% (16) 

V. EXPERIMENTS AND ANALYSES 

In this section, we introduced the dataset, analyzed the 
impact of the SDVEM model on different parameters, and 

compared the SDDS algorithm with the SDSLA algorithm. 

A. Experimental Dataset 

TABLE I.  EXPERIMENTAL DATASET 

DataSet Data Volume Class 

HSI 87645 0 

NEWS 276336 0 

HSI1 55442 3 

HSI2 55736 3 

As shown in TABLE I, we selected four datasets HSI, 
NEWS, HSI1 and HSI2 to verify the effectiveness of the SDDS 
algorithm, among them HSI and NEWS are real datasets, HSI1 
and HSI2 are synthetic datasets. In addition, we according to 
the degree of dispersion of experimental dataset, 𝛿𝑢𝑝𝑝𝑒𝑟 is set 

to 1.5, and 𝛿𝑑𝑜𝑤𝑛 is set to 0.5. 

B. Influence Analysis of Different Parameters 

To prove that the AWS algorithm can predict the position 
and range of discrete data, the sample set obtained by the SDDS 
algorithm can preserve the discrete data and reflect the 
centralized and overall characteristics of the original streaming 
data. We use the SDVEM model to conduct experimental 
evaluations on HSI and NEWS datasets under different 
parameters, a detailed analysis of parameter 𝛿  in the AWS 
algorithm and parameters 𝑊𝑆𝑖𝑛𝑖𝑡 , 𝑊𝐼𝑆𝑖𝑛𝑖𝑡  and 𝑝𝑖𝑛𝑖𝑡  in the 
SDDS algorithm. The larger the parameter 𝛿 , the higher the 
similarity standard between wells. Parameters 𝑊𝑆𝑖𝑛𝑖𝑡 
and 𝑊𝐼𝑆𝑖𝑛𝑖𝑡  should be set based on the distribution 
characteristics of discrete data in the streaming data. The larger 
the parameter 𝑝𝑖𝑛𝑖𝑡, the smaller the proportion of discrete data 
in the sample set. 

Firstly, 𝑊𝑆𝑖𝑛𝑖𝑡, 𝑊𝐼𝑆𝑖𝑛𝑖𝑡, and 𝑝𝑖𝑛𝑖𝑡 are set as 20, 20, and 0.1, 
respectively, the parameter 𝛿   in the AWS algorithm was 
adjusted differently. The experimental results are shown in  
TABLE II. 

TABLE II.  EVALUATION RESULTS UNDER DIFFERENT PARAMETERS 𝛿 

OF THE HSI AND NEWS (%) 

      HSI NEWS 

𝜹 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 

DMA 94 93 90 91 87 96 93 96 97 98 

ADCV 92 94 96 94 95 99 99 98 98 97 

DSA 96 96 96 97 97 99 99 99 99 99 

CMA 94 94 92 92 91 95 94 94 93 93 

ACCV 1 1 1 1 1 97 97 1 1 1 

OMA 79 69 71 71 72 75 64 65 65 65 

AOCV 90 89 87 89 88 90 90 89 89 89 

Secondly, 𝛿 , 𝑊𝐼𝑆𝑖𝑛𝑖𝑡 , and 𝑝𝑖𝑛𝑖𝑡  are set as 0.2, 20, and 20, 
respectively, different adjustments are made to the parameter 
𝑊𝑆𝑖𝑛𝑖𝑡 in the SDDS algorithm, and the experimental results are 
presented in TABLE III. 



 

TABLE III.  EVALUATION RESULTS UNDER DIFFERENT PARAMETERS 

𝑊𝑆𝑖𝑛𝑖𝑡 OF THE HSI AND NEWS (%) 

 HSI NEWS 

𝑾𝑺𝒊𝒏𝒊𝒕  10 20 30 40 50 10 20 30 40 50 

DMA 79 94 96 98 99 98 94 89 86 84 

ADCV 1 94 90 85 89 99 95 95 96 93 

DSA 96 96 95 96 97 99 99 99 98 97 

CMA 91 94 93 92 93 93 94 95 96 97 

ACCV 1 1 1 1 94 1 97 97 97 93 

OMA 84 69 65 60 60 66 60 60 59 55 

AOCV 86 89 91 92 92 89 90 92 94 94 

Thirdly, 𝛿 , 𝑊𝐼𝑖𝑛𝑖𝑡 , and 𝑝𝑖𝑛𝑖𝑡  are set as 0.2, 10, and 0.1, 
respectively, different adjustments are made to the parameter 
𝑊𝐼𝑆𝑖𝑛𝑖𝑡  in the SDDS algorithm, and the experimental results 
are presented in TABLE IV. 

TABLE IV.  EVALUATION RESULTS UNDER DIFFERENT PARAMETERS 

𝑊𝐼𝑆𝑖𝑛𝑖𝑡  OF THE HSI AND NEWS (%) 

 HSI NEWS 

𝑾𝑰𝑺𝒊𝒏𝒊𝒕  10 20 30 40 50 10 20 30 40 50 

DMA 89 79 80 81 78 98 98 98 97 92 

ADCV 98 99 1 98 99 1 96 96 96 95 

DSA 97 96 98 97 97 99 99 99 96 99 

CMA 95 91 91 92 92 95 93 93 92 92 

ACCV 1 1 1 1 1 1 1 1 1 1 

OMA 89 87 89 86 89 65 71 72 73 79 

AOCV  85 82 83 82 84 89 88 88 88 89 

Fourthly, 𝛿 = 0.2, 𝑊𝑆𝑖𝑛𝑖𝑡 = 20, and 𝑊𝐼𝑆𝑖𝑛𝑖𝑡 = 20  are set 
as 0.2, 20, and 20, respectively, and different adjustments are 
made to the parameter 𝑝𝑖𝑛𝑖𝑡  in the SDDS algorithm, and the 
experimental results are exhibited in TABLE V. 

TABLE V.  EVALUATION RESULTS UNDER DIFFERENT PARAMETERS 

𝑝𝑖𝑛𝑖𝑡 OF THE HSI AND NEWS (%) 

 HSI NEWS 

𝒑𝒊𝒏𝒊𝒕 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 

DMA 94 84 78 75 72 94 97 91 87 85 

ADCV 94 99 99 1 98 99 99 96 95 94 

DSA 95 96 96 98 99 99 99 99 99 99 

CMA 94 92 91 90 90 95 93 93 92 91 

ACCV 1 1 1 1 1 97 1 1 1 1 

OMA 69 79 85 89 92 62 75 82 85 87 

AOCV 89 89 89 90 92 89 90 91 91 91 

It can be seen from TABLE I, TABLE II, TABLE III, 
TABLE IV and TABLE V that the evaluation accuracy of the 
SDDS algorithm in the discrete and centralized dimension is 
almost all above 90%, and the evaluation accuracy of AOCV is 
almost above 85%. It proves that the sample set obtained by the 
SDDS algorithm can reflect the discrete, centralized and overall 
characteristics of the raw streaming data.  

C. Comparison of Experimental Results of Streaming Data 

Value Evaluation Model 

To prove that the SDDS algorithm can evaluate the value of 
streaming data from three dimensions: discrete, centralized, and 
overall. We use real data sets HSI and NEWS to conduct 
comparative experiments on SDDS and SDSLA sampling. The 
experimental results are shown in Figure 5 and Figure 6. 

 

Figure 5. Evaluation results under different parameters 𝑝𝑖𝑛𝑖𝑡 of the HSI 

 

 

 

Figure 6. Evaluation results under different parameters 𝑝𝑖𝑛𝑖𝑡 of the NEWS 



 

It can be seen from Figure 5 and Figure 6 that the evaluation 
accuracy of the sample set obtained by the SDDS algorithm is 
very high in the discrete, centralized, and overall dimensions, 
and the accuracy of the five evaluation indicators ADCV, DSA, 
CMA, ACCV, and AOCV almost both are above 90%, the 
evaluation accuracy of DMA is almost above 85%, and the JSD 
is also very low, indicating that the probability distribution of 
the sample set and the original streaming dataset is very close. 
Compared with the SDLSA algorithm, the evaluation accuracy 
of the SDDS algorithm is almost higher in the three dimensions 
discrete, centralized, and overall. 

D. Comparison of Neural Network Training Effect 

To prove that the sample set obtained by the SDDS 
algorithm is beneficial to reduce the amount of data required for 
neural network model training. We use HSI1 and HSI2 to divide 
the dataset into 80% training set and 20% test set, then samples 
the training set, and conducts comparative experiments on the 
datasets before and after sampling. 

Based on the above experiments, we select parameters with 
the best evaluation result, setting 𝛿, 𝑊𝑆𝑖𝑛𝑖𝑡, 𝑊𝐼𝑆𝑖𝑛𝑖𝑡 as 0.2, 20, 
and 20, respectively, different adjustments were made to the 
parameter 𝑝𝑖𝑛𝑖𝑡 in the SDDS algorithm, the experimental results 
are shown in Figure 7. 

 

 

Figure 7. Training F1, Recall and Accuracy values of raw streaming data, the 

SDSLA and SDDS sample sets on the HSI1 and HSI2  

It can be seen from Figure 7 that the F1 value and recall rate 
of the neural network model trained with the sample set 
obtained by the SDDS algorithm are almost higher than 90%, 
and the accuracy is almost higher than 95%, which is almost the 
same as using the original streaming dataset training. Moreover, 
the sample set obtained by the SDDS algorithm is better than 
the SDLSA algorithm in the effect of training the neural 
network model. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose the SDDS algorithm to predict the 

position and range of discrete data and obtain a sample set 
containing more discrete data. It can describe the original 
stream data set's value characteristics and be well used in 
training neural network models. The streaming data value 
evaluation model SDVEM fully and detailedly analyzes the 
sample set from three dimensions: discrete, centralized, and 
holistic, which has essential research significance for the value 
evaluation of streaming data in the field of big data. In future 
work, we will further increase the dimension of value 
evaluation of streaming data and more comprehensively 
evaluate the value of streaming data. 
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